Advertisement

Parenteral Vaccine Administration: Tried and True

  • Pål Johansen
  • Thomas M. Kündig
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

The majority of current and traditional vaccines have been administered by injection into or under the skin. Most of the utilised historic vaccines as well as many of the current vaccines are live or attenuated bacterial or viral preparations, which possess integrated adjuvant properties and their particulate nature enables these vaccines to efficiently drain to secondary lymphatic organs or to activate the innate immune system to carry the vaccine to the next draining lymph node. However, live vaccines are getting rarer and modern vaccines are typically subunit vaccines comprising of synthetic peptides, recombinant proteins or nucleotide-based vaccines such as mRNA and plasmid DNA. While the safety profiles of subunit vaccines are good, their immunogenicity is often poor for which reason new and stronger adjuvants are required. Another possibility to improve the immunogenicity, function and efficacy of such new vaccines is to facilitate targeting to secondary lymphatic organs. Adjuvants and synthetic particles can enable such targeting to some extent, but the use of recombinant bacterial or viral carrier systems is typically more effective. However, a considerate choice of vaccine administration route is also crucial in the development and marked release of new or improved subunit vaccines. In the following, we will discuss the potentials and limitations of various parenteral vaccine administration routes.

Keywords

Human Papilloma Virus Subunit Vaccine Secondary Lymphoid Organ Vaccine Administration Rabies Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamina M, Rosenthal R, Weber WP, Frey DM, Viehl CT, Bolli M, Huegli RW, Jacob AL, Heberer M, Oertli D, Marti W, Spagnoli GC, Zajac P (2010) Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. Mol Ther 18:651–659PubMedCentralPubMedGoogle Scholar
  2. Azzi L, El-Alfy M, Martel C, Labrie F (2005) Gender differences in mouse skin morphology and specific effects of sex steroids and dehydroepiandrosterone. J Invest Dermatol 124:22–27PubMedGoogle Scholar
  3. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796PubMedGoogle Scholar
  4. Bajenoff M, Granjeaud S, Guerder S (2003) The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. J Exp Med 198:715–724PubMedCentralPubMedGoogle Scholar
  5. Baldwin SL, Bertholet S, Kahn M, Zharkikh I, Ireton GC, Vedvick TS, Reed SG, Coler RN (2009) Intradermal immunization improves protective efficacy of a novel TB vaccine candidate. Vaccine 27:3063–3071PubMedCentralPubMedGoogle Scholar
  6. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedGoogle Scholar
  7. Bansal A, Jackson B, West K, Wang S, Lu S, Kennedy JS, Goepfert PA (2008) Multifunctional T-cell characteristics induced by a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine regimen given to healthy adults are dependent on the route and dose of administration. J Virol 82:6458–6469PubMedCentralPubMedGoogle Scholar
  8. Barth RJ Jr, Fisher DA, Wallace PK, Channon JY, Noelle RJ, Gui J, Ernstoff MS (2010) A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival. Clin Cancer Res 16:5548–5556PubMedCentralPubMedGoogle Scholar
  9. Bedrosian I, Mick R, Xu S, Nisenbaum H, Faries M, Zhang P, Cohen PA, Koski G, Czerniecki BJ (2003) Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 21:3826–3835PubMedGoogle Scholar
  10. Birkholz K, Schwenkert M, Kellner C, Gross S, Fey G, Schuler-Thurner B, Schuler G, Schaft N, Dorrie J (2010) Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood 116:2277–2285PubMedGoogle Scholar
  11. Bogers WM, Bergmeier LA, Ma J, Oostermeijer H, Wang Y, Kelly CG, Ten Haaft P, Singh M, Heeney JL, Lehner T (2004a) A novel HIV-CCR5 receptor vaccine strategy in the control of mucosal SIV/HIV infection. AIDS 18:25–36PubMedGoogle Scholar
  12. Bogers WM, Bergmeier LA, Oostermeijer H, ten Haaft P, Wang Y, Kelly CG, Singh M, Heeney JL, Lehner T (2004b) CCR5 targeted SIV vaccination strategy preventing or inhibiting SIV infection. Vaccine 22:2974–2984PubMedGoogle Scholar
  13. Boutennoune H, Qaqish A, Al-Aghbar M, Abdel-Hafez S, Al-Qaoud K (2012) Induction of T helper 1 response by immunization of BALB/c mice with the gene encoding the second subunit of Echinococcus granulosus antigen B (EgAgB8/2). Parasite 19:183–188PubMedCentralPubMedGoogle Scholar
  14. Brockstedt DG, Podsakoff GM, Fong L, Kurtzman G, Mueller-Ruchholtz W, Engleman EG (1999) Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol 92:67–75PubMedGoogle Scholar
  15. Brown K, Gao W, Alber S, Trichel A, Murphey-Corb M, Watkins SC, Gambotto A, Barratt-Boyes SM (2003) Adenovirus-transduced dendritic cells injected into skin or lymph node prime potent simian immunodeficiency virus-specific T cell immunity in monkeys. J Immunol 171:6875–6882PubMedGoogle Scholar
  16. Carcaboso AM, Hernandez RM, Igartua M, Rosas JE, Patarroyo ME, Pedraz JL (2004) Enhancing immunogenicity and reducing dose of microparticulated synthetic vaccines: single intradermal administration. Pharm Res 21:121–126PubMedGoogle Scholar
  17. Carlsson U, Brudin L, Eliasson I, Hansson BG (1996) Hepatitis A vaccination by intracutaneous low dose administration: a less expensive alternative. Scand J Infect Dis 28:435–438PubMedGoogle Scholar
  18. Carlsson RM, Claesson BA, Kayhty H, Selstam U, Iwarson S (1999) Studies on a Hib-tetanus toxoid conjugate vaccine: effects of co-administered tetanus toxoid vaccine, of administration route and of combined administration with an inactivated polio vaccine. Vaccine 18:468–478PubMedGoogle Scholar
  19. Catron DM, Itano AA, Pape KA, Mueller DL, Jenkins MK (2004) Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity 21:341–347PubMedGoogle Scholar
  20. Cavanagh LL, Von Andrian UH (2002) Travellers in many guises: the origins and destinations of dendritic cells. Immunol Cell Biol 80:448–462PubMedGoogle Scholar
  21. Centers for Disease Control and Prevention (2012) Appendix D: vaccine administration. In: Atkinson W, Wolfe C, Hamborsky J (eds) Epidemiology and prevention of vaccine-preventable diseases. The pink book. Public Health Foundation, Washington, DCGoogle Scholar
  22. Cubas R, Zhang S, Kwon S, Sevick-Muraca EM, Li M, Chen C, Yao Q (2009) Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J Immunother 32:118–128PubMedCentralPubMedGoogle Scholar
  23. Cumberbatch M, Dearman RJ, Antonopoulos C, Groves RW, Kimber I (2001) Interleukin (IL)-18 induces Langerhans cell migration by a tumour necrosis factor-alpha- and IL-1beta-dependent mechanism. Immunology 102:323–330PubMedCentralPubMedGoogle Scholar
  24. Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, Weinstein S, Orel SG, Vonderheide R, Coukos G, DeMichele A, Araujo L, Spitz FR, Rosen M, Levine BL, June C, Zhang PJ (2007) Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 67:1842–1852PubMedGoogle Scholar
  25. Davids V, Hanekom WA, Mansoor N, Gamieldien H, Gelderbloem SJ, Hawkridge A, Hussey GD, Hughes EJ, Soler J, Murray RA, Ress SR, Kaplan G (2006) The effect of bacille Calmette-Guerin vaccine strain and route of administration on induced immune responses in vaccinated infants. J Infect Dis 193:531–536PubMedGoogle Scholar
  26. De Gregorio E, D’Oro U, Wack A (2009) Immunology of TLR-independent vaccine adjuvants. Curr Opin Immunol 21:339–345PubMedGoogle Scholar
  27. Delagrave S, Hernandez H, Zhou CH, Hamberger JF, Mundle ST, Catalan J, Baloglu S, Anderson SF, DiNapoli JM, Londono-Hayes P, Parrington M, Almond J, Kleanthous H (2012) Immunogenicity and efficacy of intramuscular replication-defective and subunit vaccines against herpes simplex virus type 2 in the mouse genital model. PLoS One 7(10):e46714PubMedCentralPubMedGoogle Scholar
  28. Dretzke J, Meadows A, Novielli N, Huissoon A, Fry-Smith A, Meads C (2013) Subcutaneous and sublingual immunotherapy for seasonal allergic rhinitis: a systematic review and indirect comparison. J Allergy Clin Immunol 131:1361–1366PubMedGoogle Scholar
  29. Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196PubMedGoogle Scholar
  30. Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ, Figdor CG, Adema GJ (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59:3340–3345PubMedGoogle Scholar
  31. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126PubMedGoogle Scholar
  32. Eo SK, Gierynska M, Kamar AA, Rouse BT (2001) Prime-boost immunization with DNA vaccine: mucosal route of administration changes the rules. J Immunol 166:5473–5479PubMedGoogle Scholar
  33. Epstein JE, Tewari K, Lyke KE, Sim BK, Billingsley PF, Laurens MB, Gunasekera A, Chakravarty S, James ER, Sedegah M, Richman A, Velmurugan S, Reyes S, Li M, Tucker K, Ahumada A, Ruben AJ, Li T, Stafford R, Eappen AG, Tamminga C, Bennett JW, Ockenhouse CF, Murphy JR, Komisar J, Thomas N, Loyevsky M, Birkett A, Plowe CV, Loucq C, Edelman R, Richie TL, Seder RA, Hoffman SL (2011) Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science 334:475–480PubMedGoogle Scholar
  34. Everson MP, McDuffie DS, Lemak DG, Koopman WJ, McGhee JR, Beagley KW (1996) Dendritic cells from different tissues induce production of different T cell cytokine profiles. J Leukoc Biol 59:494–498PubMedGoogle Scholar
  35. Fadul CE, Fisher JL, Hampton TH, Lallana EC, Li Z, Gui J, Szczepiorkowski ZM, Tosteson TD, Rhodes CH, Wishart HA, Lewis LD, Ernstoff MS (2011) Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 34:382–389PubMedCentralPubMedGoogle Scholar
  36. Finerty S, Stokes CR, Gruffydd-Jones TJ, Hillman TJ, Barr FJ, Harbour DA (2001) Targeted lymph node immunization can protect cats from a mucosal challenge with feline immunodeficiency virus. Vaccine 20:49–58PubMedGoogle Scholar
  37. Fisch A, Cadilhac P, Vidor E, Prazuck T, Dublanchet A, Lafaix C (1996) Immunogenicity and safety of a new inactivated hepatitis A vaccine: a clinical trial with comparison of administration route. Vaccine 14:1132–1136PubMedGoogle Scholar
  38. Fong L, Brockstedt D, Benike C, Wu L, Engleman EG (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 166:4254–4259PubMedGoogle Scholar
  39. Forster R, Braun A, Worbs T (2012) Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol 33:271–280PubMedGoogle Scholar
  40. Frey JR, Wenk P (1957) Experimental studies on the pathogenesis of contact eczema in the guinea-pig. Int Arch Allergy Appl Immunol 11:81–100PubMedGoogle Scholar
  41. Frosner G, Steffen R, Herzog C (2009) Virosomal hepatitis a vaccine: comparing intradermal and subcutaneous with intramuscular administration. J Travel Med 16:413–419PubMedGoogle Scholar
  42. Goetsch L, Plotnicky-Gilquin H, Champion T, Beck A, Corvaia N, Stahl S, Bonnefoy JY, Nguyen TN, Power UF (2000) Influence of administration dose and route on the immunogenicity and protective efficacy of BBG2Na, a recombinant respiratory syncytial virus subunit vaccine candidate. Vaccine 18:2735–2742PubMedGoogle Scholar
  43. Goetsch L, Plotnicky-Gilquin H, Aubry JP, De-Lys P, Haeuw JF, Bonnefoy JY, Nguyen NT, Corvaia N, Velin D (2001) BBG2Na an RSV subunit vaccine candidate intramuscularly injected to human confers protection against viral challenge after nasal immunization in mice. Vaccine 19:4036–4042PubMedGoogle Scholar
  44. Gramzinski RA, Millan CL, Obaldia N, Hoffman SL, Davis HL (1998) Immune response to a hepatitis B DNA vaccine in Aotus monkeys: a comparison of vaccine formulation, route, and method of administration. Mol Med 4:109–118PubMedCentralPubMedGoogle Scholar
  45. Groswasser J, Kahn A, Bouche B, Hanquinet S, Perlmuter N, Hessel L (1997) Needle length and injection technique for efficient intramuscular vaccine delivery in infants and children evaluated through an ultrasonographic determination of subcutaneous and muscle layer thickness. Pediatrics 100:400–403PubMedGoogle Scholar
  46. Hale-White W (1923) The Jenner celebrations. Br Med J 1:203–206Google Scholar
  47. Hartikka J, Bozoukova V, Morrow J, Rusalov D, Shlapobersky M, Wei Q, Boutsaboualoy S, Ye M, Wloch MK, Doukas J, Sullivan S, Rolland A, Smith LR (2012) Preclinical evaluation of the immunogenicity and safety of plasmid DNA-based prophylactic vaccines for human cytomegalovirus. Hum Vaccin Immunother 8:1595–1606PubMedCentralPubMedGoogle Scholar
  48. Heinzerling L, Basch V, Maloy K, Johansen P, Senti G, Wuthrich B, Storni T, Kundig TM (2006) Critical role for DNA vaccination frequency in induction of antigen-specific cytotoxic responses. Vaccine 24:1389–1394PubMedGoogle Scholar
  49. Hickling JK, Jones KR, Friede M, Zehrung D, Chen D, Kristensen D (2011) Intradermal delivery of vaccines: potential benefits and current challenges. Bull World Health Organ 89:221–226PubMedCentralPubMedGoogle Scholar
  50. Homey B, Steinhoff M, Ruzicka T, Leung DY (2006) Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 118:178–189PubMedGoogle Scholar
  51. Huppa JB, Gleimer M, Sumen C, Davis MM (2003) Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat Immunol 4:749–755PubMedGoogle Scholar
  52. Hylander T, Latif L, Petersson-Westin U, Cardell LO (2013) Intralymphatic allergen-specific immunotherapy: an effective and safe alternative treatment route for pollen-induced allergic rhinitis. J Allergy Clin Immun 131:412–420PubMedGoogle Scholar
  53. Itano AA, Jenkins MK (2003) Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4:733–739PubMedGoogle Scholar
  54. Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S, Whitney JA, Connolly J, Banchereau J, Mellman I (2007) Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27:610–624PubMedCentralPubMedGoogle Scholar
  55. Johansen P, Kündig TM (2014). Intralymphatic immunotherapy and vaccination in mice. J Vis Exp (84):e51031Google Scholar
  56. Johansen P, Haffner AC, Koch F, Zepter K, Erdmann I, Maloy K, Simard JJ, Storni T, Senti G, Bot A, Wuthrich B, Kundig TM (2005) Direct intralymphatic injection of peptide vaccines enhances immunogenicity. Eur J Immunol 35:568–574PubMedGoogle Scholar
  57. Johansen P, Storni T, Rettig L, Qiu Z, Der-Sarkissian A, Smith KA, Manolova V, Lang KS, Senti G, Mullhaupt B, Gerlach T, Speck RF, Bot A, Kundig TM (2008) Antigen kinetics determines immune reactivity. Proc Natl Acad Sci U S A 105:5189–5194PubMedCentralPubMedGoogle Scholar
  58. Johansen P, Mohanan D, Martinez-Gomez JM, Kundig TM, Gander B (2010) Lympho-geographical concepts in vaccine delivery. J Control Release 148:56–62PubMedGoogle Scholar
  59. Johansen P, von Moos S, Mohanan D, Kundig TM, Senti G (2012) New routes for allergen immunotherapy. Hum Vaccin Immunother 8:1525–1533PubMedCentralPubMedGoogle Scholar
  60. Juillard GJ, Boyer PJ (1977) Intralymphatic immunization: current status. Eur J Cancer 13:439–440PubMedGoogle Scholar
  61. Juillard GJ, Boyer PJ, Snow HD (1976) Intralymphatic infusion of autochthonous tumor cells in canine lymphoma. Int J Radiat Oncol Biol Phys 1:497–503PubMedGoogle Scholar
  62. Juillard GJ, Boyer PJ, Yamashiro CH, Snow HD, Weisenburger TH, McCarthy T, Miller RJ (1977) Regional intralymphatic infusion (ILI) of irradiated tumor cells with evidence of distant effects. Cancer 39:126–130PubMedGoogle Scholar
  63. Juillard GJ, Boyer PJ, Yamashiro CH (1978) A phase I study of active specific intralymphatic immunotherapy (ASILI). Cancer 41:2215–2225PubMedGoogle Scholar
  64. Juillard GJ, Boyer PJ, Niewisch H, Hom M (1979) Distribution and consequences of cell suspensions following intralymphatic infusion. Bull Cancer 66:217–228PubMedGoogle Scholar
  65. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, Ahmed T, Amin A, Arseneau J, Barth N, Bernstein G, Bracken B, Burch P, Caggiano V, Chin J, Chodak G, Chu F, Corman J, Curti B, Dawson N, Deeken JF, Dubernet T, Fishman M, Flanigan R, Gailani F, Garbo L, Gardner T, Gelmann E, George D, Godfrey T, Gomella L, Guerra M, Hall S, Hanson J, Israeli R, Jancis E, Jewett MAS, Kassabian V, Katz J, Klotz L, Koeneman K, Koh H, Kratzke R, Lance R, Lech J, Leichman L, Lemon R, Liang J, Libertino J, Lilly M, Malik I, Martin SE, McCaffrey J, McLeod D, McNeel D, Miles B, Murdock M, Nabhan C, Nemunaitis J, Notter D, Pantuck A, Perrotte P, Pessis D, Petrylak D, Polikoff J, Pommerville P, Ramanathan S, Rarick M, Richards J, Rifkin R, Rohatgi N, Rosenbluth R, Santucci R, Sayegh A, Seigne J, Shapira I, Shedhadeh N, Shepherd D, Sridhar S, Stephenson R, Teigland C, Thaker N, Vacirca J, Villa L, Vogelzang N, Wertheim M, Wolff JH, Wurzel R, Yang C, Young J, Investigators IS (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422PubMedGoogle Scholar
  66. Kawabata S, Miller CJ, Lehner T, Fujihashi K, Kubota M, McGhee JR, Imaoka K, Hioi T, Kiyono H (1998) Induction of Th2 cytokine expression for p27-specific IgA B-cell responses after targeted lymph node immunization with simian immunodeficiency virus in rhesus macaques. J Infect Dis 177:26–33PubMedGoogle Scholar
  67. Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM (2004) Dose sparing with intradermal injection of influenza vaccine. N Engl J Med 351:2295–2301PubMedGoogle Scholar
  68. Kim YC, Jarrahian C, Zehrung D, Mitragotri S, Prausnitz MR (2012) Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 351:77–112PubMedCentralPubMedGoogle Scholar
  69. Kimber I, Cumberbatch M, Dearman RJ, Bhushan M, Griffiths CE (2000) Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br J Dermatol 142:401–412PubMedGoogle Scholar
  70. Kirkwood JM, Ariyan S, Mitchell M, Nordlund JJ, Lerner A, Papac RJ, Forget B, Knobf M (1980) Intralymphatic (Il) and local-regional (Lr) adjuvant immunotherapy with mercaptoethanol-extracted residue (Mer) of Bacille Calmette-Guerin (Bcg) in high-risk melanoma (M). Proc Am Assoc Canc Res 21:240–240Google Scholar
  71. Kirkwood JM, Ariyan S, Nordlund JJ, Forget BM (1982) Granulomatous lymphangitis—a complication of intralymphatic immunotherapy with methanol extraction residue of Bcg (Mer). Cancer 50:1299–1303PubMedGoogle Scholar
  72. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654PubMedGoogle Scholar
  73. Klavinskis LS, Bergmeier LA, Gao L, Mitchell E, Ward RG, Layton G, Brookes R, Meyers NJ, Lehner T (1996) Mucosal or targeted lymph node immunization of macaques with a particulate SIVp27 protein elicits virus-specific CTL in the genito-rectal mucosa and draining lymph nodes. J Immunol 157:2521–2527PubMedGoogle Scholar
  74. Koblin BA, Casapia M, Morgan C, Qin L, Wang ZM, Defawe OD, Baden L, Goepfert P, Tomaras GD, Montefiori DC, McElrath MJ, Saavedra L, Lau CY, Graham BS, Network NHVT (2011) Safety and immunogenicity of an HIV adenoviral vector boost after DNA plasmid vaccine prime by route of administration: a randomized clinical trial. PLoS One 6:e24517PubMedCentralPubMedGoogle Scholar
  75. Koopman G, Bogers WM, van Gils M, Koornstra W, Barnett S, Morein B, Lehner T, Heeney JL (2007) Comparison of intranasal with targeted lymph node immunization using PR8-Flu ISCOM adjuvanted HIV antigens in macaques. J Med Virol 79:474–482PubMedGoogle Scholar
  76. Koutsonanos DG, Vassilieva EV, Stavropoulou A, Zarnitsyn VG, Esser ES, Taherbhai MT, Prausnitz MR, Compans RW, Skountzou I (2012) Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Sci Rep 2:357PubMedCentralPubMedGoogle Scholar
  77. Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, Tureci O, Sahin U (2010) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040PubMedGoogle Scholar
  78. Kreiter S, Diken M, Selmi A, Diekmann J, Attig S, Husemann Y, Koslowski M, Huber C, Tureci O, Sahin U (2011) FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res 71:6132–6142PubMedGoogle Scholar
  79. Kretz-Rommel A, Qin F, Dakappagari N, Torensma R, Faas S, Wu D, Bowdish KS (2007) In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J Immunother 30:715–726PubMedGoogle Scholar
  80. Kündig TM, Bachmann MF, DiPaolo C, Simard JJ, Battegay M, Lother H, Gessner A, Kuhlcke K, Ohashi PS, Hengartner H et al (1995) Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science 268:1343–1347PubMedGoogle Scholar
  81. Kündig TM, Bot A, Senti G (2012) Intralymphatic vaccination. In: Thalhamer J, Weiss R, Scheiblhofer S (eds) Gene vaccines. Springer, Wien, pp 205–222Google Scholar
  82. Lacour JP, Caldani C, Thyss A, Schneider M, Ortonne JP (1992) Vitiligo-like depigmentation and morpheas after specific intralymphatic immunotherapy for malignant-melanoma. Dermatology 184:283–285PubMedGoogle Scholar
  83. Lai MD, Yen MC, Lin CM, Tu CF, Wang CC, Lin PS, Yang HJ, Lin CC (2009) The effects of DNA formulation and administration route on cancer therapeutic efficacy with xenogenic EGFR DNA vaccine in a lung cancer animal model. Genet Vaccines Ther 7:2PubMedCentralPubMedGoogle Scholar
  84. Lambert PH, Laurent PE (2008) Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 26:3197–3208PubMedGoogle Scholar
  85. Lee HK, Iwasaki A (2007) Innate control of adaptive immunity: dendritic cells and beyond. Semin Immunol 19:48–55PubMedGoogle Scholar
  86. Lehner T, Bergmeier LA, Tao L, Panagiotidi C, Klavinskis LS, Hussain L, Ward RG, Meyers N, Adams SE, Gearing AJ et al (1994) Targeted lymph node immunization with simian immunodeficiency virus p27 antigen to elicit genital, rectal, and urinary immune responses in nonhuman primates. J Immunol 153:1858–1868PubMedGoogle Scholar
  87. Lehner T, Wang Y, Cranage M, Bergmeier LA, Mitchell E, Tao L, Hall G, Dennis M, Cook N, Jones I, Doyle C (1998) Protective mucosal immunity elicited by targeted lymph node immunization with a subunit SIV envelope and core vaccine in macaques. Dev Biol Stand 92:225–235PubMedGoogle Scholar
  88. Lehner T, Mitchell E, Bergmeier L, Singh M, Spallek R, Cranage M, Hall G, Dennis M, Villinger F, Wang Y (2000) The role of gammadelta T cells in generating antiviral factors and beta-chemokines in protection against mucosal simian immunodeficiency virus infection. Eur J Immunol 30:2245–2256PubMedGoogle Scholar
  89. Lesimple T, Moisan A, Carsin A, Ollivier I, Mousseau M, Meunier B, Leberre C, Collet B, Quillien V, Drenou B, Lefeuvre-Plesse C, Chevrant-Breton J, Toujas L (2003) Injection by various routes of melanoma antigen-associated macrophages: biodistribution and clinical effects. Cancer Immunol Immunother 52:438–444PubMedGoogle Scholar
  90. Lesimple T, Neidhard EM, Vignard V, Lefeuvre C, Adamski H, Labarriere N, Carsin A, Monnier D, Collet B, Clapisson G, Birebent B, Philip I, Toujas L, Chokri M, Quillien V (2006) Immunologic and clinical effects of injecting mature peptide-loaded dendritic cells by intralymphatic and intranodal routes in metastatic melanoma patients. Clin Cancer Res 12:7380–7388PubMedGoogle Scholar
  91. Lesterhuis WJ, de Vries IJ, Schreibelt G, Lambeck AJ, Aarntzen EH, Jacobs JF, Scharenborg NM, van de Rakt MW, de Boer AJ, Croockewit S, van Rossum MM, Mus R, Oyen WJ, Boerman OC, Lucas S, Adema GJ, Punt CJ, Figdor CG (2011) Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 17:5725–5735PubMedGoogle Scholar
  92. Lobaina Y, Trujillo H, Garcia D, Gambe A, Chacon Y, Blanco A, Aguilar JC (2010) The effect of the parenteral route of administration on the immune response to simultaneous nasal and parenteral immunizations using a new HBV therapeutic vaccine candidate. Viral Immunol 23:521–529PubMedGoogle Scholar
  93. Lu X, Kiyono H, Lu D, Kawabata S, Torten J, Srinivasan S, Dailey PJ, McGhee JR, Lehner T, Miller CJ (1998) Targeted lymph-node immunization with whole inactivated simian immunodeficiency virus (SIV) or envelope and core subunit antigen vaccines does not reliably protect rhesus macaques from vaginal challenge with SIVmac251. AIDS 12:1–10PubMedCentralPubMedGoogle Scholar
  94. Malowany JI, McCormick S, Santosuosso M, Zhang X, Aoki N, Ngai P, Wang J, Leitch J, Bramson J, Wan Y, Xing Z (2006) Development of cell-based tuberculosis vaccines: genetically modified dendritic cell vaccine is a much more potent activator of CD4 and CD8 T cells than peptide- or protein-loaded counterparts. Mol Ther 13:766–775PubMedGoogle Scholar
  95. Maloy KJ, Erdmann I, Basch V, Sierro S, Kramps TA, Zinkernagel RM, Oehen S, Kundig TM (2001) Intralymphatic immunization enhances DNA vaccination. Proc Natl Acad Sci U S A 98:3299–3303PubMedCentralPubMedGoogle Scholar
  96. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413PubMedGoogle Scholar
  97. Mark A, Carlsson RM, Granstrom M (1999) Subcutaneous versus intramuscular injection for booster DT vaccination of adolescents. Vaccine 17:2067–2072PubMedGoogle Scholar
  98. Martinez-Gomez JM, Johansen P, Erdmann I, Senti G, Crameri R, Kundig TM (2009) Intralymphatic injections as a new administration route for allergen-specific immunotherapy. Int Arch Allergy Immunol 150:59–65PubMedGoogle Scholar
  99. MartIn-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621PubMedCentralPubMedGoogle Scholar
  100. Mohanan D, Slutter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kundig TM, Gander B, Johansen P (2010) Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 147:342–349PubMedGoogle Scholar
  101. Mons B (1991) A live attenuated malaria vaccine: science or fiction? Acta Leiden 60:181–190PubMedGoogle Scholar
  102. Morel PA, Falkner D, Plowey J, Larregina AT, Falo LD (2004) DNA immunisation: altering the cellular localisation of expressed protein and the immunisation route allows manipulation of the immune response. Vaccine 22:447–456PubMedGoogle Scholar
  103. Moy PM, Golub SH, Calkins E, Morton DL (1985) Effects of intralymphatic immunotherapy on natural-killer activity in malignant-melanoma patients. J Surg Oncol 29:112–117PubMedGoogle Scholar
  104. Nilsson BO, Svalander PC, Larsson A (1987) Immunization of mice and rabbits by intrasplenic deposition of nanogram quantities of protein attached to Sepharose beads or nitrocellulose paper strips. J Immunol Methods 99:67–75PubMedGoogle Scholar
  105. Nnalue NA, Stocker BA (1989) Vaccination route, infectivity and thioglycollate broth administration: effects on live vaccine efficacy of auxotrophic derivatives of Salmonella choleraesuis. Microb Pathog 7:299–310PubMedGoogle Scholar
  106. Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel RM (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411:1058–1064PubMedGoogle Scholar
  107. Okada N, Tsujino M, Hagiwara Y, Tada A, Tamura Y, Mori K, Saito T, Nakagawa S, Mayumi T, Fujita T, Yamamoto A (2001) Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens. Br J Cancer 84:1564–1570PubMedCentralPubMedGoogle Scholar
  108. Opriessnig T, Gomes-Neto JC, Hemann M, Shen HG, Beach NM, Huang YW, Halbur PG, Meng XJ (2011) An experimental live chimeric porcine circovirus 1-2a vaccine decreases porcine circovirus 2b viremia when administered intramuscularly or orally in a porcine circovirus 2b and porcine reproductive and respiratory syndrome virus dual-challenge model. Microbiol Immunol 55:863–873PubMedGoogle Scholar
  109. Ouwehand K, Santegoets SJ, Bruynzeel DP, Scheper RJ, de Gruijl TD, Gibbs S (2008) CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. Eur J Immunol 38:3050–3059PubMedGoogle Scholar
  110. Pape KA, Catron DM, Itano AA, Jenkins MK (2007) The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26:491–502PubMedGoogle Scholar
  111. Pearton M, Kang SM, Song JM, Anstey AV, Ivory M, Compans RW, Birchall JC (2010a) Changes in human Langerhans cells following intradermal injection of influenza virus-like particle vaccines. PLoS One 5:e12410PubMedCentralPubMedGoogle Scholar
  112. Pearton M, Kang SM, Song JM, Kim YC, Quan FS, Anstey A, Ivory M, Prausnitz MR, Compans RW, Birchall JC (2010b) Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine 28:6104–6113PubMedCentralPubMedGoogle Scholar
  113. Pittman PR (2002) Aluminum-containing vaccine associated adverse events: role of route of administration and gender. Vaccine 20(Suppl 3):S48–S50PubMedGoogle Scholar
  114. Pittman PR, Kim-Ahn G, Pifat DY, Coonan K, Gibbs P, Little S, Pace-Templeton JG, Myers R, Parker GW, Friedlander AM (2002) Anthrax vaccine: immunogenicity and safety of a dose-reduction, route-change comparison study in humans. Vaccine 20:1412–1420PubMedGoogle Scholar
  115. Poland GA, Borrud A, Jacobson RM, McDermott K, Wollan PC, Brakke D, Charboneau JW (1997) Determination of deltoid fat pad thickness. Implications for needle length in adult immunization. JAMA 277:1709–1711PubMedGoogle Scholar
  116. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628PubMedGoogle Scholar
  117. Ratzinger G, Stoitzner P, Ebner S, Lutz MB, Layton GT, Rainer C, Senior RM, Shipley JM, Fritsch P, Schuler G, Romani N (2002) Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J Immunol 168:4361–4371PubMedGoogle Scholar
  118. Reynolds MG, Yorita KL, Kuehnert MJ, Davidson WB, Huhn GD, Holman RC, Damon IK (2006) Clinical manifestations of human monkeypox influenced by route of infection. J Infect Dis 194:773–780PubMedGoogle Scholar
  119. Ribas A, Weber JS, Chmielowski B, Comin-Anduix B, Lu D, Douek M, Ragavendra N, Raman S, Seja E, Rosario D, Miles S, Diamond DC, Qiu Z, Obrocea M, Bot A (2011) Intra-lymph node prime-boost vaccination against Melan A and tyrosinase for the treatment of metastatic melanoma: results of a phase 1 clinical trial. Clin Cancer Res 17:2987–2996PubMedGoogle Scholar
  120. Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van de Vegte-Bolmer M, van Schaijk B, Teelen K, Arens T, Spaarman L, de Mast Q, Roeffen W, Snounou G, Renia L, van der Ven A, Hermsen CC, Sauerwein R (2009) Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 361:468–477PubMedGoogle Scholar
  121. Roestenberg M, Teirlinck AC, McCall MB, Teelen K, Makamdop KN, Wiersma J, Arens T, Beckers P, van Gemert G, van de Vegte-Bolmer M, van der Ven AJ, Luty AJ, Hermsen CC, Sauerwein RW (2011) Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 377:1770–1776PubMedGoogle Scholar
  122. Roozendaal R, Mebius RE, Kraal G (2008) The conduit system of the lymph node. Int Immunol 20:1483–1487PubMedGoogle Scholar
  123. Roozendaal R, Mempel TR, Pitcher LA, Gonzalez SF, Verschoor A, Mebius RE, von Andrian UH, Carroll MC (2009) Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30:264–276PubMedCentralPubMedGoogle Scholar
  124. Roukens AH, Gelinck LB, Visser LG (2012) Intradermal vaccination to protect against yellow fever and influenza. Curr Top Microbiol Immunol 351:159–179PubMedGoogle Scholar
  125. Ruben FL, Froeschle JE, Meschievitz C, Chen K, George J, Reeves-Hoche MK, Pietrobon P, Bybel M, Livingood WC, Woodhouse L (2001) Choosing a route of administration for quadrivalent meningococcal polysaccharide vaccine: intramuscular versus subcutaneous. Clin Infect Dis 32:170–172PubMedGoogle Scholar
  126. Rupec RA, Boneberger S, Ruzicka T (2010) What is really in control of skin immunity: lymphocytes, dendritic cells, or keratinocytes? Facts and controversies. Clin Dermatol 28:62–66PubMedGoogle Scholar
  127. Samina I, Zakay-Rones Z, Weller JI, Peleg BA (1998) Host factors affecting the homologous and heterologous immune response of cattle to FMDV: genetic background, age, virus strains and route of administration. Vaccine 16:335–339PubMedGoogle Scholar
  128. Schroder JM, Reich K, Kabashima K, Liu FT, Romani N, Metz M, Kerstan A, Lee PH, Loser K, Schon MP, Maurer M, Stoitzner P, Beissert S, Tokura Y, Gallo RL (2006) Who is really in control of skin immunity under physiological circumstances—lymphocytes, dendritic cells or keratinocytes? Exp Dermatol 15:913–929PubMedGoogle Scholar
  129. Schwaab T, Schwarzer A, Wolf B, Crocenzi TS, Seigne JD, Crosby NA, Cole BF, Fisher JL, Uhlenhake JC, Mellinger D, Foster C, Szczepiorkowski ZM, Webber SM, Schned AR, Harris RD, Barth RJ Jr, Heaney JA, Noelle RJ, Ernstoff MS (2009) Clinical and immunologic effects of intranodal autologous tumor lysate-dendritic cell vaccine with Aldesleukin (Interleukin 2) and IFN-{alpha}2a therapy in metastatic renal cell carcinoma patients. Clin Cancer Res 15:4986–4992PubMedCentralPubMedGoogle Scholar
  130. Senti G, Prinz Vavricka BM, Erdmann I, Diaz MI, Markus R, McCormack SJ, Simard JJ, Wuthrich B, Crameri R, Graf N, Johansen P, Kundig TM (2008) Intralymphatic allergen administration renders specific immunotherapy faster and safer: a randomized controlled trial. Proc Natl Acad Sci U S A 105:17908–17912PubMedCentralPubMedGoogle Scholar
  131. Senti G, Johansen P, Kundig TM (2009) Intralymphatic immunotherapy. Curr Opin Allergy Clin Immunol 9:537–543PubMedGoogle Scholar
  132. Senti G, Johansen P, Kundig TM (2011) Intralymphatic immunotherapy: from the rationale to human applications. Curr Top Microbiol Immunol 352:71–84PubMedGoogle Scholar
  133. Senti G, Crameri R, Kuster D, Johansen P, Martinez-Gomez JM, Graf N, Steiner M, Hothorn LA, Gronlund H, Tivig C, Zaleska A, Soyer O, van Hage M, Akdis CA, Akdis M, Rose H, Kundig TM (2012) Intralymphatic immunotherapy for cat allergy induces tolerance after only 3 injections. J Allergy Clin Immunol 129:1290–1296PubMedGoogle Scholar
  134. Shaw FE Jr, Guess HA, Roets JM, Mohr FE, Coleman PJ, Mandel EJ, Roehm RR Jr, Talley WS, Hadler SC (1989) Effect of anatomic injection site, age and smoking on the immune response to hepatitis B vaccination. Vaccine 7:425–430PubMedGoogle Scholar
  135. Sigel MB, Sinha YN, VanderLaan WP (1983) Production of antibodies by inoculation into lymph nodes. Methods Enzymol 93:3–12PubMedGoogle Scholar
  136. Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29PubMedGoogle Scholar
  137. Slutter B, Bal SM, Ding Z, Jiskoot W, Bouwstra JA (2011) Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release 154:123–130PubMedGoogle Scholar
  138. Spaner DE, Astsaturov I, Vogel T, Petrella T, Elias I, Burdett-Radoux S, Verma S, Iscoe N, Hamilton P, Berinstein NL (2006) Enhanced viral and tumor immunity with intranodal injection of canary pox viruses expressing the melanoma antigen, gp100. Cancer 106:890–899PubMedGoogle Scholar
  139. Stertman L, Strindelius L, Sjoholm I (2004) Starch microparticles as an adjuvant in immunisation: effect of route of administration on the immune response in mice. Vaccine 22:2863–2872PubMedGoogle Scholar
  140. Stutte S, Quast T, Gerbitzki N, Savinko T, Novak N, Reifenberger J, Homey B, Kolanus W, Alenius H, Forster I (2010) Requirement of CCL17 for CCR7- and CXCR4-dependent migration of cutaneous dendritic cells. Proc Natl Acad Sci U S A 107:8736–8741PubMedCentralPubMedGoogle Scholar
  141. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC (1993) Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361:82–85PubMedGoogle Scholar
  142. Tenbusch M, Ignatius R, Nchinda G, Trumpfheller C, Salazar AM, Topfer K, Sauermann U, Wagner R, Hannaman D, Tenner-Racz K, Racz P, Stahl-Hennig C, Uberla K (2012) Immunogenicity of DNA vaccines encoding simian immunodeficiency virus antigen targeted to dendritic cells in rhesus macaques. PLoS One 7:e39038PubMedCentralPubMedGoogle Scholar
  143. Tomita GM, Nickerson SC, Owens WE, Wren B (1998) Influence of route of vaccine administration against experimental intramammary infection caused by Escherichia coli. J Dairy Sci 81:2159–2164PubMedGoogle Scholar
  144. Trevejo JM, Marino MW, Philpott N, Josien R, Richards EC, Elkon KB, Falck-Pedersen E (2001) TNF-alpha -dependent maturation of local dendritic cells is critical for activating the adaptive immune response to virus infection. Proc Natl Acad Sci U S A 98:12162–12167PubMedCentralPubMedGoogle Scholar
  145. Tu CF, Lin CC, Chen MC, Ko TM, Lin CM, Wang YC, Lai MD (2007) Autologous neu DNA vaccine can be as effective as xenogenic neu DNA vaccine by altering administration route. Vaccine 25:719–728PubMedGoogle Scholar
  146. Van Damme P, Arnou R, Kafeja F, Fiquet A, Richard P, Thomas S, Meghlaoui G, Samson SI, Ledesma E (2010) Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: a randomised comparative study. BMC Infect Dis 10:134PubMedCentralPubMedGoogle Scholar
  147. Villablanca EJ, Mora JR (2008) A two-step model for Langerhans cell migration to skin-draining LN. Eur J Immunol 38:2975–2980PubMedCentralPubMedGoogle Scholar
  148. von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3:867–878Google Scholar
  149. Waeckerle-Men Y, Bruffaerts N, Liang Y, Jurion F, Sander P, Kundig TM, Huygen K, Johansen P (2013a) Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis. Vaccine 31:1057–1064PubMedGoogle Scholar
  150. Waeckerle-Men Y, Mauracher A, Hakerud M, Mohanan D, Kundig TM, Hogset A, Johansen P (2013b) Photochemical targeting of antigens to the cytosol for stimulation of MHC class-I-restricted T-cell responses. Eur J Pharm Biopharm 85:34–41Google Scholar
  151. Wang B, Amerio P, Sauder DN (1999) Role of cytokines in epidermal Langerhans cell migration. J Leukoc Biol 66:33–39PubMedGoogle Scholar
  152. Weber J, Boswell W, Smith J, Hersh E, Snively J, Diaz M, Miles S, Liu X, Obrocea M, Qiu Z, Bot A (2008) Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J Immunother 31:215–223PubMedGoogle Scholar
  153. Weber JS, Vogelzang NJ, Ernstoff MS, Goodman OB, Cranmer LD, Marshall JL, Miles S, Rosario D, Diamond DC, Qiu Z, Obrocea M, Bot A (2011) A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J Immunother 34:556–567PubMedCentralPubMedGoogle Scholar
  154. Williams TW, Yanagimoto JM, Mazumder A, Wiseman CL (1992) Interleukin-2 increases the antibody-response in patients receiving autologous intralymphatic tumor-cell vaccine immunotherapy. Mol Biother 4:66–69PubMedGoogle Scholar
  155. Windom HH, Lockey RF (2008) An update on the safety of specific immunotherapy. Curr Opin Allergy Clin Immunol 8:571–576PubMedGoogle Scholar
  156. Wiseman C, Rao VS, Bakke A, Kerman R, Bouzaglou A, Presant C, Mckenna RJ, Smith JD, Sakulsky SB (1986) Increased T-helper lymphocytes following active specific intralymphatic immunotherapy of cancer. J Biol Response Mod 5:490–497PubMedGoogle Scholar
  157. Wiseman CL, Rao VS, Kennedy PS, Presant CA, Smith JD, Mckenna RJ (1989) Clinical-responses with active specific intralymphatic immunotherapy for cancer—a phase I-Ii trial. West J Med 151:283–288PubMedCentralPubMedGoogle Scholar
  158. Woolums AR, Berghaus RD, Berghaus LJ, Ellis RW, Pence ME, Saliki JT, Hurley KA, Galland KL, Burdett WW, Nordstrom ST, Hurley DJ (2013) Effect of calf age and administration route of initial multivalent modified-live virus vaccine on humoral and cell-mediated immune responses following subsequent administration of a booster vaccination at weaning in beef calves. Am J Vet Res 74:343–354PubMedGoogle Scholar
  159. World Health Organization (2000) Intradermal application of rabies vaccine. Report of a WHO Consultation. Communicable Disease Surveillance and Control WHO/CDS/CSR/APH/2000.5Google Scholar
  160. Xu H, Guan H, Zu G, Bullard D, Hanson J, Slater M, Elmets CA (2001) The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node. Eur J Immunol 31:3085–3093PubMedGoogle Scholar
  161. Yi Q, Szmania S, Freeman J, Qian J, Rosen NA, Viswamitra S, Cottler-Fox M, Barlogie B, Tricot G, van Rhee F (2010) Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol 150:554–564PubMedCentralPubMedGoogle Scholar
  162. Yoshida A, Nagata T, Uchijima M, Higashi T, Koide Y (2000) Advantage of gene gun-mediated over intramuscular inoculation of plasmid DNA vaccine in reproducible induction of specific immune responses. Vaccine 18:1725–1729PubMedGoogle Scholar
  163. Zitvogel L (2002) Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J Exp Med 195:F9–F14PubMedCentralPubMedGoogle Scholar
  164. Zuckerman JN (2000) The importance of injecting vaccines into muscle. Different patients need different needle sizes. BMJ 321:1237–1238PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of DermatologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations