Skip to main content

Swimming in Information? Physical Limits to Learning by Quorum Sensing

  • Chapter
  • First Online:
The Physical Basis of Bacterial Quorum Communication

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1339 Accesses

Abstract

Quorum sensing (QS) bacteria use diffusible signals to gather information about their environment. The QS mechanism is clearly well suited for the regulation of bacterial social behaviors, as it permits the detection of the bacterial population density or the presence of other species and it allows the coordination of group response. Here we ask how an individual cell might benefit from using a QS regulatory circuit. This article reviews some of the basic physical problems that limit the ability of an individual cell to learn about its environment through QS. The kinetics of diffusion, noise in gene regulation, and the nonlinearity of signal response all place limits on the amount of information that the cell can gather. While diffusional signaling allows some remarkable collective behaviors, such as tight synchronization of gene regulation even over macroscopic distances, physical constraints clearly limit the individual cell’s ability to learn about its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  Google Scholar 

  2. Boyer M, Wisniewski-Dye F (2009) Cell–cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol Ecol 70:1–19

    Article  Google Scholar 

  3. Dunn AK, Stabb EV (2007) Beyond quorum sensing: the complexities of prokaryotic parliamentary procedures. Anal Bioanal Chem 387:391–398

    Article  Google Scholar 

  4. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  Google Scholar 

  5. Alberghini S, Polone E, Corich V, Carlot M, Seno F, Trovato A, Squartini A (2009) Consequences of relative cellular positioning on quorum sensing and bacterial cell-to-cell communication. FEMS Microbiol Lett 292:149–161

    Article  Google Scholar 

  6. Hense BA, Kuttler C, Mueller J, Rothballer M, Hartmann A, Kreft J (2007) Opinion – does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  Google Scholar 

  7. Platt TG, Fuqua C (2010) What’s in a name? The semantics of quorum sensing. Trends Microbiol 18:383–387

    Article  Google Scholar 

  8. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370

    Article  Google Scholar 

  9. Melke P, Sahlin P, Levchenko A, JÃnsson H (2010) A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput Biol 6:e1000819

    Article  ADS  Google Scholar 

  10. Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed Engl 48:5908–5911

    Article  Google Scholar 

  11. Carnes EC, Lopez DM, Donegan NP, Cheung A, Gresham H, Timmins GS, Brinker CJ (2010) Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol 6:41–45

    Article  Google Scholar 

  12. Hagen S, Son M, Weiss J, Young J (2010) Bacterium in a box: sensing of quorum and environment by the LuxI/LuxR gene regulatory circuit. J Biol Phys 36:317–327

    Article  Google Scholar 

  13. Connell JL, Wessel AK, Parsek MR, Ellington AD, Whiteley M, Shear JB (2010) Probing prokaryotic social behaviors with bacterial “Lobster traps”. MBio 1:e00202-10

    Google Scholar 

  14. Connell JL, Whiteley M, Shear JB (2012) Sociomicrobiology in engineered landscapes. Nat Chem Biol 8:10–13

    Article  Google Scholar 

  15. West SA, Winzer K, Gardner A, Diggle SP (2012) Quorum sensing and the confusion about diffusion. Trends Microbiol 20:586–594

    Article  Google Scholar 

  16. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425

    Article  ADS  Google Scholar 

  17. Langebrake JB (2013) Examples of reaction–diffusion equations in biological systems: marine protected areas and quorum sensing. PhD Dissertation, University of Florida

    Google Scholar 

  18. Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2003) Early development and quorum sensing in bacterial biofilms. J Math Biol 47:23–55

    Article  MathSciNet  MATH  Google Scholar 

  19. Danino T, Mondragon-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463:326–330

    Article  ADS  Google Scholar 

  20. Dilanji GE, Langebrake JB, De Leenheer P, Hagen SJ (2012) Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. J Am Chem Soc 134:5618–5626

    Article  Google Scholar 

  21. Williams JW, Cui X, Levchenko A, Stevens AM (2008) Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops. Mol Syst Biol 4:234

    Article  Google Scholar 

  22. Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20:193–219

    Article  Google Scholar 

  23. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226

    Article  Google Scholar 

  24. Teng S, Wang Y, Tu KC, Long T, Mehta P, Wingreen NS, Bassler B, Ong NP (2010) Measurement of the copy number of the master quorum-sensing regulator of a bacterial cell. Biophys J 98:2024–2031

    Article  Google Scholar 

  25. Cox CD, Peterson GD, Allen MS, Lancaster JM, McCollum JM, Austin D, Yan L, Sayler GS, Simpson ML (2003) Analysis of noise in quorum sensing. OMICS 7:317–334

    Article  Google Scholar 

  26. Weber M, Buceta J (2011) Noise regulation by quorum sensing in low mRNA copy number systems. BMC Syst Biol 5:11

    Article  Google Scholar 

  27. Weber M, Buceta J (2013) Dynamics of the quorum sensing switch: stochastic and non-stationary effects. BMC Syst Biol 7:6

    Article  Google Scholar 

  28. Anetzberger C, Pirch T, Jung K (2009) Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. Mol Microbiol 73:267–277

    Article  Google Scholar 

  29. Long T, Tu KC, Wang Y, Mehta P, Ong NP, Bassler BL, Wingreen NS (2009) Quantifying the integration of quorum-sensing signals with single-cell resolution. PLoS Biol 7:640–649

    Google Scholar 

  30. Pérez PD, Hagen SJ (2010) Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri. PLoS One 5:e15473

    Article  ADS  Google Scholar 

  31. Pérez PD, Weiss JT, Hagen SJ (2011) Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri. BMC Syst Biol 5:153

    Article  Google Scholar 

  32. Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362

    Article  ADS  Google Scholar 

  33. Einolghozati A, Sardari M, Fekri F (2013) Design and analysis of wireless communication systems using diffusion-based molecular communication among bacteria. IEEE Trans Wirel Commun 12:6096–6105

    Article  Google Scholar 

  34. Bialek W (2012) Biophysics: searching for principles. Princeton University Press, Princeton

    Google Scholar 

  35. Waltermann C, Klipp E (2011) Information theory based approaches to cellular signaling. Biochim Biophys Acta 1810:924–932

    Article  Google Scholar 

  36. Phillips R, Kondev J, Theriot J, Garcia H (2012) Physical biology of the cell. Garland Science, New York

    Google Scholar 

  37. Mehta P, Goyal S, Long T, Bassler BL, Wingreen NS (2009) Information processing and signal integration in bacterial quorum sensing. Mol Syst Biol 5:325

    Article  Google Scholar 

  38. Tkacik G, Callan CG Jr, Bialek W (2008) Information flow and optimization in transcriptional regulation. Proc Natl Acad Sci U S A 105:12265–12270

    Article  ADS  Google Scholar 

  39. Collins CH, Arnold FH, Leadbetter JR (2005) Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Mol Microbiol 55:712–723

    Article  Google Scholar 

  40. Kuo A, Blough NV, Dunlap PV (1994) Multiple N-acyl-l-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio-fischeri. J Bacteriol 176:7558–7565

    Google Scholar 

  41. Kuttler C, Hense BA (2008) Interplay of two quorum sensing regulation systems of Vibrio fischeri. J Theor Biol 251:167–180

    Article  MathSciNet  Google Scholar 

  42. Decho AW, Frey RL, Ferry JL (2011) Chemical challenges to bacterial AHL signaling in the environment. Chem Rev 111:86–99

    Article  Google Scholar 

  43. Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185:1485–1491

    Article  Google Scholar 

  44. Teplitski M, Mathesius U, Rumbaugh KP (2011) Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111:100–116

    Article  Google Scholar 

  45. Horswill A, Stoodley P, Stewart P, Parsek M (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387:371–380

    Article  Google Scholar 

  46. Wang Y, Leadbetter JR (2005) Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl Environ Microbiol 71:1291–1299

    Article  Google Scholar 

  47. Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Google Scholar 

  48. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  Google Scholar 

  49. Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    Google Scholar 

  50. Prosser JI (2012) Ecosystem processes and interactions in a morass of diversity. FEMS Microbiol Ecol 81:507–519

    Article  Google Scholar 

  51. Gantner S, Schmid M, Dürr C, Schuhegger R, Steidle A, Hutzler P, Langebartels C, Eberl L, Hartmann A, Dazzo FB (2006) In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194

    Article  Google Scholar 

  52. Flickinger ST, Copeland MF, Downes EM, Braasch AT, Tuson HH, Eun Y, Weibel DB (2011) Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. J Am Chem Soc 133:5966–5975

    Article  Google Scholar 

  53. Alon U (2007) An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC, London

    Google Scholar 

  54. Gregor T, Tank DW, Wieschaus EF, Bialek W (2007) Probing the limits to positional information. Cell 130:153–164

    Article  Google Scholar 

  55. Marketon MM, Gronquist MR, Eberhard A, González JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184:5686–5695

    Article  Google Scholar 

  56. Teplitski M, Eberhard A, Gronquist MR, Gao M, Robinson JB, Bauer WD (2003) Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Arch Microbiol 180:494–497

    Article  Google Scholar 

  57. Charoenpanich P, Meyer S, Becker A, McIntosh M (2013) Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J Bacteriol 195(14):3224–3236

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an award from the National Science Foundation, MCB 0347124. The author also gratefully acknowledges current and former members and associates of the laboratory, including Patrick De Leenheer, Gabriel Dilanji, Minjun Son, Jessica Langebrake, Rupika Madhavan, Lauren McLeod, Pablo Pérez, Max Teplitski, and Joel Weiss.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Hagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hagen, S.J. (2015). Swimming in Information? Physical Limits to Learning by Quorum Sensing. In: Hagen, S. (eds) The Physical Basis of Bacterial Quorum Communication. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1402-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1402-9_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1401-2

  • Online ISBN: 978-1-4939-1402-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics