Skip to main content

Dendritic Cell-Based Vaccines

  • 1724 Accesses

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Dendritic cells (DCs) acquire, process, and present antigens to T-cells, and provide the stimulatory signals and cytokines required to induce T-cells to proliferate and differentiate into effector cells. For this reason, infusion of in vitro-generated antigen-loaded DCs cells has been investigated as a vaccination strategy to elicit T-cell-mediated responses, particularly in the context of cancer where DC function in vivo is often blunted or subverted by factors released by the tumor. While studies in mice have repeatedly shown that DC-based vaccines can delay or prevent tumor progression, human clinical trials have been disappointing in comparison, offering only marginal benefit for patients. There is therefore still a need to improve the stimulatory capacity of the injected cells by improving antigen-loading strategies, refining differentiation and maturation protocols, and considering how to encourage stimulatory interactions with innate cells that may help sustain cytokine production in vivo. Perhaps the most significant hurdles to effective immunotherapy are the inhibitory “checkpoints” that are commonly hijacked by tumors to suppress T-cell function. We argue that a promising avenue for DC-based vaccination may be in combinatorial approaches, where the vaccines are used to elicit T-cell responses with desired properties for immune protection, while immune checkpoint blockade is used to sustain those immune responses in the face of tumor-induced suppressive activities.

Keywords

  • iNKT Cell
  • Immune Checkpoint
  • MAIT Cell
  • Synthetic Long Peptide
  • Immunological Potency

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1417-3_13
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1417-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  • Aarntzen EH, Figdor CG, Adema GJ, Punt CJ, de Vries IJ (2008) Dendritic cell vaccination and immune monitoring. Cancer Immunol Immunother 57(10):1559–1568. doi:10.1007/s00262-008-0553-y

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114(8):1537–1544. doi:10.1182/blood-2008-12-195792, blood-2008-12-195792 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alfaro C, Perez-Gracia JL, Suarez N, Rodriguez J, Fernandez de Sanmamed M, Sangro B, Martin-Algarra S, Calvo A, Redrado M, Agliano A, Gonzalez A, Rodriguez I, Bolanos E, Hervas-Stubbs S, Perez-Calvo J, Benito A, Penuelas I, Vigil C, Richter J, Martinez-Forero I, Melero I (2011) Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for metastatic cancer patients. J Immunol 187(11):6130–6142. doi:10.4049/jimmunol.1102209, jimmunol.1102209 [pii]

    CAS  PubMed  Google Scholar 

  • Anguille S, Smits EL, Cools N, Goossens H, Berneman ZN, Van Tendeloo VF (2009) Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J Transl Med 7:109. doi:10.1186/1479-5876-7-109, 1479-5876-7-109 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Arens R, Schoenberger SP (2010) Plasticity in programming of effector and memory CD8 T-cell formation. Immunol Rev 235(1):190–205. doi:10.1111/j.0105-2896.2010.00899.x, IMR899 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arimoto-Miyamoto K, Kadowaki N, Kitawaki T, Iwata S, Morimoto C, Uchiyama T (2010) Optimal stimulation for CD70 induction on human monocyte-derived dendritic cells and the importance of CD70 in naive CD4(+) T-cell differentiation. Immunology 130(1):137–149. doi:10.1111/j.1365-2567.2010.03220.x, IMM3220 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, Ritz J, Sandler AB, Edington HD, Garzone PD, Mier JW, Canning CM, Battiato L, Tahara H, Sherman ML (1997) Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3(3):409–417

    CAS  PubMed  Google Scholar 

  • Baek S, Kim CS, Kim SB, Kim YM, Kwon SW, Kim Y, Kim H, Lee H (2011) Combination therapy of renal cell carcinoma or breast cancer patients with dendritic cell vaccine and IL-2: results from a phase I/II trial. J Transl Med 9:178. doi:10.1186/1479-5876-9-178, 1479-5876-9-178 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE (2011) Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest 121(6):2350–2360. doi:10.1172/JCI46102, 46102 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballesteros-Tato A, Leon B, Lund FE, Randall TD (2013) CD4+ T helper cells use CD154-CD40 interactions to counteract T reg cell-mediated suppression of CD8+ T cell responses to influenza. J Exp Med 210(8):1591–1601. doi:10.1084/jem.20130097, jem.20130097 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336. doi:10.1146/annurev.immunol.25.022106.141711

    CAS  PubMed  Google Scholar 

  • Benencia F, Sprague L, McGinty J, Pate M, Muccioli M (2012) Dendritic cells the tumor microenvironment and the challenges for an effective antitumor vaccination. J Biomed Biotechnol 2012:425476. doi:10.1155/2012/425476

    PubMed Central  PubMed  Google Scholar 

  • Bowman MR, Crimmins MA, Yetz-Aldape J, Kriz R, Kelleher K, Herrmann S (1994) The cloning of CD70 and its identification as the ligand for CD27. J Immunol 152(4):1756–1761

    CAS  PubMed  Google Scholar 

  • Braza MS, Klein B (2013) Anti-tumour immunotherapy with Vgamma9Vdelta2 T lymphocytes: from the bench to the bedside. Br J Haematol 160(2):123–132. doi:10.1111/bjh.12090

    CAS  PubMed  Google Scholar 

  • Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM (2011) Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol 18(1):23–34. doi:10.1128/CVI.00286-10, CVI.00286-10 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burdek M, Spranger S, Wilde S, Frankenberger B, Schendel DJ, Geiger C (2010) Three-day dendritic cells for vaccine development: antigen uptake, processing and presentation. J Transl Med 8:90. doi:10.1186/1479-5876-8-90, 1479-5876-8-90 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Byrne KT, Cote AL, Zhang P, Steinberg SM, Guo Y, Allie R, Zhang W, Ernstoff MS, Usherwood EJ, Turk MJ (2011) Autoimmune melanocyte destruction is required for robust CD8+ memory T cell responses to mouse melanoma. J Clin Invest 121(5):1797–1809. doi:10.1172/JCI44849, 44849 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carreno BM, Becker-Hapak M, Huang A, Chan M, Alyasiry A, Lie WR, Aft RL, Cornelius LA, Trinkaus KM, Linette GP (2013) IL-12p70-producing patient DC vaccine elicits Tc1-polarized immunity. J Clin Invest 123(8):3383–3394. doi:10.1172/JCI68395, 68395 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castella B, Riganti C, Fiore F, Pantaleoni F, Canepari ME, Peola S, Foglietta M, Palumbo A, Bosia A, Coscia M, Boccadoro M, Massaia M (2011) Immune modulation by zoledronic acid in human myeloma: an advantageous cross-talk between Vgamma9Vdelta2 T cells, alphabeta CD8+ T cells, regulatory T cells, and dendritic cells. J Immunol 187(4):1578–1590. doi:10.4049/jimmunol.1002514, jimmunol.1002514 [pii]

    CAS  PubMed  Google Scholar 

  • Cerundolo V, Silk JD, Masri SH, Salio M (2009) Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9(1):28–38. doi:10.1038/nri2451, nri2451 [pii]

    CAS  PubMed  Google Scholar 

  • Chang CC, Wright A, Punnonen J (2000) Monocyte-derived CD1a+ and CD1a- dendritic cell subsets differ in their cytokine production profiles, susceptibilities to transfection, and capacities to direct Th cell differentiation. J Immunol 165(7):3584–3591

    CAS  PubMed  Google Scholar 

  • Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33(4):492–503. doi:10.1016/j.immuni.2010.10.002, S1074-7613(10)00362-6 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32(1):19–25. doi:10.1016/j.it.2010.10.002, S1471-4906(10)00149-3 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, Mescher MF (1999) Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 162(6):3256–3262

    CAS  PubMed  Google Scholar 

  • Dannull J, Haley NR, Archer G, Nair S, Boczkowski D, Harper M, De Rosa N, Pickett N, Mosca PJ, Burchette J, Selim MA, Mitchell DA, Sampson J, Tyler DS, Pruitt SK (2013) Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J Clin Invest 123(7):3135–3145. doi:10.1172/JCI67544, 67544 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dauer M, Obermaier B, Herten J, Haerle C, Pohl K, Rothenfusser S, Schnurr M, Endres S, Eigler A (2003) Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol 170(8):4069–4076

    CAS  PubMed  Google Scholar 

  • Dauer M, Schad K, Herten J, Junkmann J, Bauer C, Kiefl R, Endres S, Eigler A (2005) FastDC derived from human monocytes within 48 h effectively prime tumor antigen-specific cytotoxic T cells. J Immunol Methods 302(1–2):145–155. doi:10.1016/j.jim.2005.05.010, S0022-1759(05)00154-7 [pii]

    CAS  PubMed  Google Scholar 

  • Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443(7109):350–354. doi:10.1038/nature05115, nature05115 [pii]

    CAS  PubMed  Google Scholar 

  • Dolfi DV, Katsikis PD (2007) CD28 and CD27 costimulation of CD8+ T cells: a story of survival. Adv Exp Med Biol 590:149–170. doi:10.1007/978-0-387-34814-8_11

    PubMed  Google Scholar 

  • Dubois B, Massacrier C, Vanbervliet B, Fayette J, Briere F, Banchereau J, Caux C (1998) Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J Immunol 161(5):2223–2231

    CAS  PubMed  Google Scholar 

  • Dubsky P, Saito H, Leogier M, Dantin C, Connolly JE, Banchereau J, Palucka AK (2007) IL-15-induced human DC efficiently prime melanoma-specific naive CD8+ T cells to differentiate into CTL. Eur J Immunol 37(6):1678–1690. doi:10.1002/eji.200636329

    CAS  PubMed  Google Scholar 

  • Engell-Noerregaard L, Hansen TH, Andersen MH, Thor Straten P, Svane IM (2009) Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 58(1):1–14. doi:10.1007/s00262-008-0568-4

    CAS  PubMed  Google Scholar 

  • Feuerstein B, Berger TG, Maczek C, Roder C, Schreiner D, Hirsch U, Haendle I, Leisgang W, Glaser A, Kuss O, Diepgen TL, Schuler G, Schuler-Thurner B (2000) A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J Immunol Methods 245(1–2):15–29. doi:S0022-1759(00)00269-6 [pii]

    CAS  PubMed  Google Scholar 

  • Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10(5):475–480. doi:10.1038/nm1039, nm1039 [pii]

    CAS  PubMed  Google Scholar 

  • Flamand V, Sornasse T, Thielemans K, Demanet C, Bakkus M, Bazin H, Tielemans F, Leo O, Urbain J, Moser M (1994) Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol 24(3):605–610. doi:10.1002/eji.1830240317

    CAS  PubMed  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frentsch M, Stark R, Matzmohr N, Meier S, Durlanik S, Schulz AR, Stervbo U, Jurchott K, Gebhardt F, Heine G, Reuter MA, Betts MR, Busch D, Thiel A (2013) CD40L expression permits CD8+ T cells to execute immunologic helper functions. Blood 122(3):405–412. doi:10.1182/blood-2013-02-483586, blood-2013-02-483586 [pii]

    CAS  PubMed  Google Scholar 

  • Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5(11):1249–1255. doi:10.1038/15200

    CAS  PubMed  Google Scholar 

  • Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA, Gajewski TF, Ascierto PA (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1. doi:10.1186/1479-5876-10-1, 1479-5876-10-1 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Giermasz AS, Urban JA, Nakamura Y, Watchmaker P, Cumberland RL, Gooding W, Kalinski P (2009) Type-1 polarized dendritic cells primed for high IL-12 production show enhanced activity as cancer vaccines. Cancer Immunol Immunother 58(8):1329–1336. doi:10.1007/s00262-008-0648-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gogolak P, Rethi B, Szatmari I, Lanyi A, Dezso B, Nagy L, Rajnavolgyi E (2007) Differentiation of CD1a- and CD1a+ monocyte-derived dendritic cells is biased by lipid environment and PPARgamma. Blood 109(2):643–652. doi:10.1182/blood-2006-04-016840, blood-2006-04-016840 [pii]

    CAS  PubMed  Google Scholar 

  • Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103. doi:10.1038/bjc.2011.189, bjc2011189 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548. doi:10.1146/annurev.immunol.23.021704.115611

    PubMed  Google Scholar 

  • Habel K (1962) Immunological determinants of polyoma virus oncogenesis. J Exp Med 115:181–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Joshua AM, Gergich K, Elassaiss-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbinghaus SW, Li XN, Kang SP, Ribas A (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144. doi:10.1056/NEJMoa1305133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hendriks J, Xiao Y, Borst J (2003) CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med 198(9):1369–1380. doi:10.1084/jem.20030916, jem.20030916 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171(10):5140–5147

    CAS  PubMed  Google Scholar 

  • Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115(16):3670–3679. doi:10.1002/cncr.24429

    CAS  PubMed  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466, NEJMoa1003466 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2(1):52–58

    CAS  PubMed  Google Scholar 

  • Hunn MK, Hermans IF (2013) Exploiting invariant NKT cells to promote T-cell responses to cancer vaccines. Oncoimmunology 2(4):e23789. doi:10.4161/onci.23789, 2013ONCOIMM0019 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Inaba K, Metlay JP, Crowley MT, Steinman RM (1990) Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med 172(2):631–640

    CAS  PubMed  Google Scholar 

  • Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27(12):3135–3142. doi:10.1002/eji.1830271209

    CAS  PubMed  Google Scholar 

  • Kalinski P, Muthuswamy R, Urban J (2013) Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Rev Vaccines 12(3):285–295. doi:10.1586/erv.13.22

    CAS  PubMed  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi:10.1056/NEJMoa1001294

    CAS  PubMed  Google Scholar 

  • Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278(5343):1626–1629

    CAS  PubMed  Google Scholar 

  • Kim PS, Ahmed R (2010) Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 22(2):223–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O'Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723. doi:10.1038/nature11605, nature11605 [pii]

    CAS  PubMed  Google Scholar 

  • Kodama A, Tanaka R, Saito M, Ansari AA, Tanaka Y (2013) A novel and simple method for generation of human dendritic cells from unfractionated peripheral blood mononuclear cells within 2 days: its application for induction of HIV-1-reactive CD4 T cells in the hu-PBL SCID mice. Front Microbiol 4:292. doi:10.3389/fmicb.2013.00292

    PubMed Central  PubMed  Google Scholar 

  • Kvistborg P, Boegh M, Pedersen AW, Claesson MH, Zocca MB (2009) Fast generation of dendritic cells. Cell Immunol 260(1):56–62. doi:10.1016/j.cellimm.2009.09.003, S0008-8749(09)00151-8 [pii]

    CAS  PubMed  Google Scholar 

  • Lee WT (2011) Dendritic cell-tumor cell fusion vaccines. Adv Exp Med Biol 713:177–186. doi:10.1007/978-94-007-0763-4_11

    CAS  PubMed  Google Scholar 

  • Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P (2008) Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J Leukoc Biol 84(1):319–325. doi:10.1189/jlb.1107737, jlb.1107737 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, Sosman JA, Dutcher JP, Vogelzang NJ, Ryan JL (1997) Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90(7):2541–2548

    CAS  PubMed  Google Scholar 

  • Lion E, Smits EL, Berneman ZN, Van Tendeloo VF (2012) NK cells: key to success of DC-based cancer vaccines? Oncologist 17(10):1256–1270. doi:10.1634/theoncologist.2011-0122, theoncologist.2011-0122 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, Kirkwood JM, Storkus WJ, Kalinski P (2004) alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64(17):5934–5937. doi:10.1158/0008-5472.CAN-04-1261, 64/17/5934 [pii]

    CAS  PubMed  Google Scholar 

  • Mazzolini G, Alfaro C, Sangro B, Feijoo E, Ruiz J, Benito A, Tirapu I, Arina A, Sola J, Herraiz M, Lucena F, Olague C, Subtil J, Quiroga J, Herrero I, Sadaba B, Bendandi M, Qian C, Prieto J, Melero I (2005) Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J Clin Oncol 23(5):999–1010. doi:10.1200/JCO.2005.00.463, JCO.2005.00.463 [pii]

    CAS  PubMed  Google Scholar 

  • Miller G, Lahrs S, Dematteo RP (2003) Overexpression of interleukin-12 enables dendritic cells to activate NK cells and confer systemic antitumor immunity. FASEB J 17(6):728–730. doi:10.1096/fj.02-0900fje, 02-0900fje [pii]

    CAS  PubMed  Google Scholar 

  • Mosca PJ, Hobeika AC, Clay TM, Nair SK, Thomas EK, Morse MA, Lyerly HK (2000) A subset of human monocyte-derived dendritic cells expresses high levels of interleukin-12 in response to combined CD40 ligand and interferon-gamma treatment. Blood 96(10):3499–3504

    CAS  PubMed  Google Scholar 

  • Nussenzweig MC, Steinman RM, Gutchinov B, Cohn ZA (1980) Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J Exp Med 152(4):1070–1084

    CAS  PubMed  Google Scholar 

  • Osada T, Clay T, Hobeika A, Lyerly HK, Morse MA (2006) NK cell activation by dendritic cell vaccine: a mechanism of action for clinical activity. Cancer Immunol Immunother 55(9):1122–1131. doi:10.1007/s00262-005-0089-3

    PubMed  Google Scholar 

  • Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277. doi:10.1038/nrc3258, nrc3258 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park MH, Yang DH, Kim MH, Jang JH, Jang YY, Lee YK, Jin CJ, Pham TN, Thi TA, Lim MS, Lee HJ, Hong CY, Yoon JH, Lee JJ (2011) Alpha-type 1 polarized dendritic cells loaded with apoptotic allogeneic breast cancer cells can induce potent cytotoxic T lymphocytes against breast cancer. Cancer Res Treat 43(1):56–66. doi:10.4143/crt.2011.43.1.56

    PubMed Central  PubMed  Google Scholar 

  • Petersen TR, Dickgreber N, Hermans IF (2010) Tumor antigen presentation by dendritic cells. Crit Rev Immunol 30(4):345–386. doi:2a2a299c5ed1858d,124c256c468812db [pii]

    CAS  PubMed  Google Scholar 

  • Qi CJ, Ning YL, Han YS, Min HY, Ye H, Zhu YL, Qian KQ (2012) Autologous dendritic cell vaccine for estrogen receptor (ER)/progestin receptor (PR) double-negative breast cancer. Cancer Immunol Immunother 61(9):1415–1424. doi:10.1007/s00262-011-1192-2

    CAS  PubMed  Google Scholar 

  • Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, Fan X, Blasberg R, Yagita H, Muranski P, Antony PA, Restifo NP, Allison JP (2010) Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207(3):637–650. doi:10.1084/jem.20091918, jem.20091918 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Calvillo M, Duarte M, Tirapu I, Berraondo P, Mazzolini G, Qian C, Prieto J, Melero I (2002) Upregulation of natural killer cells functions underlies the efficacy of intratumorally injected dendritic cells engineered to produce interleukin-12. Exp Hematol 30(3):195–204. doi:S0301472X01007925 [pii]

    CAS  PubMed  Google Scholar 

  • Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180(1):83–93

    CAS  PubMed  Google Scholar 

  • Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    CAS  PubMed  Google Scholar 

  • Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102(51):18538–18543. doi:10.1073/pnas.0509182102, 0509182102 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Brocker EB, Grabbe S, Rittgen W, Edler L, Sucker A, Zimpfer-Rechner C, Berger T, Kamarashev J, Burg G, Jonuleit H, Tuttenberg A, Becker JC, Keikavoussi P, Kampgen E, Schuler G (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17(4):563–570. doi:10.1093/annonc/mdj138, mdj138 [pii]

    CAS  PubMed  Google Scholar 

  • Schmitt N, Morita R, Bourdery L, Bentebibel SE, Zurawski SM, Banchereau J, Ueno H (2009) Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31(1):158–169. doi:10.1016/j.immuni.2009.04.016, S1074-7613(09)00272-6 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, Robe J, Endres S, Eigler A (2002) Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Res 62(8):2347–2352

    CAS  PubMed  Google Scholar 

  • Schuler G (2010) Dendritic cells in cancer immunotherapy. Eur J Immunol 40(8):2123–2130. doi:10.1002/eji.201040630

    CAS  PubMed  Google Scholar 

  • Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N, Schuler G (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195(10):1279–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111. doi:10.1038/35074122, 35074122 [pii]

    CAS  PubMed  Google Scholar 

  • Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2(2):116–126. doi:10.1038/nri727

    CAS  PubMed  Google Scholar 

  • Shu S, Zheng R, Lee WT, Cohen PA (2007) Immunogenicity of dendritic-tumor fusion hybrids and their utility in cancer immunotherapy. Crit Rev Immunol 27(5):463–483, doi:451b19ed1fdac85b,17770a8f458fe738 [pii]

    CAS  PubMed  Google Scholar 

  • Shurin MR, Gregory M, Morris JC, Malyguine AM (2010) Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin Biol Ther 10(11):1539–1553. doi:10.1517/14712598.2010.526105

    CAS  PubMed  Google Scholar 

  • Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24(19):3089–3094. doi:10.1200/JCO.2005.04.5252, 24/19/3089 [pii]

    CAS  PubMed  Google Scholar 

  • Snijders A, Kalinski P, Hilkens CM, Kapsenberg ML (1998) High-level IL-12 production by human dendritic cells requires two signals. Int Immunol 10(11):1593–1598

    CAS  PubMed  Google Scholar 

  • Song L, Asgharzadeh S, Salo J, Engell K, Wu HW, Sposto R, Ara T, Silverman AM, DeClerck YA, Seeger RC, Metelitsa LS (2009) Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119(6):1524–1536. doi:10.1172/JCI37869, 37869 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296. doi:10.1146/annurev.iy.09.040191.001415

    CAS  PubMed  Google Scholar 

  • Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426. doi:10.1038/nature06175, nature06175 [pii]

    CAS  PubMed  Google Scholar 

  • Tatsumi T, Takehara T, Yamaguchi S, Sasakawa A, Miyagi T, Jinushi M, Sakamori R, Kohga K, Uemura A, Ohkawa K, Storkus WJ, Hayashi N (2007) Injection of IL-12 gene-transduced dendritic cells into mouse liver tumor lesions activates both innate and acquired immunity. Gene Ther 14(11):863–871. doi:10.1038/sj.gt.3302941, 3302941 [pii]

    CAS  PubMed  Google Scholar 

  • Teng MW, Ritchie DS, Neeson P, Smyth MJ (2011) Biology and clinical observations of regulatory T cells in cancer immunology. Curr Top Microbiol Immunol 344:61–95. doi:10.1007/82_2010_50

    CAS  PubMed  Google Scholar 

  • Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M, Irie A, Kawahara K, Yatsuda J, Hamada A, Jono H, Yoshida K, Tsunoda T, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y (2013) Identification of promiscuous KIF20A long peptides bearing both CD4+ and CD8+ T-cell epitopes: KIF20A-specific CD4+ T-cell immunity in patients with malignant tumor. Clin Cancer Res 19(16):4508–4520. doi:10.1158/1078-0432.CCR-13-0197, 1078-0432.CCR-13-0197 [pii]

    CAS  PubMed  Google Scholar 

  • Tosi D, Valenti R, Cova A, Sovena G, Huber V, Pilla L, Arienti F, Belardelli F, Parmiani G, Rivoltini L (2004) Role of cross-talk between IFN-alpha-induced monocyte-derived dendritic cells and NK cells in priming CD8+ T cell responses against human tumor antigens. J Immunol 172(9):5363–5370

    CAS  PubMed  Google Scholar 

  • Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pages F, Galon J (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 71(4):1263–1271. doi:10.1158/0008-5472.CAN-10-2907, 0008-5472.CAN-10-2907 [pii]

    CAS  PubMed  Google Scholar 

  • Traversari C, van der Bruggen P, Luescher IF, Lurquin C, Chomez P, Van Pel A, De Plaen E, Amar-Costesec A, Boon T (1992) A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med 176(5):1453–1457

    CAS  PubMed  Google Scholar 

  • Trinchieri G, Pflanz S, Kastelein RA (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19(5):641–644. doi:S1074761303002966 [pii]

    CAS  PubMed  Google Scholar 

  • Van den Eynde BJ, Morel S (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 13(2):147–153. doi:S0952-7915(00)00197-7 [pii]

    PubMed  Google Scholar 

  • van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643–1647

    PubMed  Google Scholar 

  • Van Tendeloo VF, Van de Velde A, Van Driessche A, Cools N, Anguille S, Ladell K, Gostick E, Vermeulen K, Pieters K, Nijs G, Stein B, Smits EL, Schroyens WA, Gadisseur AP, Vrelust I, Jorens PG, Goossens H, de Vries IJ, Price DA, Oji Y, Oka Y, Sugiyama H, Berneman ZN (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A 107(31):13824–13829. doi:10.1073/pnas.1008051107, 1008051107 [pii]

    PubMed Central  PubMed  Google Scholar 

  • Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251. doi:10.1038/nrc3237, nrc3237 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vincent MS, Leslie DS, Gumperz JE, Xiong X, Grant EP, Brenner MB (2002) CD1-dependent dendritic cell instruction. Nat Immunol 3(12):1163–1168. doi:10.1038/ni851, ni851 [pii]

    CAS  PubMed  Google Scholar 

  • Vollmers HP, Brandlein S (2009) Natural antibodies and cancer. Nat Biotechnol 25(5):294–298. doi:10.1016/j.nbt.2009.03.016, S1871-6784(09)00060-0 [pii]

    CAS  Google Scholar 

  • Vujanovic L, Szymkowski DE, Alber S, Watkins SC, Vujanovic NL, Butterfield LH (2010) Virally infected and matured human dendritic cells activate natural killer cells via cooperative activity of plasma membrane-bound TNF and IL-15. Blood 116(4):575–583. doi:10.1182/blood-2009-08-240325, blood-2009-08-240325 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405–413. doi:1074-7613(94)90071-X [pii]

    CAS  PubMed  Google Scholar 

  • Wieckowski E, Chatta GS, Mailliard RM, Gooding W, Palucka K, Banchereau J, Kalinski P (2011) Type-1 polarized dendritic cells loaded with apoptotic prostate cancer cells are potent inducers of CD8(+) T cells against prostate cancer cells and defined prostate cancer-specific epitopes. Prostate 71(2):125–133. doi:10.1002/pros.21228

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Gasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gasser, O., Hermans, I.F. (2015). Dendritic Cell-Based Vaccines. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_13

Download citation