Skip to main content

Nanosizing: “End-to-End” Formulation Strategy for Poorly Water-Soluble Molecules

  • Chapter
  • First Online:
Discovering and Developing Molecules with Optimal Drug-Like Properties

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 15))

Abstract

The number of poorly water-soluble compounds in pharmaceutical research and development pipelines has steadily increased over the years. These compounds have historically been difficult to develop requiring high concentrations of solvents/co-solvents and exhibiting poor pharmacokinetic properties. In response to this unmet need, a variety of niche technologies have been explored and developed. This chapter reviews one of the more versatile “end-to-end” formulation approaches for poorly soluble compounds, i.e., nanosizing or nanonization. The approach is broadly applicable for parenteral and non-parenteral dosage forms and has been commercially validated with the launch of products such as Rapamune®, Emend®, TriCor® 145, Triglide®, Megace ES®, Invega® Sustenna®, Abraxane®, and Juvedical®.

The terms nanosuspension, nanocrystalline drug particles, nanoparticles, and nanosized formulation are used interchangeably throughout this chapter when referring to a dosage form wherein the active pharmaceutical ingredient (API) has a mean particle size less than one micron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Atkinson TJ, Fudin J, Jahn HL, Kubotera N, Rennick AL, Rhorer M (2013) What’s new in NSAID pharmacotherapy: oral agents to injectables. Pain Med 14:S11–S17

    Article  PubMed  Google Scholar 

  • Auweter AV, Horn D, Luddecke E (1998) The function of gelatin in controlled precipitation processes of nanosize particles. J Disp Sci Tech 19:163–168

    Article  CAS  Google Scholar 

  • Baert L, van’t Klooster G, Dries W, Francois M, Wouters A, Basstanie E, Iterbeke K, Strappers F, Stevens P, Schueller L, van Remoortere P (2009) Development of a long-acting injectable formulation with nano particles of rilpirivine (TMC278) for HIV treatment. Eur J Pharm Biopharm 72:502–508

    Article  PubMed  CAS  Google Scholar 

  • Beirowski J, Inghelbrecht S, Arien A, Gieseler H (2011a) Freeze drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution. J Pharm Sci 100:1958–1968

    Article  PubMed  CAS  Google Scholar 

  • Beirowski J, Inghelbrecht S, Arien A, Gieseler H (2011b) Freeze-drying of nanosuspensions, part 3: investigation of factors compromising storage stability of highly concentrated drug nano suspensions. J Pharm Sci 101:354–362

    Article  PubMed  Google Scholar 

  • Benet LZ (2013) The Role of BCS (biopharmaceutics classification system) & BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci 102(1):34–42

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bosch HW, Marcera DM, Mueller RI, Swanson JR, Mishra DS (1996) Process for preparing therapeutic compositions containing nanoparticles. US Patent 5,510,118, 23 Apr 1996

    Google Scholar 

  • Bosch HW, Cooper ER, McGurk SL (2002) Bioadhesive nanoparticulate compositions having cationic surface stabilizers. USA Patent 6,428,814, 6 Aug 2002

    Google Scholar 

  • Brewster M, Swinney K, Herman J, Arien T, Verreck G, Li B, Vanhoutte F, Stokbroekx S, Van den Mooter G, Van Gelder J (2012) Use of a down scaled multiplexed mill to assess the effect of milling time on itraconazole nanosuspensions. American Association of Pharmaceutical Science, Chicago, IL

    Google Scholar 

  • Carver P, Fleisher D, Zhou SY, Kaul D, Kazanjiian P, Cheng L (1999) Meal composition effects on the oral bioavailability of indinavir in HIV-infected patients. Pharm Res 16:718–724

    Article  PubMed  CAS  Google Scholar 

  • Chan HK, Kwok PCL (2011) Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv 63:406–416

    Article  CAS  Google Scholar 

  • Chan CP-Y, Bruemmel Y, Seydack M, Sin K-K, Wong L-W, Merisko-Liversidge E, Trau D, Renneberg R (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76:3638–3645

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Khemtong X, Chang X, Gao J (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 16:354–360

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Zaki AA, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cooper ER, Bullock JA, Chippari JR, Schaefer JL, Patel RA, Jain R, Straster J, Ryde N (2010) US Patent 7,695,739, 13 Apr 2010

    Google Scholar 

  • Crisp MT, Tucker CJ, Rogers TL, Williams RO III, Johnston KP (2007) Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals. J Control Release 117:351–359

    Article  PubMed  CAS  Google Scholar 

  • Cunningham J, Liversidge E, Cooper ER, Liversidge GG (2004) Milling microgram quantities of nanoparticulate candidate compounds. US Patent Application Publications No.2044/0173696

    Google Scholar 

  • Czekai DA, Seaman LP (1999) Method of grinding pharmaceutical substances. US Patent No. 5,862,999, 26 Jan 1999

    Google Scholar 

  • D’Addio SM, Prud’homme RK (2011) Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev 53:417–426

    Article  Google Scholar 

  • Dai W (2012) Why amorphous nanoparticles. American Association of Pharmaceutical Sciences, Chicago, IL, 2012

    Google Scholar 

  • De Garavilla L, Peltier N, Merisko-Liversidge E (1996) Controlling the acute hemodynamic effects associated with IV administration of particulate drug dispersions in dogs. Drug Dev Res 37:86–96

    Article  Google Scholar 

  • Deschamps B, Musaji N, Gillespie JA (2009) Food effect on the bioavailability of two distinct formulations of megesterol acetate oral suspension. Int J Nanomedicine 4:185–192

    PubMed  CAS  PubMed Central  Google Scholar 

  • Di L, Fish PV, Mano T (2012) Bridging solubility between drug discovery and development. Drug Discov Today 17(9/10):486–495

    Article  PubMed  CAS  Google Scholar 

  • Douroumis D, Fahr A (2013) Drug delivery strategies for poorly water-soluble drugs. Wiley, New York, NY

    Google Scholar 

  • Dufort S, Sancey L, Coll J-L (2012) Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Deliv Rev 64:179–189

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann K, Gauthier MA, Leroux J-C (2014) Targeting of injectable drug nanocrystals. Mol Pharm 11:1762–1771. doi:10.1021/mp5001247

    Article  PubMed  CAS  Google Scholar 

  • Galli C (2006) Experimental determination of the diffusion boundary layer width of micron and sub micron particles. Int J Pharm 313:114–122

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Liu G, Wang X, Zhou L, Li X, Wang F (2013) Application of drug nanocrystal technologies on drug delivery of poorly soluble drugs. Pharm Res 30:307–324

    Article  PubMed  CAS  Google Scholar 

  • George M, Ghosh I (2013) Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQA) of nanosuspension formulation prepared by wet media technology. Eur J Pharm Sci 48:142–152

    Article  PubMed  CAS  Google Scholar 

  • Gopal S, Gassmann-Mayer C, Palumbo J, Samtani MN, Shiwach R, Alphs L (2010) Practical guidance for dosing and switching paliperidone palmitate treatment in patients with schizophrenia. Curr Med Res Opin 26:377–387

    Article  PubMed  CAS  Google Scholar 

  • Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–885

    Article  PubMed  CAS  Google Scholar 

  • Higgins JP, Arrivo SM, Thurau G, Green RL, Bowen W, Lange A, Templeton AC, Thomas DL, Reed RA (2003) Spectroscopic approach for on-line monitoring of particle size during the processing of pharmaceutical nanoparticles. Anal Chem 75:1777–1785

    Article  PubMed  CAS  Google Scholar 

  • Higuchi WI, Hiestand EN (1963) Dissolution rates of finely divided drug powders.1. Effect of a distribution of particle sizes in a diffusion-controlled process. J Pharm Sci 52:67–71

    Article  PubMed  CAS  Google Scholar 

  • Huh D, Torisawa Y, Kim HJ, Ingber DE (2012) Mircoengineered physiological biomimicry: organs-on-a chip. Lab Chip 12:2156–2164

    Article  PubMed  CAS  Google Scholar 

  • Ige PP, Baria RK, Gattani SG (2013) Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf B Biointerfaces 108:366–373

    Article  PubMed  CAS  Google Scholar 

  • Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, Toguchi H, Liversidge GG (2006) Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in Beagle dogs. J Control Release 111:56–64

    Article  PubMed  CAS  Google Scholar 

  • Juhnke M, Berghausen J, Timpe C (2010) Accelerated formulation development for nano milled active pharmaceutical ingredients using a screening approach. Chem Eng Technol 33:1412–1418

    Article  CAS  Google Scholar 

  • Juhnke M, Martin D, John E (2012) Generation of wear during the production of drug nano suspensions by wet media milling. Eur J Pharm Biopharm 81:214–222

    Article  PubMed  CAS  Google Scholar 

  • Junemann D, Dressman J (2012) Analytical methods for dissolution testing of nanosized drugs. J Pharm Pharmacol 64:931–943

    Article  PubMed  Google Scholar 

  • Junghanns J-UAH, Muller RH (2008) Nanocrystal technology. Drug delivery and clinical applications. Int J Nanomedicine 3:295–309

    PubMed  CAS  PubMed Central  Google Scholar 

  • Keck CM, Muller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm 62:3–16

    Article  PubMed  CAS  Google Scholar 

  • Keck CM, Muller RH (2008) Size analysis of submicron particles by laser diffractometry-90 % of the published measurements are false. Int J Pharm 366:150–163

    Article  Google Scholar 

  • Keck C, Chen R, Muller R (2013) SmartCrystals for consumer care & cosmetics: enhanced dermal delivery of poorly soluble plant actives. H&PC Today 8:18–24

    Google Scholar 

  • Kesisoglou F, Panmai S, Wu Y (2007a) Nanosizing-oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 59:631–644

    Article  PubMed  CAS  Google Scholar 

  • Kesisoglou F, Panmai S, Wu Y (2007b) Application of nanoparticles in oral delivery of immediate release formulations. Curr Nanoscience 3:183–190

    Article  CAS  Google Scholar 

  • Knieke C, Steinborn C, Romeis S, Peukert W, Breitung-Faes S, Kwade A (2010) Nanoparticle production with stirred-media mills: opportunities and limits. Chem Eng Technol 33:1401–1411

    Article  CAS  Google Scholar 

  • Kolakovic R, Viitala T, Ihalainen P, Genina G, Peltonen J, Sandler N (2013) Printing technologies in fabrication of drug delivery systems. Expert Opin Drug Deliv 10:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Kraft WK, Steiger B, Beussink D, Quiring JN, Fitzgerald N, Greenberg MD, Waldman SA (2004) The pharmacokinetics of nebulized nanocrystal budesonide in healthy volunteers. J Clin Pharmacol 44:67–72

    Article  PubMed  CAS  Google Scholar 

  • Krishnaiah YSR (2010) Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble compounds. J Bioeq Bioavail 2:28–36

    CAS  Google Scholar 

  • Langer ES (2013) Seeking innovation to solve persistent problems. Pharmaceut Manuf 12:8–1479

    Google Scholar 

  • Lipinski CA (2002) Poor aqueous solubility: an industry wide problem C in drug discovery. Am Pharm Rev 5:82–85

    Google Scholar 

  • Lipper RA (1999) E Pluribus product. Mod Drug Discov 2:55–60

    Google Scholar 

  • Liu P, Wulf D, Laru J, Heikkila T, van Veen B, Kiesvaara J, Hirvonrn J, Peltonen L, Laaksonen T (2013) Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech 14:748–756

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liversidge GG, Cundy KC (1995) Particle size reduction for the improvement of oral bioavailability of hydrophobic drugs: 1. Absolute bioavailability of nano crystalline danazol in Beagle dogs. Int J Pharm 125:91–97

    Article  CAS  Google Scholar 

  • Liversidge E, Wei L (2007) Stabilization of chemical compounds using nano particulate formulations. US Patent Application 2007/0224279 A1. 27 Sept 2007

    Google Scholar 

  • Liversidge GG, Cundy KC, Bishop JF, Czekai DA (1992) Surface modified drug nano particles. US Patent 5,145,684, 8 Sept 1992

    Google Scholar 

  • Liversidge GG, Phillips CP, Cundy KC (1994) Method to reduce particle size growth during lyophilization. US Patent 5,302,401, 12 Apr 1994

    Google Scholar 

  • Mende S, Schwedes J (2006) Mechanical production and stabilization of nano particles by wet comminution in stirred media mills. Powder Handl 18:366–373

    CAS  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 63(1):427–440

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge E, Sarpotdar P, Bruno J, Hajj S, Wei L, Peltier N, Rake J, Shaw MJ, Pugh L, Polin L, Jones J, Corbett T, Cooper ER, Liversidge GG (1996) Formulation and antitumor activity of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res 13:272–278

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly water soluble compounds. Eur J Pharm Sci 18:113–120

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Andresen TL (2012) Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 52:481–503

    Article  PubMed  CAS  Google Scholar 

  • Monopoli M, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  PubMed  CAS  Google Scholar 

  • Moschwitzer J, Muller RH (2006) Spray coated pellets as a carrier system for mucoadhesive drug nano crystals. Eur J Pharm Biopharm 62:282–287

    Article  PubMed  Google Scholar 

  • Mouton JW, Van Peer A, deBeule K, Vliet V, Donnelly JP, Soons PA (2006) Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy subjects after single and multiple doses of a novel formulation. Antimicrob Agents Chemother 50:4096–4102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muller RH, Moschwitzer J, Bushrab FN (2006) Manufacturing of nanoparticles by milling and homogenization techniques. In: Gupta RB, Kompella UB (eds) Nanoparticle technology for drug delivery, drugs and the pharmaceutical sciences, vol 159. Taylor & Francis Group, LLC, New York, NY, pp 21–51

    Google Scholar 

  • Muller RH, Gohla S, Keck CM (2011) State of the art of nanocrystals—special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78:1–9

    Article  PubMed  Google Scholar 

  • Na GC, Stevens HJ, Yuan BO, Rajagopalan N (1999) Physical stability of ethyl diatrizoate nanocrystalline suspension in steam sterilization. Pharm Res 16:569–574

    Article  PubMed  CAS  Google Scholar 

  • Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to the submicrometer size ranges. Adv Powder Tech 2:1–19

    Article  Google Scholar 

  • Narang AS, Chang R-K, Hussain MA (2013) Pharmaceutical development and regulatory considerations for nanoparticles and nano particulate drug delivery systems. J Pharm Sci 102:3867–3882. doi:10.1002/jps.23691

    Article  PubMed  CAS  Google Scholar 

  • Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  • Oliver I, Shelukar S, Thompson KC (2007) Nanomedicines in the treatment of emesis during chemotherapy: focus on aprepitant. Int J Nanomedicine 2:12–18

    Google Scholar 

  • Patel JD, Krilov L, Adams S, Aghajanian C, Basch E, Brose MS, Carroll WL, deLima M, Gilbert MR, Kris MG, Marshall JL, Masters GA, O’Day SJ, Polite B, Schwartz GK, Sharma S, Thompson I, Vogelzang NJ, Roth BJ (2014) Clicical cancer advances 2013: annual report on the progress against cancer from the American society of clinical oncology. J Clin Oncol 32:129–161

    Article  PubMed  CAS  Google Scholar 

  • Pathak P, Meziani MJ, Sun Y-P (2005) Supercritical fluid technology for enhanced drug delivery. Expert Opin Drug Deliv 2:747–761

    Article  PubMed  CAS  Google Scholar 

  • Peltonen L, Hirvonen J (2010) Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol 62:1569–1579

    Article  PubMed  CAS  Google Scholar 

  • Quinn K, Gullapalli RP, Merisko-Liversidge E, Goldbach E, Wong A, Liversidge GG, Hoffman J-M, Bullock J, Tonn G (2012) A formulation strategy for gamma secretase inhibitor ELN006, a BCS Class II compound: development of a nanosuspension formulation with improved oral bioavailability and reduced food effects in dogs. J Pharm Sci 101:1462–1474

    Article  PubMed  CAS  Google Scholar 

  • Rabinow BE (2004) Nanosuspension drug delivery. Nat Rev Drug Deliv 3:785–796

    Article  CAS  Google Scholar 

  • Rosenflanz HZ, Barnes AS, Wallace JT (2011) Micro-Milling Media. Ceramin Industry. www.3M.com/zgc

  • Ruddy SB, McGurk SL, Patel R, Bullock J, Kewalramani R (2010) Drug delivery compositions. US Patent Application Publications No. 2010/0260858 A1, 14 Oct 2010

    Google Scholar 

  • Sauron R (2006) Absence of a food effect with a 145 mg nanoparticulate fenofibrate tablet formulation. Int J Clin Pharmcol Ther 44:64–70

    Article  CAS  Google Scholar 

  • Shefter E, Higuchi WI (1963) Dissolution rates of finely divided drug powders. 2. Micronized methylprednisolone. J Pharm Sci 52:162–164

    Article  Google Scholar 

  • Shen LJ, Wu F-L (2007) Nanomedicines in renal transplant rejection—focus on sirolimus. Int J Nanomedicine 2:25–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spreen W, Williams P, Margolis D, Ford S, Crauwels H, Lou Y, Gould E, Stevens M, Piscitelli S (2013) First study of repeat dose co-administration of GSK1265744 and TMC278 long-acting parenteral nano suspensions: pharmacokinetics, safety, and tolerability in healthy adults. 7th IAS Conference on HIV Pathogenesis, Treatment and Prevention, 30 June–3 July, 2013, Kuala Lumpur, Malaysia

    Google Scholar 

  • Stegemann S, Leveiller F, Franchi D, DeJong H, Linden H (2012) When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci 31(5):249–261

    Article  Google Scholar 

  • Timpe C (2010) Drug solubilization strategies applying nano particulate formulation and solid dispersion approaches in drug development. Pharm Rev 13:12–21

    CAS  Google Scholar 

  • Tinke AP, Govoreanu R, Vanhoutte K (2006) Particle size and shape characterization of nano and submicron liquid dispersions. Am Pharmaceut Rev 9:33–37

    CAS  Google Scholar 

  • Tziomalos K, Athyros VG (2006) Fenofibrate: a novel formulation (Triglide™) in the treatment of lipid disorders: a review. Int J Nanomedicine 1:129–147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Eerdenburgh B, Van den Moorter G, Augustijins P (2008) Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 364:64–75

    Article  Google Scholar 

  • Van Eerdenburgh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Van den Mooter G, Augustijins P (2010) Solubility increases associated with crystalline drug nanoparticles: methodologies and significance. Mol Pharm 7:1858–1870

    Article  Google Scholar 

  • Verloes R, van’t Klooster G, Baert L, van Velsen F, Bouche M-P, Spittaels K, Leempoels J, Williams P, Kraus G, Wigerinck P (2008) TMC 278 long acting—a parenteral nanosuspension formulation that provides sustained clinically relevant plasma concentrations in HIV-negative volunteers. Paper presented at XVIIth international AIDS conference, Mexico City, Mexico, 3–8 Aug 2088

    Google Scholar 

  • Wang L, Li M, Zhang N (2012) Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy. Int J Nanomedicine 7:3281–3294

    PubMed  CAS  PubMed Central  Google Scholar 

  • Waring MJ (2010) Lipophilicity in drug discovery. Expert Opin Drug Discov 5(3):235–248

    Article  PubMed  CAS  Google Scholar 

  • Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65(1):315–499

    Article  PubMed  Google Scholar 

  • Wu W, Nancollas GN (1998) A new understanding of the relationship between solubility and particle size. J Solution Chem 27:521–531

    Article  CAS  Google Scholar 

  • Wu Y, Loper E, Landis E, Hettrick L, Novak L, Lynn K, Chen C, Thompson K (2004) The role of biopharmaceutics in the development of a clinical nano particle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm 285:135–146

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Levy-Nissenbaum E, Alexis F, Luptak A, Teply BA, Chan JM, Shi J, Digga E, Cheng J, Langer R, Farokhzad OC (2012) Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell uptake selection. ACS Nano 6:696–704

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yalkowsky SH, Krzyzaniak JF, Ward GH (1998) Formulation-related problems associated with intravenous drug delivery. J Pharm Sci 87:787–796

    Article  PubMed  CAS  Google Scholar 

  • Zhang JY, Bosch HW (1997) Sterile filtration of NanoCrystal drug formulations. Drug Dev Ind Pharm 23:1087–1093

    Article  Google Scholar 

Download references

Acknowledgements

Special acknowledgement is given to Gary G. Liversidge, Ph.D. for his many contributions to NanoCrystal technology and its applications and for his invaluable encouragement and input in writing this chapter. In addition, I thank Tarek Zeidan, Ph.D., Chris Hencken, Ph.D., Jules Remenar, Ph.D., Fidelma Callahan, Eva Stroymowski, and Amy Trevvett for their critical reviews, to all past colleagues of Nanosystems LLC, and Elan Drug Technologies, and to the current management of Alkermes for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Merisko-Liversidge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Merisko-Liversidge, E. (2015). Nanosizing: “End-to-End” Formulation Strategy for Poorly Water-Soluble Molecules. In: Templeton, A., Byrn, S., Haskell, R., Prisinzano, T. (eds) Discovering and Developing Molecules with Optimal Drug-Like Properties. AAPS Advances in the Pharmaceutical Sciences Series, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1399-2_13

Download citation

Publish with us

Policies and ethics