Skip to main content

Polymeric Particulates for Subunit Vaccine Delivery

Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Vaccines still represent the best long-term treatment option for reducing many infectious diseases, including acquired immune deficiency syndrome (AIDS), malaria, and tuberculosis. Therefore, to effectively combat these severe diseases, it is of utmost importance to develop and explore novel and more efficient delivery modalities and administration routes. In this context, new polymeric nano- and microparticulate delivery platforms may represent an alternative and/or complementary therapeutic option. With the help of modern polymer chemistry, an increased number of sophisticated architectures have been developed, although these materials are in terms of bio applications still in relatively early stages. Therefore, a lot of recent attention has been dedicated to designing and tailoring novel particulates delivery systems with focus to create more efficient delivery platform. Various structures, including nanogels, nanocapsules, nano- and microparticles, dendrimers, and different hierarchical assemblies in solution have been studied in vaccine delivery. However, none of these explored platforms until now fully complies with basic delivery requirements like biocompatibility, non-toxicity, high encapsulation efficiency, and the ability to induce prolonged immune responses. In general, the unique structural and mechanical properties of polymers and their abilities to create three-dimensional structures or hybrid systems is under intensive investigation and hold a great promise in vaccine delivery.

Keywords

  • Human Serum Albumin
  • Major Histocompatibility Complex Class
  • Acquire Immune Deficiency Syndrome
  • Vaccine Delivery
  • Delivery Platform

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-1417-3_10
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-1417-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 10.1

References

  • Akiyoshi K, Yamaguchi S, Sunamoto J (1991) Self-aggregates of hydrophobic polysaccharide derivatives. Chem Lett 7:1263–1266. doi:10.1246/cl.1991.1263

    Google Scholar 

  • Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26(12):3062–3068. doi:10.1021/ma00064a011

    CAS  Google Scholar 

  • Amidi M, Mastrobattista E, Jiskoot W, Hennink WE (2010) Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62(1):59–82. doi:10.1016/j.addr.2009.11.009

    CAS  PubMed  Google Scholar 

  • Andriano KP, Tabata Y, Ikada Y, Heller J (1999) In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res. 48(5):602–612. doi: 10.1002/(sici)1097-4636(1999)48:5<602::aid-jbm3>3.0.co;2-6

  • Angelatos AS, Katagiri K, Caruso F (2006) Bioinspired colloidal systems via layer-by-layer assembly. Soft Matter 2(1):18–23. doi:10.1039/b511930h

    CAS  Google Scholar 

  • Artursson P, Edman P, Laakso T, Sjoeholm I (1984) Characterization of polyacryl starch microparticles as carriers for proteins and drugs. J Pharm Sci 73(11):1507–1513. doi:10.1002/jps.2600731103

    CAS  PubMed  Google Scholar 

  • Artursson P, Edman P, Sjoeholm I (1985) Biodegradable microspheres. II: immune response to a heterologous and an autologous protein entrapped in polyacryl starch microparticles. J Pharmacol Exp Ther 234(1):255–260

    CAS  PubMed  Google Scholar 

  • Baek M-G, Rittenhouse-Olson K, Roy R (2001) Synthesis and antibody binding properties of glycodendrimers bearing the tumor related T-antigen. Chem Commun 3:257–258

    Google Scholar 

  • Beaudette TT, Bachelder EM, Cohen JA, Obermeyer AC, Broaders KE, Frechet JM, Kang ES, Mende I, Tseng WW, Davidson MG, Engleman EG (2009) In vivo studies on the effect of co-encapsulation of CpG DNA and antigen in acid-degradable microparticle vaccines. Mol Pharm 6(4):1160–1169. doi:10.1021/mp900038e

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birrenbach G (1973) Über Mizellpolymerisate, mögliche Einschlussverbindungen (Nanokapseln) und deren Eigenung als Adjuvantien. ETH, Zürich

    Google Scholar 

  • Brewer JM, Pollock KGJ, Tetley L, Russell DG (2004) Vesicle size influences the trafficking, processing, and presentation of antigens in lipid vesicles. J Immunol 173(10):6143–6150

    CAS  PubMed  Google Scholar 

  • Brinkhuis RP, Rutjes FPJT, van Hest JCM (2011) Polymeric vesicles in biomedical applications. Polym Chem 2(7):1449–1462

    CAS  Google Scholar 

  • Briones M, Singh M, Ugozzoli M, Kazzaz J, Klakamp S, Ott G, O’Hagan D (2001) The preparation, characterization, and evaluation of cationic microparticles for DNA vaccine delivery. Pharm Res 18(5):709–712

    CAS  PubMed  Google Scholar 

  • Broaders KE, Cohen JA, Beaudette TT, Bachelder EM, Frechet JM (2009) Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc Natl Acad Sci U S A 106(14):5497–5502. doi:10.1073/pnas.0901592106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buhleier E, Wehner W, Vogtle F (1978) Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis-Stuttgart 2:155–158

    Google Scholar 

  • Byrd W, de Lorimier A, Zheng Z-R, Cassels FJ (2005) Microencapsulated subunit vaccine approach to enterotoxigenic Escherichia coli and other mucosal pathogens. Adv Drug Deliv Rev 57(9):1362–1380. doi:10.1016/j.addr.2005.01.014

    CAS  PubMed  Google Scholar 

  • Cabane E, Malinova V, Menon S, Palivan CG, Meier W (2011) Photoresponsive polymersomes as smart, triggerable nanocarriers. Soft Matter 7(19):9167–9176

    CAS  Google Scholar 

  • Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14(10):1431–1436

    CAS  PubMed  Google Scholar 

  • Calvo-Calle JM, Oliveira GA, Watta CO, Soverow J, Parra-Lopez C, Nardin EH (2006) A linear peptide containing minimal T- and B-cell epitopes of plasmodium falciparum circumsporozoite protein elicits protection against transgenic sporozoite challenge. Infect Immun 74(12):6929–6939. doi:10.1128/iai.01151-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caruso F, Caruso RA, Moehwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114. doi:10.1126/science.282.5391.1111

    CAS  PubMed  Google Scholar 

  • Carvalho V, Castanheira P, Madureira P, Ferreira SA, Costa C, Teixeira JP, Faro C, Vilanova M, Gama M (2011) Self-assembled dextrin nanogel as protein carrier: controlled release and biological activity of IL-10. Biotechnol Bioeng 108(8):1977–1986. doi:10.1002/bit.23125

    CAS  PubMed  Google Scholar 

  • Cavenaugh J, Wang H-K, Hansen C, Smith R, Herron J (2003) How well can a T-cell epitope replace its parent carrier protein? A dose-response study. Pharm Res 20(4):591–596. doi:10.1023/a:1023242631413

    CAS  PubMed  Google Scholar 

  • Chabot DJ, Scorpio A, Tobery SA, Little SF, Norris SL, Friedlander AM (2004) Anthrax capsule vaccine protects against experimental infection. Vaccine 23(1):43–47. doi:10.1016/j.vaccine.2004.05.029

    CAS  PubMed  Google Scholar 

  • Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64(9):836–851. doi:10.1016/j.addr.2012.02.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng R, Meng F, Ma S, Xu H, Liu H, Jing X, Zhong Z (2011) Reduction and temperature dual-responsive crosslinked polymersomes for targeted intracellular protein delivery. J Mater Chem 21(47):19013–19020

    CAS  Google Scholar 

  • Childers NK, Miller KL, Tong G, Llarena JC, Greenway T, Ulrich JT, Michalek SM (2000) Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect Immun 68(10):5509–5516. doi:10.1128/iai.68.10.5509-5516.2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi J-S, Seo K, Yoo J-W (2012) Recent advances in PLGA particulate systems for drug delivery. J Pharmaceut Invest 42(3):155–163. doi:10.1007/s40005-012-0024-5

    CAS  Google Scholar 

  • Chong S-F, Sexton A, De Rose R, Kent SJ, Zelikin AN, Caruso F (2009) A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules. Biomaterials 30(28):5178–5186. doi:10.1016/j.biomaterials.2009.05.078

    CAS  PubMed  Google Scholar 

  • Christian NA, Milone MC, Ranka SS, Li G, Frail PR, Davis KP, Bates FS, Therien MJ, Ghoroghchian PP, June CH, Hammer DA (2007) Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling. Bioconjug Chem 18(1):31–40

    CAS  PubMed  Google Scholar 

  • Christian DA, Cai S, Bowen DM, Kim Y, Pajerowski JD, Discher DE (2009) Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm 71(3):463–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen JA, Beaudette TT, Tseng WW, Bachelder EM, Mende I, Engleman EG, Frechet JM (2009) T-cell activation by antigen-loaded pH-sensitive hydrogel particles in vivo: the effect of particle size. Bioconjug Chem 20(1):111–119. doi:10.1021/bc800338n

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen JA, Beaudette TT, Cohen JL, Broaders KE, Bachelder EM, Frechet JM (2010) Acetal-modified dextran microparticles with controlled degradation kinetics and surface functionality for gene delivery in phagocytic and non-phagocytic cells. Adv Mater 22(32):3593–3597. doi:10.1002/adma.201000307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen JL, Schubert S, Wich PR, Cui L, Cohen JA, Mynar JL, Frechet JM (2011) Acid-degradable cationic dextran particles for the delivery of siRNA therapeutics. Bioconjug Chem 22(6):1056–1065. doi:10.1021/bc100542r

    CAS  PubMed Central  PubMed  Google Scholar 

  • Correia-Pinto JF, Csaba N, Alonso MJ (2013) Vaccine delivery carriers: insights and future perspectives. Int J Pharm 440(1):27–38. doi:10.1016/j.ijpharm.2012.04.047

    CAS  PubMed  Google Scholar 

  • Couvreur P, Puisieux F (1993) Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev 10(2–3):141–162. doi:10.1016/0169-409x(93)90046-7

    CAS  Google Scholar 

  • Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, Albericio F (2005) Peptide and amide bond-containing dendrimers. Chem Rev 105(5):1663–1681. doi:10.1021/cr030449l

    CAS  PubMed  Google Scholar 

  • Crotts G, Park TG (1998) Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres: release kinetics and stability issues. J Microencapsul 15(6):699–713. doi:10.3109/02652049809008253

    CAS  PubMed  Google Scholar 

  • Cui L, Cohen JA, Broaders KE, Beaudette TT, Frechet JM (2011) Mannosylated dextran nanoparticles: a pH-sensitive system engineered for immunomodulation through mannose targeting. Bioconjug Chem 22(5):949–957. doi:10.1021/bc100596w

    CAS  PubMed  Google Scholar 

  • Cui L, Cohen JL, Chu CK, Wich PR, Kierstead PH, Frechet JM (2012) Conjugation chemistry through acetals toward a dextran-based delivery system for controlled release of siRNA. J Am Chem Soc 134(38):15840–15848. doi:10.1021/ja305552u

    CAS  PubMed  Google Scholar 

  • Daftarian P, Kaifer AE, Li W, Blomberg BB, Frasca D, Roth F, Chowdhury R, Berg EA, Fishman JB, Al Sayegh HA, Blackwelder P, Inverardi L, Perez VL, Lemmon V, Serafini P (2011) Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res 71(24):7452–7462. doi:10.1158/0008-5472.can-11-1766

    CAS  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522. doi:10.1016/j.jconrel.2012.01.043

    CAS  PubMed  Google Scholar 

  • De Campos AM, Sanchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224(1–2):159–168. doi:10.1016/s0378-5173(01)00760-8

    PubMed  Google Scholar 

  • De Geest BG, Dejugnat C, Sukhorukov GB, Braeckmans K, De Smedt SC, Demeester J (2005) Self-rupturing microcapsules. Adv Mater 17:2357–2361

    Google Scholar 

  • De Geest BG, Vandenbroucke RE, Guenther AM, Sukhorukov GB, Hennink WE, Sanders NN, Demeester J, De Smedt SC (2006) Intracellularly degradable polyelectrolyte microcapsules. Adv Mater 18(8):1005–1009. doi:10.1002/adma.200502128

    Google Scholar 

  • De Geest BG, Sanders NN, Sukhorukov GB, Demeester J, De Smedt SC (2007) Release mechanisms for polyelectrolyte capsules. Chem Soc Rev 36(4):636–649. doi:10.1039/b600460c

    PubMed  Google Scholar 

  • De Geest BG, De Koker S, Demeester J, De Smedt SC, Hennink WE (2009) Pulsed in vitro release and in vivo behavior of exploding microcapsules. J Control Release 135(3):268–273. doi:10.1016/j.jconrel.2009.01.017

    PubMed  Google Scholar 

  • De Koker S, De Geest BG, Cuvelier C, Ferdinande L, Deckers W, Hennink WE, De Smedt S, Mertens N (2007) In vivo cellular uptake, degradation, and biocompatibility of polyelectrolyte microcapsules. Adv Funct Mater 17(18):3754–3763. doi:10.1002/adfm.200700416

    Google Scholar 

  • De Koker S, De Geest BG, Singh SK, De Rycke R, Naessens T, Van Kooyk Y, Demeester J, De Smedt SC, Grooten J (2009a) Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens. Angew Chem Int Ed 48(45):8485–8489. doi:10.1002/anie.200903769

    Google Scholar 

  • De Koker S, Naessens T, De Geest BG, Bogaert P, Demeester J, De Smedt S, Grooten J (2009b) Biodegradable polyelectrolyte microcapsules: antigen delivery tools with Th17 skewing activity after pulmonary delivery. J Immunol 184(1):203–211. doi:10.4049/jimmunol.0803591

    PubMed  Google Scholar 

  • de Oliveira GA, Clavijo P, Nussenzweig RS, Nardin EH (1994) Immunogenicity of an alum-adsorbed synthetic multiple-antigen peptide based on B- and T-cell epitopes of the Plasmodium falciparum CS protein: possible vaccine application. Vaccine 12(11):1012–1017. doi:http://dx.doi.org/10.1016/0264-410X(94)90337-9

  • de Oliveira E, Villén J, Giralt E, Andreu D (2002) Synthetic approaches to multivalent lipopeptide dendrimers containing cyclic disulfide epitopes of foot-and-mouth disease virus. Bioconjug Chem 14(1):144–152. doi:10.1021/bc025577f

    Google Scholar 

  • De Rose R, Zelikin AN, Johnston APR, Sexton A, Chong S-F, Cortez C, Mulholland W, Caruso F, Kent SJ (2008) Binding, internalization, and antigen presentation of vaccine-loaded nanoengineered capsules in blood. Adv Mater 20(24):4698–4703. doi:10.1002/adma.200801826

    Google Scholar 

  • De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC (2011) Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 16(13–14):569–582. doi:10.1016/j.drudis.2011.04.006

    PubMed  Google Scholar 

  • De Temmerman M-L, Rejman J, Lucas B, Vandenbroucke RE, Libert C, Demeester J, De Smedt SC (2012) Modulation of dendritic cells by lipid grafted polyelectrolyte microcapsules. Adv Funct Mater 22(20):4236–4243. doi:10.1002/adfm.201103151

    Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237. doi:10.1126/science.277.5330.1232

    CAS  Google Scholar 

  • Defoort JP, Nardelli B, Huang W, Ho DD, Tam JP (1992) Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proc Natl Acad Sci U S A 89(9):3879–3883. doi:10.1073/pnas.89.9.3879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denkewalter RG, Kolc J, Lukasavage WJ (1981) Macromolecular highly branched homogeneous compound based on lysine units. Application: US Patent 1979-27622 4289872

    Google Scholar 

  • Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297(5583):967–973

    CAS  PubMed  Google Scholar 

  • Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284(5417):1143–1146

    CAS  PubMed  Google Scholar 

  • Donath E, Sukhorukov GB, Caruso F, Davis SA, Mohwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37(16):2202–2205

    CAS  Google Scholar 

  • Dorwal D (2012) Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci 4(3):67–74

    CAS  Google Scholar 

  • Du Y, Chen W, Zheng M, Meng F, Zhong Z (2012) pH-sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials 33(29):7291–7299

    CAS  PubMed  Google Scholar 

  • Edman P, Ekman B, Sjoholm I (1980) Immobilization of proteins in microspheres of biodegradable polyacryldextran. J Pharm Sci 69(7):838–842

    CAS  PubMed  Google Scholar 

  • Egli S, Nussbaumer MG, Balasubramanian V, Chami M, Bruns N, Palivan C, Meier W (2011a) Biocompatible functionalization of polymersome surfaces: a new approach to surface immobilization and cell targeting using polymersomes. J Am Chem Soc 133(12):4476–4483

    CAS  PubMed  Google Scholar 

  • Egli S, Schlaad H, Bruns N, Meier W (2011b) Functionalization of block copolymer vesicle surfaces. Polymers 3(4):252–280. doi:10.3390/polym3010252

    CAS  Google Scholar 

  • Ekman B, Lofter C, Sjoholm I (1976) Incorporation of macromolecules in microparticles: preparation and characteristics. Biochemistry 15(23):5115–5120. doi:10.1021/bi00668a026

    CAS  PubMed  Google Scholar 

  • Elamanchili P, Lutsiak CME, Hamdy S, Diwan M, Samuel J (2007) “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J Immunother 30(4):378–395. doi:10.1097/CJI.1090b1013e31802cf31803e31803

    CAS  PubMed  Google Scholar 

  • Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9(1):1–14. doi:10.1016/j.nano.2012.05.013

    CAS  PubMed  Google Scholar 

  • Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16(10):1576–1581

    CAS  PubMed  Google Scholar 

  • Ferreira SA, Gama FM, Vilanova M (2013) Polymeric nanogels as vaccine delivery systems. Nanomedicine 9(2):159–173. doi:10.1016/j.nano.2012.06.001

    CAS  PubMed  Google Scholar 

  • Fujita Y, Taguchi H (2011) Current status of multiple antigen-presenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem Cent J 5(1):1–8. doi:10.1186/1752-153x-5-48

    Google Scholar 

  • Garcia-Fuentes M, Alonso MJ (2012) Chitosan-based drug nanocarriers: where do we stand? J Control Release 161(2):496–504. doi:10.1016/j.jconrel.2012.03.017

    CAS  PubMed  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114(1):1–14. doi:10.1016/j.jconrel.2006.04.017

    CAS  PubMed  Google Scholar 

  • Grzelakowski M, Onaca O, Rigler P, Kumar M, Meier W (2009) Immobilized protein-polymer nanoreactors. Small 5(22):2545–2548

    CAS  PubMed  Google Scholar 

  • Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A (2008) Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26(39):5046–5057. doi:10.1016/j.vaccine.2008.07.035

    CAS  PubMed  Google Scholar 

  • Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63(10–11):943–955. doi:10.1016/j.addr.2011.05.021

    CAS  PubMed  Google Scholar 

  • Hao J, Kwissa M, Pulendran B, Murthy N (2006) Peptide crosslinked micelles: a new strategy for the design and synthesis of peptide vaccines. Int J Nanomedicine 1(1):97–103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block-copolymers with poly(ethylene glycol) segments. Macromolecules 28(15):5294–5299

    CAS  Google Scholar 

  • Hawker CJ, Frechet JMJ (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112(21):7638–7647. doi:10.1021/ja00177a027

    CAS  Google Scholar 

  • Heegaard PMH, Boas U, Sorensen NS (2010) Dendrimers for vaccine and immunostimulatory uses. A review. Bioconjug Chem 21(3):405–418. doi:10.1021/bc900290d

    CAS  PubMed  Google Scholar 

  • Hirakura T, Yasugi K, Nemoto T, Sato M, Shimoboji T, Aso Y, Morimoto N, Akiyoshi K (2010) Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function. J Control Release 142(3):483–489. doi:10.1016/j.jconrel.2009.11.023

    CAS  PubMed  Google Scholar 

  • Holdermann K, Greiling W (1954) Im Banne der Chemie-Carl Bosch, Leben und Werk, 2nd edn. Econ-Verlag, Düsseldorf

    Google Scholar 

  • Igartua M, Hernandez RM, Esquisabel A, Gascon AR, Calvo MB, Pedraz JL (1997) Influence of formulation variables on the in-vitro release of albumin from biodegradable microparticulate systems. J Microencapsul 14(3):349–356. doi:10.3109/02652049709051138

    CAS  PubMed  Google Scholar 

  • Igartua M, Hernandez RM, Esquisabel A, Gascon AR, Calvo MB, Pedraz JL (1998) Stability of BSA encapsulated into PLGA microspheres using PAGE and capillary electrophoresis. Int J Pharm 169(1):45–54. doi:10.1016/s0378-5173(98)00101-x

    CAS  Google Scholar 

  • Igartua M, Hernandez RM, Rosas JE, Patarroyo ME, Pedraz JL (2008) Gamma-irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. Eur J Pharm Biopharm 69(2):519–526. doi:10.1016/j.ejpb.2007.12.014

    CAS  PubMed  Google Scholar 

  • Iglesias E, Aguilar JC, Cruz LJ, Reyes O (2005) Broader cross-reactivity after conjugation of V3 based multiple antigen peptides to HBsAg. Mol Immunol 42(1):99–104. doi: http://dx.doi.org/10.1016/j.molimm.2004.06.038

  • Janeway CA, Travers P, Walport M, Shlomchik M (2004) Immunobiology: the immune system in health and disease, 6th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Jewell CM, Lynn DM (2008) Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics. Adv Drug Deliv Rev 60(9):979–999. doi:10.1016/j.addr.2008.02.010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansen P, Martinez Gomez JM, Gander B (2007) Development of synthetic biodegradable microparticulate vaccines: a roller coaster story. Expert Rev Vaccines 6(4):471–474. doi:10.1586/14760584.6.4.471

    CAS  PubMed  Google Scholar 

  • Johnston AP, Caruso F (2007) Exploiting the directionality of DNA: controlled shrinkage of engineered oligonucleotide capsules. Angew Chem Int Ed Engl 46(15):2677–2680. doi:10.1002/anie.200605135

    CAS  PubMed  Google Scholar 

  • Johnston APR, Read ES, Caruso F (2005) DNA multilayer films on planar and colloidal supports: sequential assembly of like-charged polyelectrolytes. Nano Lett 5(5):953–956. doi:10.1021/nl050608b

    CAS  PubMed  Google Scholar 

  • Joyce J, Cook J, Chabot D, Hepler R, Shoop W, Xu Q, Stambaugh T, Aste-Amezaga M, Wang S, Indrawati L, Bruner M, Friedlander A, Keller P, Caulfield M (2006) Immunogenicity and protective efficacy of Bacillus anthracis Poly-γ-D-glutamic acid capsule covalently coupled to a protein carrier using a novel triazine-based conjugation strategy. J Biol Chem 281(8):4831–4843. doi:10.1074/jbc.M509432200

    CAS  PubMed  Google Scholar 

  • Jung J, Iijima M, Yoshimoto N, Sasaki M, Niimi T, Tatematsu K, Jeong S-Y, Choi EK, Tanizawa K, S-i K (2011) Efficient and rapid purification of drug- and gene-carrying bio-nanocapsules, hepatitis B virus surface antigen L particles, from Saccharomyces cerevisiae. Protein Expr Purif 78(2):149–155. doi:10.1016/j.pep.2011.04.008

    CAS  PubMed  Google Scholar 

  • Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 48(30):5418–5429. doi:10.1002/anie.200900441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010. doi:10.1039/c2cs15344k

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katayose S, Kataoka K (1997) Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug Chem 8(5):702–707

    CAS  PubMed  Google Scholar 

  • Kawashima Y, Yamamoto H, Takeuchi H, Kuno Y (2000) Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm Dev Technol 5(1):77–85. doi:10.1081/pdt-100100522

    CAS  PubMed  Google Scholar 

  • Kempf M, Mandal B, Jilek S, Thiele L, Voros J, Textor M, Merkle HP, Walter E (2003) Improved stimulation of human dendritic cells by receptor engagement with surface-modified microparticles. J Drug Target 11(1):11–18. doi:10.1080/1061186031000072978

    CAS  PubMed  Google Scholar 

  • Korobko AV, Jesse W, van der Maarel JRC (2005) Encapsulation of DNA by cationic diblock copolymer vesicles. Langmuir 21(1):34–42

    CAS  PubMed  Google Scholar 

  • Korobko AV, Backendorf C, van der Maarel JRC (2006) Plasmid DNA encapsulation within cationic diblock copolymer vesicles for gene delivery. J Phys Chem B 110(30):14550–14556

    CAS  PubMed  Google Scholar 

  • Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331(1):1–10. doi:10.1016/j.ijpharm.2006.10.021

    CAS  PubMed  Google Scholar 

  • Kreuter J, Speiser PP (1976) In vitro studies of poly(methyl methacrylate) adjuvants. J Pharm Sci 65(11):1624–1627. doi:10.1002/jps.2600651115

    CAS  PubMed  Google Scholar 

  • Kublin JG, Lowitt MH, Hamilton RG, Oliveira GA, Nardin EH, Nussenzweig RS, Schmeckpeper BJ, Diggs CL, Bodison SA, Edelman R (2002) Delayed-type hypersensitivity in volunteers immunized with a synthetic multi-antigen peptide vaccine (PfCS-MAP1NYU) against Plasmodium falciparum sporozoites. Vaccine 20(13–14):1853–1861. doi:http://dx.doi.org/10.1016/S0264-410X(02)00037-3

  • Lee ES, Kim D, Youn YS, Oh KT, Bae YH (2008) A virus-mimetic nanogel vehicle. Angew Chem Int Ed Engl 47(13):2418–2421. doi:10.1002/anie.200704121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leleux J, Roy K (2013) Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater 2(1):72–94. doi:10.1002/adhm.201200268

    CAS  PubMed  Google Scholar 

  • Leonard M, De Boisseson MR, Hubert P, Dalencon F, Dellacherie E (2004) Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J Control Release 98(3):395–405. doi:10.1016/j.jconrel.2004.05.009

    CAS  PubMed  Google Scholar 

  • Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 53(1–3):183–193. doi:10.1016/s0168-3659(97)00252-6

    CAS  PubMed  Google Scholar 

  • Li WA, Mooney DJ (2013) Materials based tumor immunotherapy vaccines. Curr Opin Immunol 25(2):238–45. doi:10.1016/j.coi.2012.12.008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Men Y, Thomasin C, Merkle HP, Gander B, Corradin G (1995) A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine 13(7):683–689

    CAS  PubMed  Google Scholar 

  • Men Y, Tamber H, Audran R, Gander B, Corradin G (1997) Induction of a cytotoxic T lymphocyte response by immunization with a malaria specific CTL peptide entrapped in biodegradable polymer microspheres. Vaccine 15(12/13):1405–1412. doi:10.1016/s0264-410x(97)00047-9

    CAS  PubMed  Google Scholar 

  • Men Y, Audran R, Thomasin C, Eberl G, Demotz S, Merkle HP, Gander B, Corradin G (1999) MHC class I- and class II-restricted processing and presentation of microencapsulated antigens. Vaccine 17(9–10):1047–1056. doi:10.1016/s0264-410x(98)00321-1

    CAS  PubMed  Google Scholar 

  • Moon JJ, Huang B, Irvine DJ (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24(28):3724–3746. doi:10.1002/adma.201200446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno CA, Rodriguez R, Oliveira GA, Ferreira V, Nussenzweig RS, Moya Castro ZR, Calvo-Calle JM, Nardin E (1999) Preclinical evaluation of a synthetic Plasmodium falciparum MAP malaria vaccine in Aotus monkeys and mice. Vaccine 18(1–2):89–99. doi: http://dx.doi.org/10.1016/S0264-410X(99)00184-X

  • Mueller M, Reichardt W, Koerner J, Groettrup M (2012) Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J Control Release 162(1):159–166. doi:10.1016/j.jconrel.2012.06.015

    CAS  PubMed  Google Scholar 

  • Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166(2):182–194. doi:10.1016/j.jconrel.2012.12.013

    CAS  PubMed  Google Scholar 

  • Nardin EH, Calvo-Calle JM, Oliveira GA, Nussenzweig RS, Schneider M, Tiercy J-M, Loutan L, Hochstrasser D, Rose K (2001) A totally synthetic polyoxime malaria vaccine containing plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types. J Immunol 166(1):481–489

    CAS  PubMed  Google Scholar 

  • Niederhafner P, Reiniš M, Šebestík J, Ježek J (2008) Glycopeptide dendrimers, part III—a review: use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseases. J Pept Sci 14(5):556–587. doi:10.1002/psc.1011

    CAS  PubMed  Google Scholar 

  • Nill K (2005) Glossary of biotechnology and nanobiotechnology terms, 4th ed by Taylor & Francis Group, LLC

    Google Scholar 

  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477. doi:10.1016/j.progpolymsci.2008.01.002

    CAS  Google Scholar 

  • O’Hagan D, Singh M, Gupta RK (1998) Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv Drug Deliv Rev 32(3):225–246. doi:10.1016/s0169-409x(98)00012-x

    PubMed  Google Scholar 

  • Olive C, Batzloff M, Horváth A, Clair T, Yarwood P, Toth I, Good MF (2003) Potential of lipid core peptide technology as a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens. Infect Immun 71(5):2373–2383. doi:10.1128/iai.71.5.2373-2383.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan Y, Li Y-J, Zhao H-Y, Zheng J-M, Xu H, Wei G, Hao J-S, Cui F-D (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 249(1–2):139–147. doi:10.1016/s0378-5173(02)00486-6

    CAS  PubMed  Google Scholar 

  • Pangburn SH, Trescony PV, Heller J (1984) Partially deacetylated chitin: its use in self-regulated drug delivery systems. Chitin, Chitosan, Relat Enzymes, [Proc Jt US-Jpn Semin Adv Chitin, Chitosan, Relat Enzymes] 3–19

    Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347. doi:10.1016/s0169-409x(02)00228-4

    CAS  PubMed  Google Scholar 

  • Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine 2(2):53–65. doi:10.1016/j.nano.2006.04.009

    PubMed  Google Scholar 

  • Posnett DN, McGrath H, Tam JP (1988) A novel method for producing anti-peptide antibodies. Production of site-specific antibodies to the T cell antigen receptor beta-chain. J Biol Chem 263(4):1719–1725

    CAS  PubMed  Google Scholar 

  • Poupot M, Griffe L, Marchand P, Maraval A, Rolland O, Martinet L, L’Faqihi-Olive F-E, Turrin C-O, Caminade A-M, Fournié J-J, Majoral J-P, Poupot R (2006) Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB J 20(13):2339–2351. doi:10.1096/fj.06-5742com

    CAS  PubMed  Google Scholar 

  • Prego C, Paolicelli P, Diaz B, Vicente S, Sanchez A, Gonzalez-Fernandez A, Alonso MJ (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28(14):2607–2614. doi:10.1016/j.vaccine.2010.01.011

    CAS  PubMed  Google Scholar 

  • Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5(4):707. doi:10.1039/b811923f

    CAS  Google Scholar 

  • Renggli K, Baumann P, Langowska K, Onaca O, Bruns N, Meier W (2011) Selective and responsive nanoreactors. Adv Funct Mater 21(7):1241–1259

    CAS  Google Scholar 

  • Rhie G-E, Roehrl MH, Mourez M, Collier RJ, Mekalanos JJ, Wang JY (2003) A dually active anthrax vaccine that confers protection against both bacilli and toxins. Proc Natl Acad Sci U S A 100(19):10925–10930. doi:10.1073/pnas.1834478100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA (2010) Polymeric particles in vaccine delivery. Curr Opin Microbiol 13(1):106–112. doi:10.1016/j.mib.2009.12.001

    CAS  PubMed  Google Scholar 

  • Roy R, Baek M-G (2003) Multivalent breast cancer T-antigen markers scaffolded onto PAMAM dendrimers. In: Yuan CL, Reiko TL (eds) Methods in enzymology, vol 362. Academic Press, New York, pp 240–249. doi:http://dx.doi.org/10.1016/S0076-6879(03)01017-6

  • Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 90(3–4):195–229. doi:http://dx.doi.org/10.1016/S1389-0352(01)00061-7

  • Sah H, Toddywala R, Chien YW (1995) Continuous release of proteins from biodegradable microcapsules and in vivo evaluation of their potential as a vaccine adjuvant. J Control Release 35(2–3):137–144. doi:10.1016/0168-3659(95)00029-8

    CAS  Google Scholar 

  • Sanchez A, Gupta RK, Alonso MJ, Siber GR, Langer R (1996) Pulsed controlled-release system for potential use in vaccine delivery. J Pharm Sci 85(6):547–552. doi:10.1021/js960069y

    CAS  PubMed  Google Scholar 

  • Saroja C, Lakshmi P, Bhaskaran S (2011) Recent trends in vaccine delivery systems: a review. Int J Pharm Investig 1(2):64–74. doi:10.4103/2230-973X.82384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saurer EM, Jewell CM, Kuchenreuther JM, Lynn DM (2009) Assembly of erodible, DNA-containing thin films on the surfaces of polymer microparticles: toward a layer-by-layer approach to the delivery of DNA to antigen-presenting cells. Acta Biomater 5(3):913–924. doi:10.1016/j.actbio.2008.08.022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schneerson R, Kubler-Kielb J, Liu T-Y, Dai Z-D, Leppla SH, Yergey A, Backlund P, Shiloach J, Majadly F, Robbins JB (2003) Poly(γ-D-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proc Natl Acad Sci U S A 100(15):8945–8950. doi:10.1073/pnas.1633512100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Šebestík J, Reiniš M, Ježek J (2012) Vaccines and immunomodulation. In: Biomedical Applications of peptide-, glyco- and glycopeptide dendrimers, and analogous dendrimeric structures. Springer, Vienna, pp 199–207. doi:10.1007/978-3-7091-1206-9_22

  • Sexton A, Whitney PG, Chong S-F, Zelikin AN, Johnston APR, De Rose R, Brooks AG, Caruso F, Kent SJ (2009) A protective vaccine delivery system for in vivo t cell stimulation using nanoengineered polymer hydrogel capsules. ACS Nano 3(11):3391–3400. doi:10.1021/nn900715g

    CAS  PubMed  Google Scholar 

  • Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1):78–88. doi:10.1111/j.1365-2567.2005.02268.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheng K-C, Kalkanidis M, Pouniotis DS, Esparon S, Tang CK, Apostolopoulos V, Pietersz GA (2008) Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur J Immunol 38(2):424–436. doi:10.1002/eji.200737578

    CAS  PubMed  Google Scholar 

  • Shiao TC, Roy R (2012) Glycodendrimers as functional antigens and antitumor vaccines. New J Chem 36(2):324–339

    CAS  Google Scholar 

  • Skwarczynski M, Zaman M, Urbani CN, Lin IC, Jia Z, Batzloff MR, Good MF, Monteiro MJ, Toth I (2010) Polyacrylate dendrimer nanoparticles: a self-adjuvanting vaccine delivery system. Angew Chem Int Ed 49(33):5742–5745. doi:10.1002/anie.201002221

    CAS  Google Scholar 

  • Sorensen NS, Boas U, Heegaard PMH (2011) Enhancement of muramyldipeptide (MDP) immunostimulatory activity by controlled multimerization on dendrimers. Macromol Biosci 11(11):1484–1490. doi:10.1002/mabi.201100105

    CAS  PubMed  Google Scholar 

  • Stoenescu R, Graff A, Meier W (2004) Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins. Macromol Biosci 4:930–935. doi:10.1002/mabi.200400065

    CAS  PubMed  Google Scholar 

  • Sukhorukov GB, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov VI, Mohwald H (1998) Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym Adv Technol 9(10–11):759–767. doi:10.1002/(sici)1099-1581(1998100)9:10/11<759::aid-pat846>3.0.co;2-q

    CAS  Google Scholar 

  • Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A 85(15):5409–5413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tam JP (1996) Recent advances in multiple antigen peptides. J Immunol Methods 196(1):17–32. doi:http://dx.doi.org/10.1016/0022-1759(96)00066-X

  • Tamber H, Johansen P, Merkle HP, Gander B (2005) Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev 57(3):357–376. doi:10.1016/j.addr.2004.09.002

    CAS  PubMed  Google Scholar 

  • Tarradas J, Monsó M, Fraile L, de la Torre BG, Muñoz M, Rosell R, Riquelme C, Pérez LJ, Nofrarías M, Domingo M, Sobrino F, Andreu D, Ganges L (2012) A T-cell epitope on NS3 non-structural protein enhances the B and T cell responses elicited by dendrimeric constructions against CSFV in domestic pigs. Vet Immunol Immunopathol 150(1–2):36–46. doi:http://dx.doi.org/10.1016/j.vetimm.2012.08.006

  • Thomann-Harwood LJ, Kaeuper P, Rossi N, Milona P, Herrmann B, McCullough KC (2013) Nanogel vaccines targeting dendritic cells: contributions of the surface decoration and vaccine cargo on cell targeting and activation. J Control Release 166(2):95–105. doi:10.1016/j.jconrel.2012.11.015

    CAS  PubMed  Google Scholar 

  • Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J (Tokyo) 17(1):117–132. doi:10.1295/polymj.17.117

    CAS  Google Scholar 

  • Uchida T, Yagi A, Oda Y, Goto S (1996) Microencapsulation of ovalbumin in poly(lactide-co-glycolide) by an oil-in-oil (o/o) solvent evaporation method. J Microencapsul 13(5):509–518. doi:10.3109/02652049609026036

    CAS  PubMed  Google Scholar 

  • Uto T, Toyama M, Nishi Y, Akagi T, Shima F, Akashi M, Baba M (2013) Uptake of biodegradable poly(γ-glutamic acid) nanoparticles and antigen presentation by dendritic cells in vivo. Res Immunol 3:1–9. doi:10.1016/j.rinim.2012.11.002

    Google Scholar 

  • Van Regenmortel MHV, Briand JP, Muller S, Plaue S (1988) Laboratory techniques in biochemistry and molecular biology, vol. 19: synthetic polypeptides as antigens, Elsevier Science Publishers B. V. (Biomedical Devision)

    Google Scholar 

  • Vila A, Sánchez A, Janes K, Behrens I, Kissel T, Jato JLV, Alonso MJ (2004) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57(1):123–131. doi:10.1016/j.ejpb.2003.09.006

    CAS  PubMed  Google Scholar 

  • Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54(1):135–147. doi:10.1016/s0169-409x(01)00245-9

    CAS  PubMed  Google Scholar 

  • Wang R, Charoenvit Y, Corradin G, Porrozzi R, Hunter RL, Glenn G, Alving CR, Church P, Hoffman SL (1995) Induction of protective polyclonal antibodies by immunization with a Plasmodium yoelii circumsporozoite protein multiple antigen peptide vaccine. J Immunol 154(6):2784–2793

    CAS  PubMed  Google Scholar 

  • Wang TT, Fellows PF, Leighton TJ, Lucas AH (2004) Induction of opsonic antibodies to the γ-D-glutamic acid capsule of Bacillus anthracis by immunization with a synthetic peptide-carrier protein conjugate. FEMS Immunol Med Microbiol 40(3):231–237. doi:10.1016/s0928-8244(03)00366-3

    PubMed  Google Scholar 

  • Weber C, Drogoz A, David L, Domard A, Charles MH, Verrier B, Delair T (2010) Polysaccharide-based vaccine delivery systems: macromolecular assembly, interactions with antigen presenting cells, and in vivo immunomonitoring. J Biomed Mater Res A 93(4):1322–1334. doi:10.1002/jbm.a.32605

    PubMed  Google Scholar 

  • Wu W, Zhou S (2010) Hybrid micro-/nanogels for optical sensing and intracellular imaging. Nano Rev 1. doi:10.3402/nano.v1i0.5730

  • Wu Z, Zhang X, Guo H, Li C, Yu D (2012) An injectable and glucose-sensitive nanogel for controlled insulin release. J Mater Chem 22(42):22788. doi:10.1039/c2jm34082h

    CAS  Google Scholar 

  • Yamada T, Iwabuki H, Kanno T, Tanaka H, Kawai T, Fukuda H, Kondo A, Seno M, Tanizawa K, Kuroda S (2001) Physicochemical and immunological characterization of hepatitis B virus envelope particles exclusively consisting of the entire L (pre-S1 + pre-S2 + S) protein. Vaccine 19(23–24):3154–3163. doi:10.1016/s0264-410x(01)00017-2

    CAS  PubMed  Google Scholar 

  • Youan BBC, Jackson TL, Dickens L, Hernandez C, Owusu-Ababio G (2001) Protein release profiles and morphology of biodegradable microcapsules containing an oily core. J Control Release 76(3):313–326. doi:10.1016/s0168-3659(01)00445-x

    CAS  PubMed  Google Scholar 

  • Zhao G, Lin Y, Du L, Guan J, Sun S, Sui H, Kou Z, Chan C, Guo Y, Jiang S, Zheng B-J, Zhou Y (2010) An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses. Virol J 7(1):9

    PubMed Central  PubMed  Google Scholar 

  • Zhu G, Mallery SR, Schwendeman SP (2000) Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nat Biotechnol 18(1)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNSF), NCCR Nanosciences, Marie Curie Actions-Intra European fellowship (IEF) (p.n. 301398) (A. C.), the Holcim Stiftung (N. B.), and the Gerbert Rüf Stiftung (GRS-048/11) (T. S.). We also thank Gesine Gunkel and Elisa Nogueira for editorial help and Ruth Pfalzberger for her help with the preparation of the graphic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Car .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schuster, T., Nussbaumer, M., Baumann, P., Bruns, N., Meier, W., Car, A. (2015). Polymeric Particulates for Subunit Vaccine Delivery. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_10

Download citation