Skip to main content

Performance and Characterization of Amorphous Solid Dispersions: An Overview

  • Chapter
  • First Online:
Discovering and Developing Molecules with Optimal Drug-Like Properties

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 15))

Abstract

In recent years the use of amorphous active pharmaceutical ingredients (API), adequately stabilized in a solid oral formulation, has attracted significant attention due to poor solubility of the crystalline forms of drug substances which often leads to inadequate bioavailability. These amorphous formulations, typically known as solid dispersions, exhibit higher solubility and dissolution rates than formulations prepared using the crystalline form of the API and hence can achieve higher bioavailability. However, since the amorphous form is inherently thermodynamically unstable as compared to the crystalline form, development of amorphous formulations also present unique challenges such as risk of crystallization of the API in the dosage form or during dissolution. In this chapter, we provide an overview of the oral drug absorption process, the formulation and physiological factors impacting drug absorption and the use of dimensionless numbers and absorption modeling in formulation selection. We provide an in-depth description of the concepts of supersaturation, crystallization, and speciation during dissolution, and their effect on product performance. Finally, solid-state failure modes such as crystallization and amorphous–amorphous phase separation in the dosage form are described along with techniques used to measure solid-state stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbou Oucherif K, Raina S, Taylor LS, Litster JD (2013) Quantitative analysis of the inhibitory effect of HPMC on felodipine crystallization kinetics using population balance modeling. CrystEngComm 15:2197–2205

    Article  CAS  Google Scholar 

  • Agoram B, Woltosz WS, Bolger MB (2001) Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev 50:S41–S67

    Article  PubMed  CAS  Google Scholar 

  • Aisha AFA, Ismail Z, Abu-Salah KM, Majid AMSA (2012) Solid dispersions of α-mangostin improve its aqueous solubility through self-assembly of nanomicelles. J Pharm Sci 101:815–825

    Article  PubMed  CAS  Google Scholar 

  • Albers J, Alles R, Matthée K, Knop K, Nahrup JS, Kleinebudde P (2009) Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion. Eur J Pharm Biopharm 71:387–394

    Article  PubMed  CAS  Google Scholar 

  • Alie J, Menegotto J, Cardon P, Duplaa H, Caron A, Lacabanne C, Bauer M (2004) Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance. J Pharm Sci 93:218–233

    Article  PubMed  CAS  Google Scholar 

  • Alonzo D, Zhang GZ, Zhou D, Gao Y, Taylor L (2010) Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res 27:608–618

    Article  PubMed  CAS  Google Scholar 

  • Alonzo DE, Gao Y, Zhou D, Mo H, Zhang GG, Taylor LS (2011) Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci 100:3316–3331

    Article  PubMed  CAS  Google Scholar 

  • Alonzo DE, Raina S, Zhou D, Gao Y, Zhang GGZ, Taylor LS (2012) Characterizing the impact of hydroxypropyl methyl cellulose on the growth and nucleation kinetics of felodipine from supersaturated solutions. Cryst Growth Des 12:1538–1547

    Article  CAS  Google Scholar 

  • Anwar J, Boateng PK, Tamaki R, Odedra S (2009) Mode of action and design rules for additives that modulate crystal nucleation. Angew Chem Int Ed 48:1596–1600

    Article  CAS  Google Scholar 

  • Aso Y, Yoshioka S et al (2000) Relationship between the crystallization rates of amorphous nifedipine, phenobarbital, and flopropione, and their molecular mobility as measured by their enthalpy relaxation and H-1 NMR relaxation times. J Pharm Sci 89(3):408–416

    Article  PubMed  CAS  Google Scholar 

  • Aso Y, Yoshioka S et al (2001) Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by C-13 nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature. J Pharm Sci 90(6):798–806

    Article  PubMed  CAS  Google Scholar 

  • Aso Y, Yoshioka S, Kojima S (2004) Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. J Pharm Sci 93:384–391

    Article  PubMed  CAS  Google Scholar 

  • Aungst BJ (2000) Intestinal permeation enhancers. J Pharm Sci 89:429–442

    Article  PubMed  CAS  Google Scholar 

  • Aungst BJ (2012) Absorption enhancers: applications and advances. AAPS J 14:10–18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Avdeef A (2001) Physicochemical profiling (solubility, permeability, charge state). Curr Top Med Chem 1:277–354

    Article  PubMed  CAS  Google Scholar 

  • Baird JA, Van Eerdenbrugh B, Taylor LS (2010) A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99:3787–3806

    Article  PubMed  CAS  Google Scholar 

  • Benet LZ, Wu CY (2006) Using a biopharmaceutics drug disposition classification system to predict bioavailability and elimination characteristics of new molecular entities. North Jersey Drug Metabolism Discussion Group, Somerset, NJ

    Google Scholar 

  • Berendt RT, Sperger DM, Isbester PK, Munson EJ (2006) Solid-state NMR spectroscopy in pharmaceutical research and analysis. Trends Anal Chem 25:977–984

    Article  CAS  Google Scholar 

  • Bhardwaj SP, Suryanarayanan R (2011) Subtraction of DC conductivity and annealing: approaches to identify Johari-Goldstein relaxation in amorphous trehalose. Mol Pharm 8:1416–1422

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj SP, Suryanarayanan R (2012a) Molecular mobility as an effective predictor of the physical stability of amorphous trehalose. Mol Pharm 9:3209–3217

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj SP, Suryanarayanan R (2012b) Use of dielectric spectroscopy to monitor molecular mobility in glassy and supercooled trehalose. J Phys Chem B 116:11728–11736

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas S-D, Suryanarayanan R (2013) Correlation between molecular mobility and physical stability of amorphous itraconazole. Mol Pharm 10:694–700

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya S, Suryanarayanan R (2009) Local mobility in amorphous pharmaceuticals—characterization and implications on stability. J Pharm Sci 98:2935–2953

    Article  PubMed  CAS  Google Scholar 

  • Bhugra C, Pikal MJ (2008) Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci 97:1329–1349

    Article  PubMed  CAS  Google Scholar 

  • Bhugra C, Shmeis R, Krill SL, Pikal MJ (2006) Predictions of onset of crystallization from experimental relaxation times I-correlation of molecular mobility from temperatures above the glass transition to temperatures below the glass transition. Pharm Res 23:2277–2290

    Article  PubMed  CAS  Google Scholar 

  • Bhugra C, Rambhatla S, Bakri A, Duddu SP, Miller DP, Pikal MJ, Lechuga-Ballesteros D (2007) Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility. J Pharm Sci 96:1258–1269

    Article  PubMed  CAS  Google Scholar 

  • Bhugra C, Shmeis R, Krill SL, Pikal MJ (2008a) Different measures of molecular mobility: comparison between calorimetric and thermally stimulated current relaxation times below T-G and correlation with dielectric relaxation times above T-G. J Pharm Sci 97:4498–4515

    Article  PubMed  CAS  Google Scholar 

  • Bhugra C, Shmeis R, Krill SL, Pikal MJ (2008b) Prediction of onset of crystallization from experimental relaxation times. II. Comparison between predicted and experimental onset times. J Pharm Sci 97:455–472

    Article  PubMed  CAS  Google Scholar 

  • Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, Burton EA, Wong B, Tsang G, West BL, Powell B, Shellooe R, Marimuthu A, Nguyen H, Zhang KYJ, Artis DR, Schlessinger J, Su F, Higgins B, Iyer R, D’Andrea K, Koehler A, Stumm M, Lin PS, Lee RJ, Grippo J, Puzanov I, Kim KB, Ribas A, Mcarthur GA, Sosman JA, Chapman PB, Flaherty KT, Xu X, Nathanson KL, Nolop K (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brick MC, Palmer HJ, Whitesides TH (2003) Formation of colloidal dispersions of organic materials in aqueous media by solvent shifting. Langmuir 19:6367–6380

    Article  CAS  Google Scholar 

  • Brouwers J, Brewster ME, Augustijns P (2009) Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci 98:2549–2572

    Article  PubMed  CAS  Google Scholar 

  • Brunacci A, Pedemonte E, Cowie JMG, Mcewen IJ (1994) The thermodynamics of mixing of polystyrene and poly(alpha-methylstyrene) from a calorimetric viewpoint. Polymer 35:2893–2896

    Article  CAS  Google Scholar 

  • Camenisch G, Alsenz J, Van De Waterbeemd H, Folkers G (1998) Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci 6:313–319

    Article  CAS  Google Scholar 

  • Caron V, Bhugra C, Pikal MJ (2010) Prediction of onset of crystallization in amorphous pharmaceutical systems: phenobarbital, nifedipine/PVP, and phenobarbital/PVP. J Pharm Sci 99:3887–3900

    PubMed  CAS  Google Scholar 

  • Carpenter J, Katayama D, Liu L, Chonkaew W, Menard K (2009) Measurement of T-G in lyophilized protein and protein excipient mixtures by dynamic mechanical analysis. J Ther Anal Calorim 95:881–884

    Article  CAS  Google Scholar 

  • Cerdeira M, Candal RJ, Herrera ML (2004) Analytical techniques for nucleation studies in lipids: advantages and disadvantages. J Food Sci 69:R185–R191

    Article  CAS  Google Scholar 

  • Correia NT, Alvarez C, Ramos JJM, Descamps M (2001) The beta-alpha branching in D-sorbitol as studied by thermally stimulated depolarization currents (TSDC). J Phys Chem B 105:5663–5669

    Article  CAS  Google Scholar 

  • Corrigan OI (1985) Mechanisms of dissolution of fast release solid dispersions. Drug Dev Ind Pharm 11:697–724

    Article  CAS  Google Scholar 

  • Craig DQM (2002) The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 231:131–144

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg C, Millqvist-Fureby A, Schuleit M (2008) Surface composition and contact angle relationships for differently prepared solid dispersions. Eur J Pharm Biopharm 70:478–485

    Article  PubMed  CAS  Google Scholar 

  • Dai W-G, Dong LC, Shi X, Nguyen J, Evans J, Xu Y, Creasey AA (2007) Evaluation of drug precipitation of solubility-enhancing liquid formulations using milligram quantities of a new molecular entity (NME). J Pharm Sci 96:2957–2969

    Article  PubMed  CAS  Google Scholar 

  • Dantuluri AKR, Amin A, Puri V, Bansal AK (2011) Role of alpha-relaxation on crystallization of amorphous celecoxib above T-G probed by dielectric spectroscopy. Mol Pharm 8:814–822

    Article  PubMed  CAS  Google Scholar 

  • Douroumis D, Fahr A (2007) Stable carbamazepine colloidal systems using the cosolvent technique. Eur J Pharm Sci 30:367–374

    Article  PubMed  CAS  Google Scholar 

  • Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200–13212

    Article  CAS  Google Scholar 

  • Engers D, Teng J, Jimenez-Novoa J, Gent P, Hossack S, Campbell C, Ivanisevic I, Templeton A, Byrn S, Newman AW (2008) Screening and animal bioavailability studies on itraconazole amorphous dispersions. AAPS Annual Meeting, Atlanta, GA

    Google Scholar 

  • Erdemir D, Lee AY, Myerson AS (2009) Nucleation of crystals from solution: classical and two-step models. Acc Chem Res 42:621–629

    Article  PubMed  CAS  Google Scholar 

  • Faldt P, Bergenstahl B, Carlsson G (1993) The surface coverage of fat on food powders analyzed by ESCA (electron-spectroscopy for chemical-analysis). Food Struct 12:225–234

    Google Scholar 

  • Feldman YD, Zuev YF, Polygalov EA, Fedotov VD (1992) Time domain dielectric-spectroscopy—a new effective tool for physical-chemistry investigation. Colloid Polym Sci 270:768–780

    Article  CAS  Google Scholar 

  • Femi-Oyewo MN, Spring MS (1994) Studies on paracetamol crystals produced by growth in aqueous solutions. Int J Pharm 112:17–28

    Article  CAS  Google Scholar 

  • Fincher JH (1968) Particle size of drugs and its relationship to absorption and activity. J Pharm Sci 57:1825–1835

    Article  PubMed  CAS  Google Scholar 

  • Fisher JC, Hollomon JH, Turnbull D (1949) Rate of nucleation of solid particles in a subcooled liquid. Science 109:168–169

    Article  PubMed  CAS  Google Scholar 

  • Fleisher D, Li C, Zhou Y, Pao LH, Karim A (1999) Drug, meal and formulation interactions influencing drug absorption after oral administration—clinical implications. Clin Pharmacokinet 36:233–254

    Article  PubMed  CAS  Google Scholar 

  • Frank KJ, Westedt U, Rosenblatt KM, Holig P, Rosenberg J, Magerlein M, Fricker G, Brandl M (2012) The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility. Int J Nanomedicine 7:5757–5768

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frenkel YV, Clark AD, Das K, Wang Y-H, Lewi PJ, Janssen PAJ, Arnold E (2005) Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J Med Chem 48:1974–1983

    Article  PubMed  CAS  Google Scholar 

  • Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS (2008) Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm 5:1003–1019

    Article  PubMed  CAS  Google Scholar 

  • Galop M, Collins GL (2001) Thermally stimulated currents observed in pharmaceutical products. Thermochim Acta 367:37–41

    Article  Google Scholar 

  • Gao P, Akrami A, Alvarez F, Hu J, Li L, Ma C, Surapaneni S (2009) Characterization and optimization of AMG 517 supersaturatable self-emulsifying drug delivery system (S-SEDDS) for improved oral absorption. J Pharm Sci 98:516–528

    Article  PubMed  CAS  Google Scholar 

  • Garside JEA et al (2002) Measurement of crystal growth and nucleation rates. Icheme, Rugby, UK

    Google Scholar 

  • Ghodbane J, Denoyel R (1997) Competitive adsorption between non-ionic polymers and surfactants on silica. Colloids Surf A Physicochem Eng Asp 127:97–104

    Article  CAS  Google Scholar 

  • Goldberg M, Gomez-Orellana I (2003) Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov 2:289–295

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AH, Gibaldi M, Kanig JL (1966) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III: experimental evaluation of griseofulvin—succinic acid solid solution. J Pharm Sci 55:487–492

    Article  CAS  Google Scholar 

  • Greco S, Authelin J-R, Leveder C, Segalini A (2012) A practical method to predict physical stability of amorphous solid dispersions. Pharm Res 29:2792–2805

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Kakumanu VK, Bansal AK (2004) Stability and solubility of celecoxib-PVP amorphous dispersions: a molecular perspective. Pharm Res 21:1762–1769

    Article  PubMed  CAS  Google Scholar 

  • Gutzow I, Schmelzer J (eds) (1995) The vitreous state: thermodynamics, structure, rheology, and Crystallization and crystallization. Springer, Berlin, Gmbh & Co. Kg. Book

    Google Scholar 

  • Guzmán HR, Tawa M, Zhang Z, Ratanabanangkoon P, Shaw P, Gardner CR, Chen H, Moreau J-P, Almarsson Ö, Remenar JF (2007) Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci 96:2686–2702

    Article  PubMed  CAS  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17:397–404

    Article  PubMed  CAS  Google Scholar 

  • Hancock BC, Shamblin SL (2001) Molecular mobility of amorphous pharmaceuticals determined using differential scanning calorimetry. Thermochim Acta 380:95–107

    Article  CAS  Google Scholar 

  • Hartshorn CM, Lee YJ, Camp CH Jr, Liu Z, Heddleston J, Canfield N, Rhodes TA, Hight Walker AR, Marsac PJ, Cicerone MT (2013) Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband cars microscopy. Anal Chem 85:8102–8111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hasegawa A, Taguchi M, Suzuki R, Miyata T, Nakagawa H, Sugimoto I (1988) Supersaturation mechanism of drugs from solid dispersions with enteric coating agents. Chem Pharm Bull 36:4941–4950

    Article  PubMed  CAS  Google Scholar 

  • He Y-L, Murby S, Warhurst G, Gifford L, Walker D, Ayrton J, Eastmond R, Rowland M (1998) Species differences in size discrimination in the paracellular pathway reflected by oral bioavailability of poly(ethylene glycol) and D-peptides. J Pharm Sci 87:626–633

    Article  PubMed  CAS  Google Scholar 

  • Hikima T, Adachi Y, Hanaya M, Oguni M (1995) Determination of potentially homogeneous-nucleation-based crystallization in O-terphernyl and an interpretation of the nucleation-enhancement mechanism. Phys Rev B 52:3900–3908

    Article  CAS  Google Scholar 

  • Hintz RJ, Johnson KC (1989) The effect of particle size distribution on dissolution rate and oral absorption. Int J Pharm 51:9–17

    Article  CAS  Google Scholar 

  • Hoffman JD (1958) Thermodynamic driving force in nucleation and growth processes. J Chem Phys 29:1192–1193

    Article  CAS  Google Scholar 

  • Hsieh YL, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez-Felix MV, Taylor LS (2012) pH-induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharm Res 29:2738–2753

    Article  PubMed  CAS  Google Scholar 

  • Huang S-M, Abernethy DR, Wang Y, Zhao P, Zineh I (2013) The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci 102:2912–2923

    Article  PubMed  CAS  Google Scholar 

  • Ilevbare GA, Taylor LS (2013) Liquid-liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des 13:1497–1509

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2012a) Inhibition of solution crystal growth of ritonavir by cellulose polymers—factors influencing polymer effectiveness. CrystEngComm 14:6503–6514

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2012b) Effect of binary additive combinations on solution crystal growth of the poorly water-soluble drug, ritonavir. Cryst Growth Des 12:6050–6060

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2012c) Maintaining supersaturation in aqueous drug solutions: impact of different polymers on induction times. Cryst Growth Des 13:740–751

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2012d) Understanding polymer properties important for crystal growth inhibition—impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst Growth Des 12:3133–3143

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2013a) Impact of polymers on crystal growth rate of structurally diverse compounds from aqueous solution. Mol Pharm 10:2381–2393

    Article  PubMed  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Pereira J, Edgar KJ, Taylor LS (2013b) Influence of additives on the properties of nanodroplets formed in highly supersaturated aqueous solutions of ritonavir. Mol Pharm 10:3392–3403

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Wu T, Yu L (2007) Sudden rise of crystal growth rate of nifedipine near T-G without and with polyvinylpyrrolidone. J Pharm Sci 96:1131–1138

    Article  PubMed  CAS  Google Scholar 

  • James KC (1986) Solubility and related properties. Marcell Decker, New York

    Google Scholar 

  • Johari GP, Kim S, Shanker RM (2005) Dielectric studies of molecular motions in amorphous solid and ultraviscous acetaminophen. J Pharm Sci 94:2207–2223

    Article  PubMed  CAS  Google Scholar 

  • Jones JR, Prime D, Leaper MC, Richardson DJ, Rielly CD, Stapley AGF (2013) Effect of processing variables and bulk composition on the surface composition of spray dried powders of a model food system. J Food Eng 118:19–30

    Article  CAS  Google Scholar 

  • Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press Limited, London

    Google Scholar 

  • Joshi HN, Tejwani RW, Davidovich M, Sahasrabudhe VP, Jemal M, Bathala MS, Varia SA, Serajuddin ATM (2004) Bioavailability enhancement of a poorly water-soluble drug by solid dispersion in polyethylene glycol-polysorbate 80 mixture. Int J Pharm 269:251–258

    Article  PubMed  CAS  Google Scholar 

  • Jyotishkumar P, Koetz J, Tiersch B, Strehmel V, Ozdilek C, Moldenaers P, Haessler R, Thomas S (2009) Complex phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/4,4′-diaminodiphenyl sulfone blends: generation of new micro- and nanosubstructures. J Phys Chem B 113:5418–5430

    Article  PubMed  CAS  Google Scholar 

  • Kakumanu VK, Bansal AK (2002) Enthalpy relaxation studies of celecoxib amorphous mixtures. Pharm Res 19:1873–1878

    Article  PubMed  CAS  Google Scholar 

  • Kaneniwa N, Watari N (1978) Dissolution of slightly soluble drugs. IV. Effects of particle size of sulfonamides on in vitro dissolution rate and in vivo absorption rate, and their relation to solubility. Chem Pharm Bull 26:813–826

    Article  PubMed  CAS  Google Scholar 

  • Kaneniwa N, Watari N, Iijima H (1978) Dissolution of slightly soluble drugs. V. Effect of particle size on gastrointestinal drug absorption and its relation to solubility. Chem Pharm Bull 26:2603–2614

    Article  PubMed  CAS  Google Scholar 

  • Karabanova LV, Boiteux G, Gain O, Seytre G, Sergeeva LM, Lutsyk ED (2004) Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym Int 53:2051–2058

    Article  CAS  Google Scholar 

  • Karabanova LV, Boiteux G, Seytre G, Stevenson I, Lloyd AW, Mikhalovsky SV, Helias M, Sergeeva LM, Lutsyk ED, Svyatyna A (2008) Phase separation in the polyurethane/poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer networks synthesized by different ways. Polym Eng Sci 48:588–597

    Article  CAS  Google Scholar 

  • Karavas E, Georgarakis E, Bikiaris D (2006) Felodipine nanodispersions as active core for predictable pulsatile chronotherapeutics using PVP/HPMC blends as coating layer. Int J Pharm 313:189–197

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Pikal MJ (2005) Calorimetric investigation of the structural relaxation of amorphous materials: evaluating validity of the methodologies. J Pharm Sci 94:948–965

    Article  PubMed  CAS  Google Scholar 

  • Kennedy M, Hu J, Gao P, Li L, Ali-Reynolds A, Chal B, Gupta V, Ma C, Mahajan N, Akrami A, Surapaneni S (2008) Enhanced bioavailability of a poorly soluble VR1 antagonist using an amorphous solid dispersion approach: a case study. Mol Pharm 5:981–993

    Article  PubMed  CAS  Google Scholar 

  • Kestur US, Wanapun D, Toth SJ, Wegiel LA, Simpson GJ, Taylor LS (2012) Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders. J Pharm Sci 101:4201–4213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khougaz K, Clas SD (2000) Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci 89:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Kim EHJ, Chen XD, Pearce D (2003) On the mechanisms of surface formation and the surface compositions of industrial milk powders. Drying Technol 21:265–278

    Article  CAS  Google Scholar 

  • Kim EHJ, Chen XD, Pearce D (2009) Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. J Food Eng 94:169–181

    Article  CAS  Google Scholar 

  • Kislalioglu MS, Khan MA, Blount C, Goettsch RW, Bolton S (1991) Physical characterization and dissolution properties of ibuprofen—eudragit coprecipitates. J Pharm Sci 80:799–804

    Article  PubMed  CAS  Google Scholar 

  • Klein CE, Chiu Y-L, Awni W, Zhu T, Heuser RS, Doan T, Breitenbach J, Morris JB, Brun SC, Hanna GJ (2007) The tablet formulation of lopinavir/ritonavir provides similar bioavailability to the soft-gelatin capsule formulation with less pharmacokinetic variability and diminished food effect. J Acquir Immune Defic Syndr 44:401–410

    Article  PubMed  CAS  Google Scholar 

  • Konno H, Handa T, Alonzo DE, Taylor LS (2008) Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm 70:493–499

    Article  PubMed  CAS  Google Scholar 

  • Korhonen O, Bhura C, Pikal MJ (2008) Correlation between molecular mobility and crystal growth of amorphous phenobarbital and phenobarbital with polyvinylpyrrolidone and L-proline. J Pharm Sci 97:3830–3841

    Article  PubMed  CAS  Google Scholar 

  • Kostewicz E, Aarons L, Bergstrand M, Bolger M, Galetin A, Hatley O, Jamei M, Lloyd R, Pepin X, Rostami-Hodjegan A, Sjögren E, Tannergren C, Turner D, Wagner C, Weitschies W, Dressman J (2013) PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci 57:300–321

    Article  PubMed  CAS  Google Scholar 

  • Kubota N, Mullin JW (1995) A kinetic model for crystal growth from aqueous solution in the presence of impurity. J Cryst Growth 152:203–208

    Article  CAS  Google Scholar 

  • Kuldipkumar A, Kwon GS, Zhang GGZ (2006) Determining the growth mechanism of tolazamide by induction time measurement. Cryst Growth Des 7:234–242

    Article  CAS  Google Scholar 

  • Kwong AD, Kauffman RS, Hurter P, Mueller P (2011) Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat Biotechnol 29:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Lafferrere L, Hoff C, Veesler S (2004) Study of liquid-liquid demixing from drug solution. J Cryst Growth 269:550–557

    Article  CAS  Google Scholar 

  • Lamer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  • Lauer ME, Siam M, Tardio J, Page S, Kindt JH, Grassmann O (2013) Rapid assessment of homogeneity and stability of amorphous solid dispersions by atomic force microscopy-from bench to batch. Pharm Res 30:2010–2022

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Law D, Krill SL, Schmitt EA, Fort JJ, Qiu Y, Wang W, Porter WR (2001) Physicochemical considerations in the preparation of amorphous ritonavir–poly(ethylene glycol) 8000 solid dispersions. J Pharm Sci 90:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Law D, Schmitt EA, Marsh KC, Everitt EA, Wang W, Fort JJ, Krill SL, Qiu Y (2004) Ritonavir–PEG 8000 amorphous solid dispersions: in vitro and in vivo evaluations. J Pharm Sci 93:563–570

    Article  PubMed  CAS  Google Scholar 

  • Lenhardt T, Vergnault G, Grenier P, Scherer D, Langguth P (2008) Evaluation of nanosuspensions for absorption enhancement of poorly soluble drugs: in vitro transport studies across intestinal epithelial monolayers. AAPS J 10:435–438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lennernas H (1998) Human intestinal permeability. J Pharm Sci 87:403–410

    Article  PubMed  CAS  Google Scholar 

  • Lentz KA (2008) Current methods for predicting human food effect. AAPS J 10:282–288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50:47–60

    Article  PubMed  CAS  Google Scholar 

  • Lindfors L, Forssén S, Westergren J, Olsson U (2008) Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci 325:404–413

    Article  PubMed  CAS  Google Scholar 

  • Loftsson T, Fri∂riksdóttir H, Gu∂mundsdóttir TK (1996) The effect of water-soluble polymers on aqueous solubility of drugs. Int J Pharm 127:293–296

    Article  CAS  Google Scholar 

  • Lu Q, Zografi G (1998) Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res 15:1202–1206

    Article  PubMed  CAS  Google Scholar 

  • Lu ATK, Frisella ME, Johnson KC (1993) Dissolution modeling: factors affecting the dissolution rates of polydisperse powders. Pharm Res 10:1308–1314

    Article  PubMed  CAS  Google Scholar 

  • Luthra SA, Hodge IM, Pikal MJ (2008) Investigation of the impact of annealing on global molecular mobility in glasses: optimization for stabilization of amorphous pharmaceuticals. J Pharm Sci 97:3865–3882

    Article  PubMed  CAS  Google Scholar 

  • Mahieu A, Willart J-F, Dudognon E, Danede F, Descamps M (2013) A new protocol to determine the solubility of drugs into polymer matrixes. Mol Pharm 10:560–566

    Article  PubMed  CAS  Google Scholar 

  • Mahlin D, Berggren J, Alderborn G, Engstrom S (2004) Moisture-induced surface crystallization of spray-dried amorphous lactose particles studied by atomic force microscopy. J Pharm Sci 93:29–37

    Article  PubMed  CAS  Google Scholar 

  • Mahlin D, Berggren J, Gelius U, Engstrom S, Alderborn G (2006) The influence of PVP incorporation on moisture-induced surface crystallization of amorphous spray-dried lactose particles. Int J Pharm 321:78–85

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Chamarthy SP, Byrn SR, Pinal R (2006) A calorimetric method to estimate molecular mobility of amorphous solids at relatively low temperatures. Pharm Res 23:2269–2276

    Article  PubMed  CAS  Google Scholar 

  • Marsac PJ, Taylor LS (2008) Thermodynamics of mixing drugs and polymers. AAPS National Meeting 10(S2):T2447

    Google Scholar 

  • Marsac PJ, Shamblin SL, Taylor LS (2006) Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res 23:2417–2426

    Article  PubMed  CAS  Google Scholar 

  • Marsac PJ, Li T, Taylor LS (2009) Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res 26:139–151

    Article  PubMed  CAS  Google Scholar 

  • Marsac PJ, Rumondor ACF, Nivens DE, Kestur US, Stanciu L, Taylor LS (2010) Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). J Pharm Sci 99:169–185

    Article  PubMed  CAS  Google Scholar 

  • Martin A (1993) Physical pharmacy. Lea & Febiger, Philadelphia, PA

    Google Scholar 

  • Martinez MN, Amidon GL (2002) A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 42:620–643

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Zografi G (1999) Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinylacetate) in relation to indomethacin crystallization. Pharm Res 16:1722–1728

    Article  PubMed  CAS  Google Scholar 

  • Meeus J, Scurr DJ, Amssoms K, Davies MC, Roberts CJ, Van Den Mooter G (2013) Surface characteristics of spray-dried microspheres consisting of PLGA and PVP: relating the influence of heat and humidity to the thermal characteristics of these polymers. Mol Pharm 10:3213–3224

    Article  PubMed  CAS  Google Scholar 

  • Moribe K, Pongpeerapat A, Tozuka Y, Yamamoto K (2006) Drug nanoparticle formation from drug/HPMC/SDS ternary ground mixtures. Pharmazie 61:97–101

    PubMed  CAS  Google Scholar 

  • Mullin JW (2001a) Crystallization. Reed Educational and Professional Publishing Ltd., Oxford

    Google Scholar 

  • Mullin JW (2001b) Solutions and solubility, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Murdande SB, Pikal MJ, Shanker RM, Bogner RH (2010a) Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci 99:1254–1264

    Article  PubMed  CAS  Google Scholar 

  • Murdande SB, Pikal MJ, Shanker RM, Bogner RH (2010b) Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm Res 27:2704–2714

    Article  PubMed  CAS  Google Scholar 

  • Murdande SB, Pikal MJ, Shanker RM, Bogner RH (2011a) Aqueous solubility of crystalline and amorphous drugs: challenges in measurement. Pharm Dev Technol 16:187–200

    Article  PubMed  CAS  Google Scholar 

  • Murdande SB, Pikal MJ, Shanker RM, Bogner RH (2011b) Solubility advantage of amorphous pharmaceuticals, Part 3: is maximum solubility advantage experimentally attainable and sustainable? J Pharm Sci 100:4349–4356

    Article  CAS  Google Scholar 

  • Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G (2008) Characterization of amorphous API:polymer mixtures using X-ray powder diffraction. J Pharm Sci 97:4840–4856

    Article  PubMed  CAS  Google Scholar 

  • Newman A, Knipp G, Zografi G (2012) Assessing the performance of amorphous solid dispersions. J Pharm Sci 101:1355–1377

    Article  PubMed  CAS  Google Scholar 

  • Nunes C, Mahendrasingam A, Suryanarayanan R (2005) Quantification of crystallinity in substantially amorphous materials by synchrotron X-ray powder diffractometry. Pharm Res 22:1942–1953

    Article  PubMed  CAS  Google Scholar 

  • Oh DM, Curl RL, Amidon GL (1993) Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans—a mathematical-model. Pharm Res 10:264–270

    Article  PubMed  CAS  Google Scholar 

  • Otsuka H, Esumi K, Ring TA, Li JT, Caldwell KD (1996) Simultaneous adsorption of poly(N-vinyl-2pyrrolidone) and hydrocarbon/fluorocarbon surfactant from their binary mixtures on hydrophilic/hydrophobic silica. Colloids Surf A Physicochem Eng Asp 116:161–171

    Article  CAS  Google Scholar 

  • Padilla AM, Ivanisevic I, Yang Y, Engers D, Bogner RH, Pikal MJ (2011) The study of phase separation in amorphous freeze-dried systems. Part I: Raman mapping and computational analysis of XRPD data in model polymer systems. J Pharm Sci 100:206–222

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Campbell A, Somasundaran P (2001) Polyacrylic acid adsorption and conformation in concentrated alumina suspensions. Colloids Surf A Physicochem Eng Asp 191:71–78

    Article  CAS  Google Scholar 

  • Park JS, Park JW, Ruckenstein E (2001) Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 42:4271–4280

    Article  CAS  Google Scholar 

  • Pham TN, Watson SA, Edwards AJ, Chavda M, Clawson JS, Strohmeier M, Vogt FG (2010) Analysis of amorphous solid dispersions using 2D solid-state NMR and H-1 T-1 relaxation measurements. Mol Pharm 7:1667–1691

    Article  PubMed  CAS  Google Scholar 

  • Poirier-Brulez F, Roudaut G, Champion D, Tanguy M, Simatos D (2006) Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation. Biopolymers 81:63–73

    Article  PubMed  CAS  Google Scholar 

  • Power G, Vij JK, Johari GP (2007) Dielectric relaxation and crystallization of nanophase separated 1-propanol-isoamylbromide mixture. J Chem Phys 127

    Google Scholar 

  • Price R, Young PM (2004) Visualization of the crystallization of lactose from the amorphous state. J Pharm Sci 93:155–164

    Article  PubMed  CAS  Google Scholar 

  • Qi S, Belton P, Nollenberger K, Gryczke A, Craig DQM (2011) Compositional analysis of low quantities of phase separation in hot-melt-extruded solid dispersions: a combined atomic force microscopy, photothermal Fourier-transform infrared microspectroscopy, and localised thermal analysis approach. Pharm Res 28:2311–2326

    Article  PubMed  CAS  Google Scholar 

  • Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, Hussain M (2010) Is a distinctive single T-G a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm 395:232–235

    Article  PubMed  CAS  Google Scholar 

  • Raghavan SL, Trividic A, Davis AF, Hadgraft J (2001) Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm 212:213–221

    Article  PubMed  CAS  Google Scholar 

  • Raina SA, Zhang GGZ, Alonzo DE, Wu J, Zhu D, Catron ND, Gao Y, Taylor LS (2012) Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water-soluble drugs. Cryst Growth Des 12(3):1538–1547

    Article  CAS  Google Scholar 

  • Righetti MC, Cardelli C, Scalari M, Tombari E, Conti G (2002) Thermodynamics of mixing of poly(vinyl chloride) and poly(ethylene-co-vinyl acetate). Polymer 43:5035–5042

    Article  CAS  Google Scholar 

  • Rodríguez-Hornedo N, Murphy D (1999) Significance of controlling crystallization mechanisms and kinetics in pharmaceutical systems. J Pharm Sci 88:651–660

    Article  PubMed  Google Scholar 

  • Rohr B (2006) Biopharmaceutics modeling and the role of dose and formulation on oral exposure. In: Borchardt RT, Kerns EH, Hageman MJ, Thakker DR, Stevens JL (eds) Optimizing the drug like properties of leads in drug discovery. Springer, New York

    Google Scholar 

  • Rumondor ACF, Taylor LS (2010a) Application of partial least-squares (PLS) modeling in quantifying drug crystallinity in amorphous solid dispersions. Int J Pharm 398:155–160

    Article  PubMed  CAS  Google Scholar 

  • Rumondor ACF, Taylor LS (2010b) Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm 7:477–490

    Article  PubMed  CAS  Google Scholar 

  • Rumondor ACF, Ivanisevic I, Bates S, Alonzo D, Taylor LS (2009) Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res 26:2523–2534

    Article  PubMed  CAS  Google Scholar 

  • Rumondor ACF, Wikstroem H, Van Eerdenbrugh B, Taylor LS (2011) Understanding the tendency of amorphous solid dispersions to undergo amorphous-amorphous phase separation in the presence of absorbed moisture. AAPS PharmSciTech 12:1209–1219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saerens L, Dierickx L, Lenain B, Vervaet C, Remon JP, De Beer T (2011) Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur J Pharm Biopharm 77:158–163

    Article  PubMed  CAS  Google Scholar 

  • Saerens L, Dierickx L, Quinten T, Adriaensens P, Carleer R, Vervaet C, Remon JP, De Beer T (2012) In-line NIR spectroscopy for the understanding of polymer-drug interaction during pharmaceutical hot-melt extrusion. Eur J Pharm Biopharm 81:230–237

    Article  PubMed  CAS  Google Scholar 

  • Sangwal K (2007) Additives and crystallization process: from fundamentals to applications. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Sarode AL, Wang P, Obara S, Worthen DR (2014) Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs. Eur J Pharm Biopharm 86:351–360

    Article  PubMed  CAS  Google Scholar 

  • Schuth F (2001) Nucleation and crystallization of solids from solution. Curr Opinion Solid State Mater Sci 5:389–395

    Article  CAS  Google Scholar 

  • Serajuddin ATM (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Sertsou G, Butler J, Hempenstall J, Rades T (2002) Solvent change co-precipitation with hydroxypropyl methylcellulose phthalate to improve dissolution characteristics of a poorly water-soluble drug. J Pharm Pharmacol 54:1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Shah B, Kakumanu VK, Bansal AK (2006) Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci 95:1641–1665

    Article  PubMed  CAS  Google Scholar 

  • Shah N, Sandhu H, Phuapradit W, Pinal R, Iyer R, Albano A, Chatterji A, Anand S, Choi DS, Tang K, Tian H, Chokshi H, Singhal D, Malick W (2012) Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm 438:53–60

    Article  PubMed  CAS  Google Scholar 

  • Shamblin SL, Zografi G (1998) Enthalpy relaxation in binary amorphous mixtures containing sucrose. Pharm Res 15:1828–1834

    Article  PubMed  CAS  Google Scholar 

  • Shamblin SL, Hancock BC, Dupuis Y, Pikal MJ (2000) Interpretation of relaxation time constants for amorphous pharmaceutical systems. J Pharm Sci 89:417–427

    Article  PubMed  CAS  Google Scholar 

  • Shmeis RA, Wang ZR, Krill SL (2004a) A mechanistic investigation of an amorphous pharmaceutical and its solid dispersions, Part I: a comparative analysis by thermally stimulated depolarization current and differential scanning calorimetry. Pharm Res 21:2025–2030

    Article  PubMed  CAS  Google Scholar 

  • Shmeis RA, Wang ZR, Krill SL (2004b) A mechanistic investigation of an amorphous pharmaceutical and its solid dispersions, Part II: molecular mobility and activation thermodynamic parameters. Pharm Res 21:2031–2039

    Article  PubMed  CAS  Google Scholar 

  • Simonelli AP, Mehta SC, Higuchi WI (1970) Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone. J Pharm Sci 59:633–638

    Article  PubMed  CAS  Google Scholar 

  • Sinclair W, Leane M, Clarke G, Dennis A, Tobyn M, Timmins P (2011) Physical stability and recrystallization kinetics of amorphous ibipinabant drug product by Fourier transform Raman spectroscopy. J Pharm Sci 100:4687–4699

    Article  PubMed  CAS  Google Scholar 

  • Six K, Verreck G, Peeters J, Brewster M, Van Den Mooter G (2004) Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers. J Pharm Sci 93:124–131

    Article  PubMed  CAS  Google Scholar 

  • Sjögren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernäs H, Abrahamsson A, Tannergren C (2013) In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci 49:679–698

    Article  PubMed  CAS  Google Scholar 

  • Sohnel O, Mullin JW (1988) Interpretation of crystallization induction periods. J Colloid Interface Sci 123:43–50

    Article  CAS  Google Scholar 

  • Somasundaran P, Huang L (2000) Adsorption/aggregation of surfactants and their mixtures at solid–liquid interfaces. Adv Colloid Interface Sci 88:179–208

    Article  PubMed  CAS  Google Scholar 

  • Somasundaran P, Krishnakumar S (1997) Adsorption of surfactants and polymers at the solid-liquid interface. Colloids Surf A Physicochem Eng Asp 123–124:491–513

    Article  Google Scholar 

  • Strachan CJ, Windbergs M, Offerhaus HL (2011) Pharmaceutical applications of non-linear imaging. Int J Pharm 417:163–172

    Article  PubMed  CAS  Google Scholar 

  • Sugano K (2009a) Estimation of effective intestinal membrane permeability considering bile micelle solubilisation. Int J Pharm 368:116–122

    Article  PubMed  CAS  Google Scholar 

  • Sugano K (2009b) Theoretical investigation of passive intestinal membrane permeability using Monte Carlo method to generate drug-like molecule population. Int J Pharm 373:55–61

    Article  PubMed  CAS  Google Scholar 

  • Sugano K (2010) Possible reduction of effective thickness of intestinal unstirred water layer by particle drifting effect. Int J Pharm 387:103–109

    Article  PubMed  CAS  Google Scholar 

  • Sugano K (2012a) Biopharmaceutics modeling and simulations. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Sugano K (2012b) Introduction. Biopharmaceutics modeling and simulation, theory, practice, methods and application. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Sun Y, Xi H, Ediger MD, Yu L (2008) Diffusionless crystal growth from glass has precursor in equilibrium liquid. J Phys Chem B 112:661–664

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Tao J, Zhang GGZ, Yu L (2010) Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAC. J Pharm Sci 99:4023–4031

    PubMed  CAS  Google Scholar 

  • Surana R, Suryanarayanan R (2000) Quantitation of crystallinity in substantially amorphous pharmaceuticals and study of crystallization kinetics by X-ray powder diffractometry. Powder Diffract 15:2–6

    Article  CAS  Google Scholar 

  • Swenson ES, Curatolo WJ (1992) Intestinal permeability enhancement for proteins, peptides and other polar drugs—mechanisms and potential toxicity. Adv Drug Deliv Rev 8:39–92

    Article  CAS  Google Scholar 

  • Szczepanski CR, Pfeifer CS, Stansbury JW (2012) A new approach to network heterogeneity: polymerization induced phase separation in photo-initiated, free-radical methacrylic systems. Polymer 53:4694–4701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tachibana T, Nakamura A (1965) A method for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers: dispersion B-carotene by polyvinylpyrrolidone. Kolloid-Zeitschrift Und Zeitschrift Fur Polymere 203:130–133

    Article  CAS  Google Scholar 

  • Tang XLC, Pikal MJ, Taylor LS (2002a) The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers. Pharm Res 19:484–490

    Article  PubMed  CAS  Google Scholar 

  • Tang XLC, Pikal MJ, Taylor LS (2002b) A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm Res 19:477–483

    Article  PubMed  CAS  Google Scholar 

  • Tantishaiyakul V, Kaewnopparat N, Ingkatawornwong S (1999) Properties of solid dispersions of piroxicam in polyvinylpyrrolidone. Int J Pharm 181:143–151

    Article  PubMed  CAS  Google Scholar 

  • Tao J, Sun Y, Zhang GGZ, Yu L (2009) Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res 26:855–864

    Article  PubMed  CAS  Google Scholar 

  • Taupitz T, Dressman JB, Buchanan CM, Klein S (2013) Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: itraconazole. Eur J Pharm Biopharm 83:378–387

    Article  PubMed  CAS  Google Scholar 

  • Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14:1691–1698

    Article  PubMed  CAS  Google Scholar 

  • Tho I, Liepold B, Rosenberg J, Maegerlein M, Brandl M, Fricker G (2010) Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur J Pharm Sci 40:25–32

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Saville DJ, Gordon KC, Strachan CJ, Zeitler JA, Sandler N, Rades T (2007) The influence of various excipients on the conversion kinetics of carbamazepine polymorphs in aqueous suspension. J Pharm Pharmacol 59:193–201

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Booth J, Meehan E, Jones DS, Li S, Andrews GP (2013) Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm 10:236–248

    Article  PubMed  CAS  Google Scholar 

  • Tishmack PA, Bugay DE, Byrn SR (2003) Solid-state nuclear magnetic resonance spectroscopy—pharmaceutical applications. J Pharm Sci 92:441–474

    Article  PubMed  CAS  Google Scholar 

  • Tjipangandjara KF, Somasundaran P (1991) Effects of changes in adsorbed polyacrylic acid conformation on alumina flocculation. Colloids Surf 55:245–255

    Article  CAS  Google Scholar 

  • Toth SJ, Madden JT, Taylor LS, Marsac P, Simpson GJ (2012) Selective imaging of active pharmaceutical ingredients in powdered blends with common excipients utilizing two-photon excited ultraviolet-fluorescence and ultraviolet-second order nonlinear optical imaging of chiral crystals. Anal Chem 84:5869–5875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsuji H, Ikada Y (1996) Blends of aliphatic polyesters. 1. Physical properties and morphologies of solution-cast blends from poly(DL-lactide) and poly(epsilon-caprolactone). J Appl Polym Sci 60:2367–2375

    Article  CAS  Google Scholar 

  • Van Der Leeden MC, Kashchiev D, Van Rosmalen GM (1993) Effect of additives on nucleation rate, crystal growth rate and induction time in precipitation. J Cryst Growth 130:221–232

    Article  Google Scholar 

  • Van Eerdenbrugh B, Baird JA, Taylor LS (2010) Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation-classification and comparison with crystallization tendency from undercooled melts. J Pharm Sci 99:3826–3838

    PubMed  Google Scholar 

  • Vandecruys R, Peeters J, Verreck G, Brewster ME (2007) Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm 342:168–175

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12:1068–1075

    Article  PubMed  CAS  Google Scholar 

  • Veesler S, Lafferrere L, Garcia E, Hoff C (2003) Phase transitions in supersaturated drug solution. Org Process Res Dev 7:983–989

    Article  CAS  Google Scholar 

  • Vekilov PG (2004) Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst Growth Des 4:671–685

    Article  CAS  Google Scholar 

  • Venkatesh S, Lipper RA (2000) Role of the development scientist in compound lead selection and optimization. J Pharm Sci 89:145–154

    Article  PubMed  CAS  Google Scholar 

  • Verdoes D, Kashchiev D, Van Rosmalen GM (1992) Determination of nucleation and growth rates from induction times in seeded and unseeded precipitation of calcium carbonate. J Cryst Growth 118:401–413

    Article  CAS  Google Scholar 

  • Vyazovkin S, Dranca I (2007) Effect of physical aging on nucleation of amorphous indomethacin. J Phys Chem B 111:7283–7287

    Article  PubMed  CAS  Google Scholar 

  • Wanapun D, Kestur US, Kissick DJ, Simpson GJ, Taylor LS (2010) Selective detection and quantitation of organic molecule crystallization by second harmonic generation microscopy. Anal Chem 82:5425–5432

    Article  PubMed  CAS  Google Scholar 

  • Wanapun D, Kestur US, Taylor LS, Simpson GJ (2011) Single particle nonlinear optical imaging of trace crystallinity in an organic powder. Anal Chem 83:4745–4751

    Article  PubMed  CAS  Google Scholar 

  • Waterman KC, Sutton SC (2003) A computational model for particle size influence on drug absorption during controlled-release colonic delivery. J Control Release 86:293–304

    Article  PubMed  CAS  Google Scholar 

  • Weeks NE, Karasz FE, Macknight WJ (1977) Enthalpy of mixing of poly(2,6-dimethyl phenylene oxide) and polystyrene. J Appl Phys 48:4068–4071

    Article  CAS  Google Scholar 

  • Wenslow RM (2002) F-19 solid-state NMR spectroscopic investigation of crystalline and amorphous forms of a selective muscarinic M-3 receptor antagonist, in both bulk and pharmaceutical dosage form samples. Drug Dev Ind Pharm 28:555–561

    Article  PubMed  CAS  Google Scholar 

  • Wesley RD, Cosgrove T, Thompson L (1999) Interactions of star polymers with surfactants. Langmuir 15:8376–8382

    Article  CAS  Google Scholar 

  • Wu T, Yu L (2006) Origin of enhanced crystal growth kinetics near T-G probed with indomethacin polymorphs. J Phys Chem B 110:15694–15699

    Article  PubMed  CAS  Google Scholar 

  • Yalkowsky SH (1999) Solubility and solubilization in aqueous media. Oxford University Press, New York

    Google Scholar 

  • Yamada H, Suryanarayanan R (2006) Calculation of the penetration depth of X-rays in intact pharmaceutical film-coated tablets by microdiffractometory. Pharm Res 23:2149–2157

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Suryanarayanan R (2007) X-ray powder diffractometry of intact film coated tablets—an approach to monitor the physical form of the active pharmaceutical ingredient during processing and storage. J Pharm Sci 96:2029–2036

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Nollenberger K, Albers J, Craig D, Qi S (2013) Microstructure of an immiscible polymer blend and its stabilization effect on amorphous solid dispersions. Mol Pharm 10:2767–2780

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Lionberger RA, Davit BM, Yu LX (2011) Utility of physiologically based absorption modeling in implementing quality by design in drug development. AAPS J 13:59–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziller KH, Rupprecht H (1988) Control of crystal growth in drug suspensions: 1. Design of a control unit and application to acetaminophen suspensions. Drug Dev Ind Pharm 14:2341–2370

    Article  CAS  Google Scholar 

  • Zimmermann A, Millqvist-Fureby A, Elema MRB, Hansen T, Müllertz A, Hovgaard L (2009) Adsorption of pharmaceutical excipients onto microcrystals of siramesine hydrochloride: effects on physicochemical properties. Eur J Pharm Biopharm 71:109–116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Marsac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Ilevbare, G., Marsac, P., Mitra, A. (2015). Performance and Characterization of Amorphous Solid Dispersions: An Overview. In: Templeton, A., Byrn, S., Haskell, R., Prisinzano, T. (eds) Discovering and Developing Molecules with Optimal Drug-Like Properties. AAPS Advances in the Pharmaceutical Sciences Series, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1399-2_10

Download citation

Publish with us

Policies and ethics