Advertisement

Developmental Origins of Disease: The Role of Oxidative Stress

Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

The “thrifty phenotype” hypothesis proposes that the fetus adapts to an adverse intrauterine milieu by optimizing the use of a reduced nutrient supply to ensure survival, but by favoring the development of certain organs over that of others, this leads to persistent alterations in the growth and function of developing tissues. This concept has been somewhat controversial; however, recent epidemiological, clinical, and animal studies provide support for the developmental origins of disease hypothesis. Underlying mechanisms include reprogramming of the hypothalamic-pituitary-adrenal axis, islet development, and insulin signaling pathways. Emerging data suggests that oxidative stress and mitochondrial dysfunction may also play a critical role in the pathogenesis of type 2 diabetes in individuals who were growth retarded at birth.

Keywords

Mitochondrial Dysfunction Fetal Growth Restriction Hepatic Glucose Production Fetal Growth Retardation Uterine Artery Ligation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hales CN, Barker DJP. Type 2 diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.PubMedCrossRefGoogle Scholar
  2. 2.
    Kermack WO. Death rates in Great Britain and Sweden. Lancet. 1934;1:698–703.CrossRefGoogle Scholar
  3. 3.
    Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Barker DJP, Winter PD, Osmond C, Margetts B, Simmons SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Hales CN, Barker DJP, Clark PMS, Cox LJ, Fall C, Osmond C, Winter PD. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Phipps K, Barker DJ, Hales CN, Fall CH, Osmond C, Clark PM. Fetal growth and impaired glucose tolerance in men and women. Diabetologia. 1993;36:225–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Fall CHD, Osmond C, Barker DJP, Clark PMS, Hales CN, Stirling Y, Meade TW. Fetal and infant growth and cardiovascular risk factors in women. BMJ. 1995;310:428–32.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 diabetes mellitus, hypertension, and hyperlipidemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Hales CN, Barker DJ. The Thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Valdez R, Athens MA, Thompson GH, Bradshaw BS, Stern MP. Birthweight and adult health outcomes in a biethnic population in the USA. Diabetologia. 1994;37:624–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ. Birthweight and adult hypertension, diabetes mellitus and obesity in US men. Circulation. 1996;94: 3246–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Lithell HO, McKeigue PM, Berglund L, Mohsen R, Lithell UBN, Leon DA. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ. 1996;312:406–10.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    McKeigue PM, Lithell HO, Leon DA. Glucose tolerance and resistance to insulin-stimulated glucose uptake in men aged 70 years in relation to size at birth. Diabetologia. 1998;41: 1133–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Leger J, Levy-Marchal C, Bloch J, Pinet A, Chevenne D, Porquet D, Collin D, Czernichow P. Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: regional cohort study. BMJ. 1997;315:341–7.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab. 2000;85: 1401–6.PubMedGoogle Scholar
  16. 16.
    Egeland GM, Skjaerven R, Irgrens LM. Birth characteristics of women who develop gestational diabetes: population based study. BMJ. 2000;321:546–7.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Forsen T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med. 2000;133:176–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH, Speizer FE, Manson JE. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med. 1999;130:278–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D. Fetal and childhood growth and hypertension in adult life. Hypertension. 2000;36:790–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Bavdekar A, Sachdev HS, Fall CHD, Osmond C, Lakshmy R, Barker DJP, Biswas SKD, Ramji S, Prabhakaran D, Reddy KS. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med. 2004;350:865–75.CrossRefGoogle Scholar
  21. 21.
    Bavdekar A, Yajnik CS, Fall CH, Bapat S, Pandit AN, Deshpande V, Bhave S, Kellingray SD, Joglekar C. Insulin resistance syndrome in 8-year-old Indian children:small at birth, big at 8 years, or both? Diabetes. 1999;48:2422–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Myatt L, Eis ALW, Brockman DE, Kossenjans W, Greer IA, Lyall F. Differential localization of superoxide dismutase isoforms in placental villous tissue of normotensive, pre-eclamptic, and intrauterine growth-restricted pregnancies. J Histochem Cytochem. 1997;45:1433–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Karowicz-Bilinska A, Suzin J, Sieroszewski P. Evaluation of oxidative stress indices during treatment in pregnant women with intrauterine growth retardation. Med Sci Monit. 2002; 8:CR211–6.PubMedGoogle Scholar
  24. 24.
    Ejima K, Nanri H, Toki N, Kashimura M, Ikeda M. Localization of thioredoxin reductase and thioredoxin in normal human placenta and their protective effect against oxidative stress. Placenta. 1999;20:95–101.PubMedCrossRefGoogle Scholar
  25. 25.
    Kato H, Yoneyama Y, Araki T. Fetal plasma lipid peroxide levels in pregnancies complicated by preeclampsia. Gynecol Obstet Invest. 1997;43:158–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Bowen RS, Moodley J, Dutton MF, Theron AJ. Oxidative stress in pre-eclampsia. Acta Obstet Gynecol Scand. 2001;80:719–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang Y, Walsh SW. Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta. 2001;22:206–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang Y, Walsh SW. Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta. 1998;19:581–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Guvendag Guven ES, Karcaaltincaba D, Kandemir O, Kiykac S, Mentese A. Cord blood oxidative stress markers correlate with umbilical artery pulsatility in fetal growth restriction. J Matern Fetal Neonatal Med. 2013;26(6):576–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Kimura C, Watanabe K, Iwasaki A, Mori T, Matsushita H, Shinohara K, Wakatsuki A. The severity of hypoxic changes and oxidative DNA damage in the placenta of early-onset preeclamptic women and fetal growth restriction. J Matern Fetal Neonatal Med. 2013;26(5): 491–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Esposti MD, McLennan H. Mitochondria and cells produce reactive oxygen species in virtual anaerobiosis: relevance to ceramide-induced apoptosis. FEBS Lett. 1998;430:338–42.PubMedCrossRefGoogle Scholar
  32. 32.
    Chandel NS, Budinger GRS, Schumacker PT. Molecular oxygen modulates cytochrome c oxidase function. J Biol Chem. 1996;271:8672–18677.CrossRefGoogle Scholar
  33. 33.
    Gorgias N, Maidatsi P, Tsolaki M, Alvanou A, Kiriazis G, Kaidoglou K, Giala M. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia. Brain Res. 1996;714:215–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming. Reproduction. 2004;127:515–26.PubMedCrossRefGoogle Scholar
  35. 35.
    McMillen C, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633.PubMedCrossRefGoogle Scholar
  36. 36.
    Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ. Islet function in off-spring of mothers on low-protein diet during gestation. Diabetes. 1991;40:115–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Snoeck A, Remacle C, Reusens B, Hoet JJ. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990;57:107–18.PubMedCrossRefGoogle Scholar
  38. 38.
    Ozanne SE, Wang CL, Coleman N, Smith GD. Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats. Am J Physiol. 1996;271:E1128–34.PubMedGoogle Scholar
  39. 39.
    Berney DM, Desai M, Palmer DJ, Greenwald S, Brown A, Hales CN, Berry CL. The effects of maternal protein deprivation on the fetal rat pancreas: major structural changes and their recuperation. J Pathol. 1997;183:109–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Wilson MR, Hughes SJ. The effect of maternal protein deficiency during pregnancy and lactation on glucose tolerance and pancreatic islet function in adult rat offspring. J Endocrinol. 1997;154:177–85.PubMedCrossRefGoogle Scholar
  41. 41.
    Burns SP, Desai M, Cohen RD, Hales CN, Iles RA, Germain JP, Going TCH, Bailey RA. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest. 1997; 100:1768–74.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ozanne SE, Jensen CB, Tingey KJ, Storgaard H, Madsbad S, Vaag AA. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia. 2005;48:547–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Ozanne SE, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL, Hartil K, Petry CJ, Buckley AJ, Mosthaf-Seedorf L. Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol. 2003;177:235–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Petry CJ, Dorling MW, Pawlak DB, Ozanne SE, Hales CN. Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res. 2001;2:139–43.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Fernandez-Twinn DS, Wayman A, Ekizoglou S, Martin MS, Hales CN, Ozanne SE. Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21-mo-old female rat offspring. Am J Physiol Regul Integr Comp Physiol. 2005;288: R368–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Benediktsson R, Lindsay R, Noble J, Seckl JR, Edwards CRW. Glucocorticoid exposure in utero; a new model for adult hypertension. Lancet. 1993;341:339–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Lindsay RS, Lindsay RM, Edwards CRW, Seckl JR. Inhibition of 11β-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension. 1996;27:1200–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Lindsay RS, Lindsay RM, Waddell B, Seckl JR. Programming of glucose tolerance in the rat: role of placental 11β-hydroxysteroid dehydrogenase. Diabetologia. 1996;39:1299–305.PubMedCrossRefGoogle Scholar
  49. 49.
    Niyirenda MJ, Seckl JR. Intrauterine events and the programming of adulthood disease: the role of fetal glucocorticoid exposure. Int J Mol Med. 1998;2:607–14.Google Scholar
  50. 50.
    Simmons RA, Templeton L, Gertz S, Niu H. Intrauterine growth retardation leads to type II diabetes in adulthood in the rat. Diabetes. 2001;50:2279–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Boloker J, Gertz S, Simmons RA. Offspring of diabetic rats develop obesity and type II diabetes in adulthood. Diabetes. 2002;51:1499–506.PubMedCrossRefGoogle Scholar
  52. 52.
    Ogata ES, Bussey M, Finley S. Altered gas exchange, limited glucose, branched chain amino acids, and hypoinsulinism retard fetal growth in the rat. Metabolism. 1986;35:950–77.CrossRefGoogle Scholar
  53. 53.
    Simmons RA, Gounis AS, Bangalore SA, Ogata ES. Intrauterine growth retardation: fetal glucose transport is diminished in lung but spared in brain. Pediatr Res. 1991;31:59–63.CrossRefGoogle Scholar
  54. 54.
    Unterman T, Lascon R, Gotway M, Oehler D, Gounis A, Simmons RA, Ogata ES. Circulating levels of insulin-like growth factor binding protein-1 (IGFBP-1) and hepatic mRNA are increased in the small for gestational age fetal rat. Endocrinology. 1990;127:2035–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Sakai C, Tomitsuka E, Miyagishi M, Harada S, Kita K. Type II Fp of human mitochondrial respiratory complex II and its role in adaptation to hypoxia and nutrition-deprived conditions. Mitochondrion. 2013;13:602–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Pejznochova M, Tesarova M, Hansikova H, Magner M, Honzik T, Vinsova K, Hajkova Z, Havlickova V, Zeman J. Mitochondrial DNA content and expression of genes involved in mtDNA transcription, regulation and maintenance during human fetal development. Mitochondrion. 2010;10:321–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Lattuada D, Colleoni F, Martinelli A, Garretto A, Magni R, Radaelli T, Cetin I. Higher mitochondrial DNA content in human IUGR placenta. Placenta. 2008;29:1029–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Panten U, Zielman S, Langer J, Zunkler BJ, Lenzen S. Regulation of insulin secretion by energy metabolism in pancreatic β-cell mitochondria. Biochem J. 1984;219:189–96.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Newgard CB, McGarry JD. Metabolic coupling factors in pancreatic β-cell signal transduction. Annu Rev Biochem. 1995;64:689–719.PubMedCrossRefGoogle Scholar
  60. 60.
    Schuit F. Metabolic fate of glucose in purified islet cells. Glucose regulated anaplerosis in β-cells. J Biol Chem. 1997;272:18572–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Mertz RJ, Worley III JF, Spencer B, Johnson JH, Dukes ID. Activation of stimulus-secretion coupling in pancreatic β-cells by specific products of glucose metabolism. J Biol Chem. 1996;271:4838–45.PubMedCrossRefGoogle Scholar
  62. 62.
    Ortsater H, Liss P, Akerman KEO. Contribution of glycolytic and mitochondrial pathways in glucose-induced changes in islet respiration and insulin secretion. Pflugers Arch Eur J Physiol. 2002;444:506–12.CrossRefGoogle Scholar
  63. 63.
    Antinozzi PA, Ishihara H, Newgard CB, Wollheim CB. Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell. A survey of four fuel secretagogues. J Biol Chem. 2002;277:11746–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Malaisse WJ, Hutton JC, Carpinelli AR, Herchuelz A, Senner A. The stimulus-secretion coupling of amino acid-induced insulin release. Metabolism and cationic effects of leucine. Diabetes. 1980;29:431–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Lenzen S, Schmidt W, Rustenbeck I, Panten U. 2-Ketoglutarate generation in pancreatic β-cell mitochondria regulates insulin secretory action of amino acids and 2-keto acids. Biosci Rep. 1986;6:163–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Noda M, Yamashita S, Takahashi N, Eto K, Shen LM, Izumi K, Daniel S, Tsubamoto Y, Nemoto T, Lino M, Kasai H, Sharp GW, Kadowaki T. Switch to anaerobic glucose metabolism with NADH accumulation in the beta-cell model of mitochondrial diabetes. Characteristics of betaHC9 cells deficient in mitochondrial DNA transcription. J Biol Chem. 2002;277:41817–26.PubMedCrossRefGoogle Scholar
  67. 67.
    Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 1996;20:463–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relationship between antioxidant enzyme gene expression and antioxidant defense status of insulin-producing cells. Diabetes. 1997;46:1733–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999;274:27905–13.PubMedCrossRefGoogle Scholar
  70. 70.
    Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose I, Brownlee M, Araki E. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells. Biochem Biophys Res Commun. 2003;300:216–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem. 2002; 277:30010–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Kaneto HH, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of protein kinase C beta 2 in c-myc induction by high glucose in pancreatic beta-cells. J Biol Chem. 2002; 277:3680–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Kaneto H, Xu G, Song KH, Suzuma K, Bonner-Weir S, Sharma A, Weir GC. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J Biol Chem. 2001;276:31099–104.PubMedCrossRefGoogle Scholar
  74. 74.
    Kaneto H, Kajimoto Y, Fujitani Y, Matsuoka T, Sakamoto K, Matsuhisa M, Yamasaki Y, Hori M. Oxidative stress induces p21 expression in pancreatic islet cells: possible implication in beta-cell dysfunction. Diabetologia. 1999;42:1093–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Jonas JC, Laybutt DR, Steil GM, Trivedi N, Pertusa JG, Van de Casteele M, Weir GC, Henquin JC. High glucose stimulates early response gene c-Myc expression in rat pancreatic beta cells. J Biol Chem. 2001;276:35375–81.PubMedCrossRefGoogle Scholar
  76. 76.
    Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R, Bonner-Weir S, Weir GC. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem. 1999;274:14112–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Efanova IB, Zaitsev SV, Zhivotovsky B, Kohler M, Efendic S, Orrenius S, Berggren PO. Glucose and tolbutamide induce apoptosis in pancreatic β-cells. J Biol Chem. 1998;273: 22501–7.CrossRefGoogle Scholar
  78. 78.
    Moran A, Zhang HJ, Olsonm LK, Harmon JS, Poitoust V, Robertson RP. Differentiation of glucose toxicity from β-cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15. J Clin Invest. 2000;99:534–9.CrossRefGoogle Scholar
  79. 79.
    Donath MY, Gross DJ, Cerasi E, Kaiser N. Hyperglycemia-induced β-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes. 1999;48:738–44.PubMedCrossRefGoogle Scholar
  80. 80.
    Silva JP, Kohler M, Graff C, Oldfors A, Magnuson MA, Berggren PO, Larsson NG. Impaired insulin secretion and β-cell loss in tissue specific knockout mice with mitochondrial diabetes. Nat Genet. 2000;26:336–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Simmons RA, Suponitsky-Kroyter I, Selak MA. Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure. J Biol Chem. 2005;280:28785–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Peterside IE, Selak MA, Simmons RA. Impaired oxidative phosphorylation in hepatic mitochondria of growth retarded rats alters glucose metabolism. Am J Physiol. 2003;285: E1258–64.Google Scholar
  83. 83.
    Selak MA, Storey BT, Peterside IE, Simmons RA. Impaired oxidative phosphorylation in skeletal muscle contributes to insulin resistance and hyperglycemia. Am J Physiol. 2003; 285:E130–7.Google Scholar
  84. 84.
    Boyle KE, Newsom SA, Janssen RC, Lappas M, Friedman JE. Skeletal muscle MnSOD, mitochondrial complex II, and SIRT3 enzyme activities are decreased in maternal obesity during human pregnancy and gestational diabetes mellitus. J Clin Endocrinol Metab. 2013;98: E1601–9.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Park HK, Jin CJ, Cho YM, do Park J, Shin CS, Park KS, Kim SY, Cho BY, Lee HK. Changes of mitochondrial DNA content in the male offspring of protein-malnourished rats. Ann N Y Acad Sci. 2004;1011:205–16.PubMedCrossRefGoogle Scholar
  86. 86.
    Park KS, Kim SK, Kim MS, Cho EY, Lee JH, Lee KU, Pak YK, Lee HK. Fetal and early postnatal protein malnutrition cause long-term changes in rat liver and muscle mitochondria. J Nutr. 2003;133:3085–90.PubMedGoogle Scholar
  87. 87.
    van Vliet E, Eixarch E, Illa M, Arbat-Plana A, González-Tendero A, Hogberg HT, Zhao L, Hartung T, Gratacos E. Metabolomics reveals metabolic alterations by intrauterine growth restriction in the fetal rabbit brain. PLoS One. 2013;8:e64545.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350:664–7.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Pediatrics Children’s Hospital PhiladelphiaUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations