Skip to main content

IAP Family of Proteins as Therapeutic Targets for Acute Myeloid Leukemia

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

Abstract

The inhibitor of apoptosis protein (IAP) family is a group of proteins that are critical regulators of cell survival. They also play roles in cell cycle, cell signaling, and cell migration. The expression of many IAPs is deregulated in acute myeloid leukemia (AML) and other malignant cells and contributes to tumor formation, progression, and maintenance; drug resistance and treatment failure; and poor prognosis. In the last decade, abundant knowledge has been accumulated regarding the structure, expression, regulation, function, and mechanism of action of IAPs, which has led to significant progress in developing strategies to antagonize IAPs. Many candidate compounds have been investigated and tested in the preclinical setting, and some of them have moved to clinical development. This chapter highlights current knowledge of the expression and roles of IAPs in AML and discusses current strategies exploiting IAPs as therapeutic targets for AML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J Altieri DC (1998) Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol 152(1):43–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Adida C, Recher C, Raffoux E, Daniel MT, Taksin AL, Rousselot P, Sigaux F, Degos L, Altieri DC, Dombret H (2000) Expression and prognostic significance of survivin in de novo acute myeloid leukaemia. Br J Haematol 111:196–203. (available from: PM:11091201)

    CAS  PubMed  Google Scholar 

  • Akagi T, Motegi M, Tamura A, Suzuki R, Hosokawa Y, Suzuki H, Ota H, Nakamura S, Morishima Y, Taniwaki M, Seto M (1999) A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 18(42):5785–5794. (available from: PM:10523859)

    CAS  PubMed  Google Scholar 

  • Amantana A, London CA, Iversen PL, Devi GR (2004) X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 3(6):699–707

    CAS  PubMed  Google Scholar 

  • Amaravadi RK, Schilder RJ, Dy GK, Ma WW, Fetterly GJ, Weng DE, Graham MA, Burns JM, Chunduru SK, Condon SM, McKinlay MA, Adjel AA (2011) Phase 1 study of the Smac TL32711 in adult subjects with advanced solid tumors and lymphoma to mimetic evaluate safety, pharmacokinetics, pharmacodynamics, and antitumor activity. AACR March 2011

    Google Scholar 

  • Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3(8):917–921. (available from: PM:9256286)

    CAS  PubMed  Google Scholar 

  • Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH (2002) Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 277:44236–44243

    CAS  PubMed  Google Scholar 

  • Asselin E, Mills GB, Tsang BK (2001) XIAP regulates Akt activity and caspase -3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res 61(5):1862–1868. (available from: PM:11280739)

    CAS  PubMed  Google Scholar 

  • Bai L, McEachern D, Yang CY, Lu J, Sun H, Wang S (2012) LRIG1 modulates cancer cell sensitivity to Smac Mimetics by regulating TNFalpha expression and receptor tyrosine kinase signaling. Cancer Res 72(5):1229–1238. (available from: PM:22241084)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balkhi MY, Christopeit M, Chen Y, Geletu M, Behre G (2008) AML1/ETO-induced survivin expression inhibits transcriptional regulation of myeloid differentiation. Exp Hematol 36(11):1449–1460

    CAS  PubMed  Google Scholar 

  • Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA, Tibshirani R, Maitra A, Pollack JR (2005) Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7(6):556–562. (available from: PM:16036106)

    Google Scholar 

  • Bian K, Fan J, Zhang X, Yang XW, Zhu HY, Wang L, Sun JY, Meng YL, Cui PC, Cheng SY, Zhang J, Zhao J, Yang AG, Zhang R (2012) MicroRNA-203 leads to G1 phase cell cycle arrest in laryngeal carcinoma cells by directly targeting survivin. FEBS Lett 586(6):804–809. (available from: PM:22306317)

    CAS  PubMed  Google Scholar 

  • Bornstein B, Gottfried Y, Edison N, Shekhtman A, Lev T, Glaser F, Larisch S (2011) ARTS binds to a distinct domain in XIAP-BIR3 and promotes apoptosis by a mechanism that is different from other IAP-antagonists. Apoptosis 16(9):869–881. (available from: PM:21695558)

    CAS  PubMed  Google Scholar 

  • Bornstein B, Edison N, Gottfried Y, Lev T, Shekhtman A, Gonen H, Rajalingam K, Larisch S (2012) X-linked inhibitor of apoptosis protein promotes the degradation of its antagonist, the pro-apoptotic ARTS protein. Int J Biochem Cell Biol 44(3):489–495. (available from: PM:22185822)

    CAS  PubMed  Google Scholar 

  • Byun DS, Cho K, Ryu BK, Lee MG, Kang MJ, Kim HR, Chi SG (2003) Hypermethylation of XIAP-associated factor 1, a putative tumor suppressor gene from the 17p13.2 locus, in human gastric adenocarcinomas. Cancer Res 63(21):7068–7075. (available from: PM:14612497)

    CAS  PubMed  Google Scholar 

  • Carter BZ, Andreeff M (2008) Targeting survivin in leukemia. Oncol Rev 2:19–28

    Google Scholar 

  • Carter BZ, Milella M, Altieri DC, Andreeff M (2001) Cytokine-regulated expression of survivin in myeloid leukemia. Blood 97:2784–2790

    CAS  PubMed  Google Scholar 

  • Carter BZ, Milella M, Tsao T, McQueen T, Schober WD, Hu W, Dean NM, Steelman L, McCubrey JA, Andreeff M (2003) Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia. Leukemia 17:2081–2089

    CAS  PubMed  Google Scholar 

  • Carter BZ, Kornblau SM, Tsao T, Wang RY, Schober WD, Milella M, Sung HG, Reed JC, Andreeff M (2003a) Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood 102:4179–4186

    Google Scholar 

  • Carter BZ, Wang R-Y, Schober WD, Milella M, Chism D, Andreeff M (2003b) Targeting survivin expression induces cell proliferation defect and subsequent cell death involving the mitochondrial pathway in myeloid leukemic cell. Cell Cycle 2:488–493

    Google Scholar 

  • Carter BZ, Gronda M, Wang Z, Welsh K, Pinilla C, Andreeff M, Schober WD, Nefzi A, Houghten RA, Brandwein J, Minden MD, Schuh A, Wells RA, Chun K, Reed JC, Schimmer AD (2005) Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells. Blood 105:4043–4050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carter BZ, Mak D, Schober WD, Cabreira-Hansen M, Beran M, McQueen T, Chen W, Andreeff M (2006a) Regulation of survivin expression through bcr-abl/MAPK cascade: targeting survivin overcomes Imatinib resistance and increases Imatinib sensitivity in Imatinib responsive CML cells. Blood 107:1555–1563

    Google Scholar 

  • Carter BZ, Mak DH, Schober WD, McQueen T, Harris D, Estrov Z, Evans RL, Andreeff M (2006b) Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells. Blood 108:630–637

    Google Scholar 

  • Carter BZ, Mak DH, Schober WD, Estrove Z, Koller E, Pinilla C, Vassilev LT, Reed JC, Andreeff M (2010) Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaliing pathways in AML. Blood 115(2):306–314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carter BZ, Mak DH, Qiu Y, Kornblau SM, Mak PY, Weng D, McKinlay MA, Andreeff M (2011a) Antagonizing IAPs by SMAC Mimetic TL32711 induces Apoptosis in AML cells Including AML Stem/Progenitor Cells Alone and in Combination with Chemotherapy. Blood 118(21):32

    Google Scholar 

  • Carter BZ, Mak DH, Morris SJ, Borthakur G, Estey E, Byrd AL, Konopleva M, Kantarjian H, Andreeff M (2011b) XIAP antisense oligonucleotide (AEG35156) achieves target knockdown and induces apoptosis preferentially in CD34+38- cells in a phase 1/2 study of patients with relapsed/refractory AML. Apoptosis 16(1):67–74. (available from: PM:20938744)

    Google Scholar 

  • Carter BZ, Qiu Y, Huang X, Dia L, Zhang N, Coombes KR, Mak DH, Konopleva M, Cortes JE, Kantarjian HM, Andreeff M, Kornblau SM (2011c) Survivin is highly expressed in AML stem cells and predicts poor clinical outcome. Blood 118(21):108–109

    Google Scholar 

  • Carter B, Mak DH, Shi Y, Fidler JM, Chen R, Ling X, Plunkett W, Andreeff M (2012) MRx102, a triptolide derivative, has potent antileukemic activity in vitro and in a murine model of AML. Leukemia 26(3):443–450. (available from: PM:21904380)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    CAS  PubMed  Google Scholar 

  • Chauhan D, Neri P, Velankar M, Podar K, Hideshima T, Fulciniti M, Tassone P, Raje N, Mitsiades C, Mitsiades N, Richardson P, Zawel L, Tran M, Munshi N, Anderson KC (2007) Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 109(3):1220–1227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen BJ (2001) Triptolide, a novel immunosuppressive and anti-inflammatory agent purified from a Chinese herb Tripterygium wilfordii Hook F. Leuk Lymphoma 42(3):253–265

    CAS  PubMed  Google Scholar 

  • Cheson BD, Bartlett NL, Vose JM, Lopez-Hernandez A, Seiz AL, Keating AT, Shamsili S (2011) A phase II study of the survivin suppressant YM155 in patients with refractory diffuse large B-cell lymphoma. Cancer 118(12):128–134. (available from: PM:22006123)

    Google Scholar 

  • Chung SK, Lee MG, Ryu BK, Lee JH, Han J, Byun DS, Chae KS, Lee KY, Jang JY, Kim HJ, Chi SG (2007) Frequent alteration of XAF1 in human colorectal cancers: implication for tumor cell resistance to apoptotic stresses. Gastroenterology 132(7):2459–2477. (available from: PM:17570219)

    CAS  PubMed  Google Scholar 

  • Dai Z, Zhu WG, Morrison CD, Brena RM, Smiraglia DJ, Raval A, Wu YZ, Rush LJ, Ross P, Molina JR, Otterson GA, Plass C (2003) A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet 12(7):791–801. (available from: PM:12651874)

    CAS  Google Scholar 

  • Dean E, Jodrell D, Connolly K, Danson S, Jolivet J, Durkin J, Morris S, Jowle D, Ward T, Cummings J, Dickinson G, Aarons L, LaCasse E, Robson L, Dive C, Ranson M (2009) Phase I trial of AEG35156 administered as a 7-day and 3-day continuous intravenous infusion in patients with advanced refractory cancer. J Clin Oncol 27(10):1660–1666

    CAS  PubMed  Google Scholar 

  • Deveraux QL, Reed JC (1999) IAP family proteins—suppressors of apoptosis. Genes Dev 13: 239–252. (available from: PM:9990849)

    CAS  PubMed  Google Scholar 

  • Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18:5242–5251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez JM, Hossfeld DK, De Wolf-Peeters C, Hagemeijer A, Van den Berghe H, Marynen P (1999) The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93(11):3601–3609

    CAS  PubMed  Google Scholar 

  • Dohi T, Okada K, Xia F, Wilford CE, Samuel T, Welsh K, Marusawa H, Zou H, Armstrong R, Matsuzawa S, Salvesen GS, Reed JC, Altieri DC (2004) An IAP-IAP complex inhibits apoptosis. J Biol Chem 279(33):34087–34090. (available from: PM:15218035)

    CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42. (available from: PM:10929711)

    CAS  PubMed  Google Scholar 

  • Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC, Shiels H, Hardwick JM, Thompson CB (1996) A conserved family of cellular genes related to the baculovirus IAP gene and encoding apoptosis inhibitors. EMBO J 15(11):2685–2694

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duckett CS (2005) IAP proteins: sticking it to Smac. Biochem J 385 (Pt 1) e1–2. (available from: PM:15588250)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7(10):988–994. (available from: PM:17016456)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edison N, Reingewertz TH, Gottfried Y, Lev T, Zuri D, Maniv I, Carp MJ, Shalev G, Friedler A, Larisch S (2012) Peptides mimicking the unique ARTS-XIAP binding site promote apoptotic cell death in cultured cancer cells. Clin Cancer Res 18(9):2569–2578. (available from: PM:22392914)

    CAS  PubMed  Google Scholar 

  • Elhasid R, Sahar D, Merling A, Zivony Y, Rotem A, Ben-Arush M, Izraeli S, Bercovich D, Larisch S (2004) Mitochondrial pro-apoptotic ARTS protein is lost in the majority of acute lymphoblastic leukemia patients. Oncogene 23(32):5468–5475. (available from: PM:15122323)

    CAS  PubMed  Google Scholar 

  • Fidler JM, Li K, Chung C, Wei K, Ross JA, Gao M, Rosen GD (2003) PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Mol Cancer Ther 2(9):855–862

    CAS  PubMed  Google Scholar 

  • Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG (2000) Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 70(1):113–122. (available from: PM:11087668)

    Google Scholar 

  • Fukuda S, Singh P, Moh A, Abe M, Conway EM, Boswell HS, Yamaguchi S, Fu XY, Pelus LM (2009) Survivin mediates aberrant hematopoietic progenitor cell proliferation and acute leukemia in mice induced by internal tandem duplication of Flt3. Blood 114(2):394–403. (available from: PM:19411632)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fulda S (2009) Inhibitor of apoptosis proteins in hematological malignancies. Leukemia 23(3):467–476

    CAS  PubMed  Google Scholar 

  • Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11(2):109–124. (available from: PM:22293567)

    CAS  PubMed  Google Scholar 

  • Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815

    CAS  PubMed  Google Scholar 

  • Garcia-Fernandez M, Kissel H, Brown S, Gorenc T, Schile AJ, Rafii S, Larisch S, Steller H (2010) Sept4/ARTS is required for stem cell apoptosis and tumor suppression. Genes Dev 24(20):2282–2293. (available from: PM:20952537)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gassmann R, Carvalho A, Henzing AJ, Ruchaud S, Hudson DF, Honda R, Nigg EA, Gerloff DL, Earnshaw WC (2004) Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 166(2):179–191. (available from: PM:15249581)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giaccone G, Zatloukal P, Roubec J, Floor K, Musil J, Kuta M, van Klaveren RJ, Chaudhary S, Gunther A, Shamsili S (2009) Multicenter phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer. J Clin Oncol 27(27):4481–4486. (available from: PM:19687333)

    CAS  PubMed  Google Scholar 

  • Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S (2004) The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J 23(7):1627–1635. (available from: PM:15029247)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grzybowska-Izydorczyk O, Cebula B, Robak T, Smolewski P (2010) Expression and prognostic significance of the inhibitor of apoptosis protein (IAP) family and its antagonists in chronic lymphocytic leukaemia. Eur J Cancer 46(4):800–810. (available from: PM:20045309)

    CAS  PubMed  Google Scholar 

  • Guo F, Nimmanapalli R, Paranawithana S, Wittman S, Griffin D, Bali P, O’Bryan E, Fumero C, Wang HG, Bhalla K (2002) Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99(9):3419–3426. (available from: PM:11964312)

    CAS  PubMed  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98(8):2301–2307

    CAS  PubMed  Google Scholar 

  • Gyurkocza B, Plescia J, Raskett CM, Garlick DS, Lowry PA, Carter BZ, Andreeff M, Meli M, Colombo G, Altieri DC (2006) Antileukemic activity of shepherdin and molecular diversity of hsp90 inhibitors. J Natl Cancer Inst 98(15):1068–1077. (available from: PM:16882944)

    CAS  PubMed  Google Scholar 

  • Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson CB (2001) Characterization of XIAP-deficient mice. Mol Cell Biol 21:3604–3608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harousseau JLH, Dombret HD, Pigneux AP, Michallet MM, Brandely MB (2008) Phase I study of F60008, a triptolide derivative, in patients with refractory or relapsing acute leukemias. Hematol J 93:14–15.

    Google Scholar 

  • Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes-Alnemri T, Alnemri ES (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277(1):432–438

    CAS  PubMed  Google Scholar 

  • Heller JD, Kuo J, Wu TC, Kast WM, Huang RC (2001) Tetra-O-methyl nordihydroguaiaretic acid induces G2 arrest in mammalian cells and exhibits tumoricidal activity in vivo. Cancer Res 61(14):5499–5504

    CAS  PubMed  Google Scholar 

  • Hess CJ, Berkhof J, Denkers F, Ossenkoppele GJ, Schouten JP, Oudejans JJ, Waisfisz Q, Schuurhuis GJ (2007) Activated intrinsic apoptosis pathway is a key related prognostic parameter in acute myeloid leukemia. J Clin Oncol 25(10):1209–1215. (available from: PM:17401010)

    CAS  PubMed  Google Scholar 

  • Hofer-Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R (2000) Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem 275:22064–22068. (available from: PM:10807933)

    CAS  PubMed  Google Scholar 

  • Holcik M, Yeh C, Korneluk RG, Chow T (2000) Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 19:4174–4177. (available from: PM:10962579)

    CAS  PubMed  Google Scholar 

  • Honda R, Korner R, Nigg EA (2003) Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 14:3325–3341

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu S, Yang X (2003) Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J Biol Chem 278(12):10055–10060. (available from: PM:12525502)

    CAS  PubMed  Google Scholar 

  • Hu Y, Cherton-Horvat G, Dragowska V, Baird S, Korneluk RG, Durkin JP, Mayer LD, LaCasse EC (2003) Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res 9(7):2826–2836

    CAS  PubMed  Google Scholar 

  • Hu R, Zhu K, Li Y, Yao K, Zhang R, Wang H, Yang W, Liu Z (2011) Embelin induces apoptosis through down-regulation of XIAP in human leukemia cells. Med Oncol 28(4)1584–1588. (available from: PM:20625944)

    CAS  PubMed  Google Scholar 

  • Huang J, Yao WY, Zhu Q, Tu SP, Yuan F, Wang HF, Zhang YP, Yuan YZ (2010) XAF1 as a prognostic biomarker and therapeutic target in pancreatic cancer. Cancer Sci 101(2):559–567. (available from: PM:19922503)

    PubMed  Google Scholar 

  • Hundsdoerfer P, Dietrich I, Schmelz K, Eckert C, Henze G (2010) XIAP expression is post-transcriptionally upregulated in childhood ALL and is associated with glucocorticoid response in T-cell ALL. Pediatr Blood Cancer 55(2):260–266. (available from: PM:20582956)

    PubMed  Google Scholar 

  • Imoto I, Yang ZQ, Pimkhaokham A, Tsuda H, Shimada Y, Imamura M, Ohki M, Inazawa J (2001) Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res 61(18):6629–6634. (available from: PM:11559525)

    CAS  PubMed  Google Scholar 

  • Imoto I, Tsuda H, Hirasawa A, Miura M, Sakamoto M, Hirohashi S, Inazawa J (2002) Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res 62:4860–4866

    CAS  PubMed  Google Scholar 

  • Infante JR, Dees EC, Burris HA, Zawel L, Sager JA, Stevenson C, Clarke K, Dhuria S, Porter D, Sen SK, Zannou E, Sharma S, Cohen RB, Cannon S (2010) A phase I study of LCL161, an oral IAP inhibitor, in patients with advanced cancer. AACR March

    Google Scholar 

  • Kempkensteffen C, Fritzsche FR, Johannsen M, Weikert S, Hinz S, Dietel M, Riener MO, Moch H, Jung K, Krause H, Miller K, Kristiansen G (2009) Down-regulation of the pro-apoptotic XIAP associated factor-1 (XAF1) during progression of clear-cell renal cancer. BMC Cancer 9:276. (available from: PM:19664236)

    PubMed Central  PubMed  Google Scholar 

  • Kim PJ, Plescia J, Clevers H, Fearon ER, Altieri DC (2003) Survivin and molecular pathogenesis of colorectal cancer. Lancet 362:205–209

    CAS  PubMed  Google Scholar 

  • Kitzen JJ, de Jonge MJ, Lamers CH, Eskens FA, van der Biessen D, van Doorn L, Ter SJ, Brandely M, Puozzo C, Verweij J (2009) Phase I dose-escalation study of F60008, a novel apoptosis inducer, in patients with advanced solid tumours. Eur J Cancer 45(10):1764–1772

    Google Scholar 

  • Kiviharju TM, Lecane PS, Sellers RG, Peehl DM (2002) Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells. Clin Cancer Res 8(8):2666–2674

    CAS  PubMed  Google Scholar 

  • Konopleva M, Tabe Y, Zeng Z, Andreeff M (2009) Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updat 12(4–5):103–113. (available from: PM:19632887)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Konopleva MY, Jordan CT (2011) Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 29(5):591–599. (available from: PM:21220598)

    PubMed  Google Scholar 

  • LaCasse EC, Cherton-Horvat GG, Hewitt KE, Jerome LJ, Morris SJ, Kandimalla ER, Yu D, Wang H, Wang W, Zhang R, Agrawal S, Gillard JW, Durkin JP (2006) Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 12(17):5231–5241

    CAS  PubMed  Google Scholar 

  • Lee MG, Huh JS, Chung SK, Lee JH, Byun DS, Ryu BK, Kang MJ, Chae KS, Lee SJ, Lee CH, Kim JI, Chang SG, Chi SG (2006) Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses. Oncogene 25(42):5807–5822. (available from: PM:16909101)

    CAS  PubMed  Google Scholar 

  • Levkau B, Garton KJ, Ferri N, Kloke K, Nofer JR, Baba HA, Raines EW, Breithardt G (2001) xIAP induces cell-cycle arrest and activates nuclear factor-kappaB: new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ Res 88:282–290. (available from: PM:11179195)

    CAS  PubMed  Google Scholar 

  • Lewis KD, Samlowski W, Ward J, Catlett J, Cranmer L, Kirkwood J, Lawson D, Whitman E, Gonzalez R (2011) A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma. Invest New Drugs 29(1):161–166. (available from: PM:19830389)

    CAS  PubMed  Google Scholar 

  • Li F, Altieri DC (1999) Transcriptional analysis of human survivin gene expression. Biochem J 344(Pt 2):305–311. (available from: PM:10567210)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711):580–584

    CAS  PubMed  Google Scholar 

  • Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 305(5689):1471–1474

    CAS  PubMed  Google Scholar 

  • Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda JE, MacKenzie A, Korneluk RG (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379:349–353. (available from: PM:0008552191)

    CAS  PubMed  Google Scholar 

  • Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, Tamai K, Craig CG, McBurney MW, Korneluk RG (2001) Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol 3(2):128–133. (available from: PM:11175744)

    CAS  PubMed  Google Scholar 

  • Lu R, Bian F, Zhang X, Qi H, Chuang EY, Pflugfelder SC, Li DQ (2011) The beta-catenin/Tcf4/survivin signaling maintains a less differentiated phenotype and high proliferative capacity of human corneal epithelial progenitor cells. Int J Biochem Cell Biol 43(5):751–759. (available from: PM:21292023)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luck SC, Russ AC, Botzenhardt U, Paschka P, Schlenk RF, Dohner H, Fulda S, Dohner K, Bullinger L (2011) Deregulated apoptosis signaling in core-binding factor leukemia differentiates clinically relevant, molecular marker-independent subgroups. Leukemia 25(11):1728–1738. (available from: PM:21701487)

    CAS  PubMed  Google Scholar 

  • MacFarlane M, Merrison W, Bratton SB, Cohen GM (2002) Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277(39):36611–36616. (available from: PM:12121969)

    CAS  PubMed  Google Scholar 

  • Mahboubi K, Li F, Plescia J, Kirkiles-Smith NC, Mesri M, Du Y, Carroll JM, Elias JA, Altieri DC, Pober JS (2001) Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Lab Invest 81(3):327–334

    CAS  PubMed  Google Scholar 

  • Mak DH, Schober WD, Chen W, Heller J, Andreeff M, Carter BZ (2007) Tetra-O-methyl nordihydroguaiaretic acid inhibits growth and induces death of leukemia cells independent of Cdc2 and survivin. Leuk Lymphoma 48(4):774–785

    CAS  PubMed  Google Scholar 

  • Mak DH, Manton C, Andreeff, M, Carter BZ (2010) SMAC-Mimetic BV-6 Sensitizes Therapeutic Agents-Induced Apoptosis in AML Cells. Blood 116(21):899

    Google Scholar 

  • Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C, Downward J (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277:439–444

    CAS  PubMed  Google Scholar 

  • McManus DC, Lefebvre CA, Cherton-Horvat G, St Jean M, Kandimalla ER, Agrawal S, Morris SJ, Durkin JP, LaCasse EC (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23:8105–8117

    CAS  PubMed  Google Scholar 

  • Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D, Hideshima T, Treon SP, Munshi NC, Richardson PG, Anderson KC (2002) Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF –1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene 21(37):5673–5683

    CAS  PubMed  Google Scholar 

  • Miyazaki A, Kobayashi J, Torigoe T, Hirohashi Y, Yamamoto T, Yamaguchi A, Asanuma H, Takahashi A, Michifuri Y, Nakamori K, Nagai I, Sato N, Hiratsuka H (2011) Phase I clinical trial of survivin-derived peptide vaccine therapy for patients with advanced or recurrent oral cancer. Cancer Sci 102(2) :324–329. (available from: PM:21143701)

    CAS  PubMed  Google Scholar 

  • Mizutani Y, Nakanishi H, Yamamoto, K, Li YN, Matsubara H, Mikami K, Okihara K, Kawauchi A, Bonavida B, Miki T (2005) Downregulation of Smac/DIABLO expression in renal cell carcinoma and its prognostic significance. J Clin Oncol 23(3):448–454. (available from: PM:15572731)

    CAS  PubMed  Google Scholar 

  • Morgan JA, Yin Y, Borowsky AD, Kuo F, Nourmand N, Koontz JI, Reynolds C, Soreng L, Griffin CA, Graeme-Cook F, Harris NL, Weisenburger D, Pinkus GS, Fletcher JA, Sklar J (1999) Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res 59(24):6205–6213. (available from: PM:10626814)

    CAS  PubMed  Google Scholar 

  • Morizane Y, Honda R, Fukami K, Yasuda H (2005) X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem 137(2):125–132. (available from: PM:15749826)

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Hasegawa M, Kurata M, Yamamoto K, Abe S, Inoue M, Takemura T, Hirokawa K, Suzuki K, Kitagawa M (2005) Expression of IAP-family proteins in adult acute mixed lineage leukemia (AMLL). Am J Hematol 78(3):173–180. (available from: PM:15726601)

    CAS  PubMed  Google Scholar 

  • Nakahara T, Takeuchi M, Kinoyama I, Minematsu T, Shirasuna K, Matsuhisa A, Kita A, Tominaga F, Yamanaka K, Kudoh M, Sasamata M (2007) YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 67(17):8014–8021

    CAS  PubMed  Google Scholar 

  • Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP, Wang R, Fang X, Guo R, Zhang M, Lippman ME, Yang D, Wang S (2004) Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 47(10):2430–2440. (available from: PM:15115387)

    CAS  PubMed  Google Scholar 

  • Notarbartolo M, Cervello M, Poma P, Dusonchet L, Meli M, D’Alessandro N (2004) Expression of the IAPs in multidrug resistant tumor cells. Oncol Rep 11:133–136

    CAS  PubMed  Google Scholar 

  • Olayioye MA, Kaufmann H, Pakusch M, Vaux DL, Lindeman GJ, Visvader JE (2005) XIAP-deficiency leads to delayed lobuloalveolar development in the mammary gland. Cell Death Differ 12:87–90

    CAS  PubMed  Google Scholar 

  • Orzaez M, Gortat A, Sancho M, Carbajo RJ, Pineda-Lucena A, Palacios-Rodriguez Y, Perez-Paya E (2011) Characterization of dequalinium as a XIAP antagonist that targets the BIR2 domain. Apoptosis 16(5):460–467. (available from: PM:21340509)

    CAS  PubMed  Google Scholar 

  • Oto OA, Paydas S, Tanriverdi K, Seydaoglu G, Yavuz S, Disel U (2007) Survivin and EPR-1 expression in acute leukemias: prognostic significance and review of the literature. Leuk Res 31;(11):1495–1501. (available from: PM:17328950)

    CAS  PubMed  Google Scholar 

  • Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, Altieri DC, Sessa WC (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275(13):9102–9105.

    CAS  PubMed  Google Scholar 

  • Park R, Chang CC, Liang YC, Chung Y, Henry RA, Lin E, Mold DE, Huang RC (2005) Systemic treatment with tetra-O-methyl nordihydroguaiaretic acid suppresses the growth of human xenograft tumors. Clin Cancer Res 11(12):4601–4609

    CAS  PubMed  Google Scholar 

  • Pennati M, Folini M, Zaffaroni N (2007) Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis 28(6):1133–1139. (available from: PM:17341657)

    CAS  PubMed  Google Scholar 

  • Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J, Harran P, Wang X (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12(5):445–456. (available from: PM:17996648)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Plescia J, Salz W, Xia F, Pennati M, Zaffaroni N, Daidone MG, Meli M, Dohi T, Fortugno P, Nefedova Y, Gabrilovich DI, Colombo G, Altieri DC (2005) Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7(5):457–468

    CAS  PubMed  Google Scholar 

  • Pluta A, Wrzesien-Kus A, Cebula-Obrzut B, Wolska A, Szmigielska-Kaplon A, Czemerska M, Pluta P, Robak T, Smolewski P, Wierzbowska A (2010) Influence of high expression of Smac/DIABLO protein on the clinical outcome in acute myeloid leukemia patients. Leuk Res 34(10):1308–1313. (available from: PM:20061022)

    CAS  PubMed  Google Scholar 

  • Pluta P, Cebula-Obrzut B, Ehemann V, Pluta A, Wierzbowska A, Piekarski J, Bilski A, Nejc D, Kordek R, Robak T, Smolewski P, Jeziorski A (2011) Correlation of Smac/DIABLO protein expression with the clinico-pathological features of breast cancer patients. Neoplasma 58(5):430–435. (available from: PM:21744997)

    CAS  PubMed  Google Scholar 

  • Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M (2003) Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol 163(4):789–799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104(5):791–800. (available from: PM:11257232)

    CAS  PubMed  Google Scholar 

  • Sasaki H, Sheng Y, Kotsuji F, Tsang BK (2000) Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 60:5659–5666. (available from: PM:11059757)

    CAS  PubMed  Google Scholar 

  • Schimmer AD, Welsh K, Pinilla C, Wang Z, Krajewska M, Bonneau MJ, Pedersen IM, Kitada S, Scott FL, Bailly-Maitre B, Glinsky G, Scudiero D, Sausville E, Salvesen G, Nefzi A, Ostresh JM, Houghten RA, Reed JC (2004) Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5(1):25–35

    CAS  PubMed  Google Scholar 

  • Schimmer AD, Estey EH, Borthakur G, Carter BZ, Schiller GJ, Tallman MS, Altman JK, Karp JE, Kassis J, Hedley DW, Brandwein J, Xu W, Mak DH, LaCasse E, Jacob C, Morris SJ, Jolivet J, Andreeff M (2009) Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J Clin Oncol 27(28):4741–4746

    CAS  PubMed  Google Scholar 

  • Schimmer AD, Herr W, Hanel M, Borthakur G, Frankel A, Horst HA, Martin S, Kassis J, Desjardins P, Seiter K, Fiedler W, Noppeney R, Giagounidis A, Jacob C, Jolivet J, Tallman MS, Koschmieder S (2011) Addition of AEG35156 XIAP antisense oligonucleotide in reinduction chemotherapy does not improve remission rates in patients with primary refractory acute myeloid leukemia in a randomized phase II study. Clin Lymphoma Myeloma Leuk 11(5):433–438. (available from: PM:21729686)

    CAS  PubMed  Google Scholar 

  • Schyschka L, Rudy A, Jeremias I, Barth N, Pettit GR, Vollmar AM (2008) Spongistatin 1: a new chemosensitizing marine compound that degrades XIAP. Leukemia 22(9):1737–1745. (available from: PM:18548102)

    CAS  PubMed  Google Scholar 

  • Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, Salvesen GS (2005) XIAP inhibits caspase-3 and-7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24(3):645–655. (available from: PM:15650747)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Secchiero P, di Iasio MG, Melloni E, Voltan R, Celeghini C, Tiribelli M, Dal BM, Gattei V, Zauli G (2010) The expression levels of the pro-apoptotic XAF-1 gene modulate the cytotoxic response to Nutlin-3 in B chronic lymphocytic leukemia. Leukemia 24(2):480–483. (available from: PM:19847196)

    CAS  PubMed  Google Scholar 

  • Sekimura A, Konishi A, Mizuno K, Kobayashi Y, Sasaki H, Yano M, Fukai I, Fujii Y (2004) Expression of Smac/DIABLO is a novel prognostic marker in lung cancer. Oncol Rep 11(4):797–802. (available from: PM:15010875)

    CAS  PubMed  Google Scholar 

  • Shamon LA, Pezzuto JM, Graves JM, Mehta RR, Wangcharoentrakul S, Sangsuwan R, Chaichana S, Tuchinda P, Cleason P, Reutrakul V (1997) Evaluation of the mutagenic, cytotoxic, and antitumor potential of triptolide, a highly oxygenated diterpene isolated from Tripterygium wilfordii. Cancer Lett 112(1):113–117

    PubMed  Google Scholar 

  • Shin H, Renatus M, Eckelman BP, Nunes VA, Sampaio CA, Salvesen GS (2005) The BIR domain of IAP-like protein 2 is conformationally unstable: implications for caspase inhibition. Biochem J 385(Pt 1):1–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527. (available from: PM:12620238)

    CAS  PubMed  Google Scholar 

  • Silva KL, Vasconcellos DV, Castro ED, Coelho AM, Linden R, Maia RC (2006) Apoptotic effect of fludarabine is independent of expression of IAPs in B-cell chronic lymphocytic leukemia. Apoptosis 11(2):277–285. (available from: PM:16502265)

    CAS  PubMed  Google Scholar 

  • Small S, Keerthivasan G, Huang Z, Gurbuxani S, Crispino, JD (2010) Overexpression of survivin initiates hematologic malignancies in vivo. Leukemia 24(11):1920–1926

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song Z, Yao X, Wu M (2003) Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 278(25):23130–23140. (available from: PM:12660240)

    CAS  PubMed  Google Scholar 

  • Srinivasula SM, Datta P, Fan XJ, Fernandes-Alnemri T, Huang Z, Alnemri ES (2000) Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem 275(46):36152–36157

    CAS  PubMed  Google Scholar 

  • Sugahara K, Uemura A, Harasawa H, Nagai H, Hirakata Y, Tomonaga M, Murata K, Sohda H, Nakagoe T, Shibasaki S, Yamada Y, Kamihira S (2004) Clinical relevance of survivin as a biomarker in neoplasms, especially in adult T-cell leukemias and acute leukemias. Int J Hematol 80(1):52–58. (available from: PM:15293568)

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001a) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621

    Google Scholar 

  • Suzuki Y, Nakabayashi Y, Takahashi R (2001b) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 98(15):8662–8667. (available from: PM:11447297)

    Google Scholar 

  • Talbot DC, Ranson M, Davies J, Lahn M, Callies S, Andre V, Kadam S, Burgess M, Slapak C, Olsen AL, McHugh PJ, de Bono JS, Matthews J, Saleem A, Price P (2010) Tumor survivin is downregulated by the antisense oligonucleotide LY2181308: a proof-of-concept, first-in-human dose study. Clin Cancer Res 16(24):6150–6158

    CAS  PubMed  Google Scholar 

  • Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qiu YH, Monks A, Andreeff M, Reed JC (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6:1796–1803

    CAS  PubMed  Google Scholar 

  • Tamm I, Richter S, Scholz F, Schmelz K, Oltersdorf D, Karawajew L, Schoch C, Haferlach T, Ludwig WD, Wuchter C (2004) XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol J 5(6):489–495. (available from: PM:15570290)

    CAS  PubMed  Google Scholar 

  • Tanioka M, Nokihara H, Yamamoto N, Yamada Y, Yamada K, Goto Y, Fujimoto T, Sekiguchi R, Uenaka K, Callies S, Tamura T (2011) Phase I study of LY2181308, an antisense oligonucleotide against survivin, in patients with advanced solid tumors. Cancer Chemother Pharmacol 68(2):505–511. (available from: PM:21079959)

    CAS  PubMed  Google Scholar 

  • Tibes R, McDonagh KT, Lekakis L, Frazer N, Mohrland S, Dawn B, Garcia R, Schroeder K, Shanmugam V, Carpten J, von Hoff D, Shea TC (2009) Phase I Study of the Novel Surivin and cdc2/CDK1 Inhibitor Terameprocol in Patients with Advanced Leukemias. Blood 114(22):430–430

    Google Scholar 

  • Tolcher AW, Quinn DI, Ferrari A, Ahmann F, Giaccone G, Drake T, Keating, A, de Bono JS (2012) A phase II study of YM155, a novel small-molecule suppressor of survivin, in castration-resistant taxane-pretreated prostate cancer. Ann Oncol 23(4):968–973. (available from: PM:21859898)

    CAS  PubMed  Google Scholar 

  • Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, Kulkarni S, Abboud CN, Cashen AF, Stockerl-Goldstein KE, Vij R, Westervelt P, DiPersio JF (2012) A phase I/II study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 119(17):3917–3924. (available from: PM:22308295)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vallat L, Magdelenat H, Merle-Beral H, Masdehors P, Potocki de MG, Davi F, Kruhoffer M, Sabatier L, Orntoft TF, Delic J (2003) The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 101(11):4598–4606. (available from: PM:12586635)

    CAS  PubMed  Google Scholar 

  • Varfolomeev E, Wayson SM, Dixit VM, Fairbrother WJ, Vucic D (2006) The inhibitor of apoptosis protein fusion c-IAP2.MALT1 stimulates NF-kappaB activation independently of TRAF1 AND TRAF2. J Biol Chem 281(39):29022–29029. (available from: PM:16891304)

    CAS  PubMed  Google Scholar 

  • Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131(4):669–681.

    CAS  PubMed  Google Scholar 

  • Varfolomeev E, Vucic D (2008) (Un)expected roles of c-IAPs in apoptotic and NFkappaB signaling pathways. Cell Cycle 7(11):1511–1521. (available from: PM:18469528)

    CAS  PubMed  Google Scholar 

  • Velculescu VE, Madden SL, Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM, Cook BP, Dufault MR, Ferguson AT, Gao Y, He TC, Hermeking H, Hiraldo SK, Hwang PM, Lopez MA, Luderer HF, Mathews B, Petroziello JM, Polyak K, Zawel L, Kinzler KW (1999) Analysis of human transcriptomes. Nat Genet 23(4):387–388

    CAS  PubMed  Google Scholar 

  • Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454. (available from: PM:11604410)

    CAS  PubMed  Google Scholar 

  • Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131(4):682–693

    CAS  PubMed  Google Scholar 

  • Vucic D, Dixit VM, Wertz, I.E (2011) Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12(7):439–452. (available from: PM:21697901)

    CAS  PubMed  Google Scholar 

  • Wagenknecht B, Glaser T, Naumann U, Kugler S, Isenmann S, Bahr M, Korneluk R, Liston P, Weller M (1999) Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma. Cell Death Differ 6(4):370–376

    CAS  PubMed  Google Scholar 

  • Waldele K, Silbermann K, Schneider G, Ruckes T, Cullen BR, Grassmann R (2006) Requirement of the human T-cell leukemia virus (HTLV-1) tax-stimulated HIAP-1 gene for the survival of transformed lymphocytes. Blood 107(11):4491–4499. (available from: PM:16467195)

    PubMed  Google Scholar 

  • Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133(4):693–703

    CAS  PubMed  Google Scholar 

  • Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650–1653. (available from: PM:20339075)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weisberg E, Kung AL, Wright RD, Moreno D, Catley L, Ray A, Zawel L, Tran M, Cools J, Gilliland G, Mitsiades C, McMillin DW, Jiang J, Hall-Meyers E, Griffin JD (2007) Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol Cancer Ther 6(7):1951–1961. (available from: PM:17620426)

    CAS  PubMed  Google Scholar 

  • Weisberg E, Ray A, Barrett R, Nelson E, Christie AL, Porter D, Straub C, Zawel L, Daley JF, Lazo-Kallanian S, Stone R, Galinsky I, Frank D, Kung, AL, Griffin JD (2010) Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia 24(12):2100–2109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu TY, Wagner KW, Bursulaya B, Schultz PG, Deveraux QL (2003) Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase –3 interaction. Chem Biol 10(8):759–767. (available from: PM:12954335)

    CAS  PubMed  Google Scholar 

  • Xu R, Zhang P, Huang J, Ge S, Lu J, Qian G (2007) Sp1 and Sp3 regulate basal transcription of the survivin gene. Biochem Biophys Res Commun 356(1):286–292. (available from: PM:17350596)

    CAS  PubMed  Google Scholar 

  • Yang Y, Liu Z, Tolosa E, Yang J, Li L (1998) Triptolide induces apoptotic death of T lymphocyte. Immunopharmacology 40(2):139–149

    CAS  PubMed  Google Scholar 

  • Yang S, Chen J, Guo Z, Xu XM, Wang L, Pei XF, Yang J, Underhill CB, Zhang L (2003) Triptolide inhibits the growth and metastasis of solid tumors. Mol Cancer Ther 2(1):65–72

    CAS  PubMed  Google Scholar 

  • Yang L, Cao Z, Li F, Post DE, Van Meir EG, Zhong H, Wood WC (2004) Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene Ther 11(15):1215–1223. (available from: PM:15141159)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida A, Zokumasu K, Wano Y, Yamauchi T, Imamura S, Takagi K, Kishi S, Urasaki Y, Tohyama K, Ueda T (2012) Marked upregulation of Survivin and Aurora-B kinase are associated with disease progression in the myelodysplastic syndromes. Haematologica March 14. (available from: PM:22419576)

    Google Scholar 

  • You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N, Mikami I, Reguart N, McIntosh JK, Kashani-Sabet M, McCormick F, Jablons DM (2004) An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 64(15):5385–5389. (available from: PM:15289346)

    CAS  PubMed  Google Scholar 

  • Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan ST, Luk JM, Wigler M, Hannon GJ, Mu D, Lucito R, Powers S, Lowe SW (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125(7):1253–1267. (available from: PM:16814713)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, Levis M, Rubin JB, Negrin RR, Estey EH, Konoplev S, Andreeff M, Konopleva M (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113(24):6215–6224. (available from: PM:18955566)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou H, Du MQ, Dixit VM (2005) Constitutive NF-kappaB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 7(5):425–431. (available from: PM:15894263)

    CAS  PubMed  Google Scholar 

  • Zou B, Chim CS, Pang R, Zeng H, Dai Y, Zhang R, Lam CS, Tan VP, Hung IF, Lan HY, Wong BC (2011) XIAP-associated factor 1 (XAF1), a novel target of p53, enhances p53-mediated apoptosis via post-translational modification. Mol Carcinog 51(5):5422–5432. (available from: PM:21678496)

    Google Scholar 

  • Zurawa-Janicka D, Skorko-Glonek J, Lipinska B (2010) HtrA proteins as targets in therapy of cancer and other diseases. Expert Opin Ther Targets 14(7):665–679. (available from: PM:20469960)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Z. Carter Ph.D. .

Editor information

Editors and Affiliations

Conclusion

Conclusion

In recent years, IAPs have emerged as promising targets for cancer therapy, including AML treatment, because of their elevated expression, their roles in cancer cell survival and drug resistance , and their association with poor clinical outcomes. ASOs against these proteins and several small-molecule IAP antagonists, in particular SMAC mimetics, have been developed and are currently being evaluated in clinical trials in AML and other malignancies. Future studies should emphasize better understanding of other natural IAP inhibitors and their interaction with IAPs to develop improved IAP antagonists and rationally combine SMAC mimetics with other therapeutic agents to maximize apoptotic induction and minimize drug resistance and microenvironmental protection to leukemic cells. We hope to see all these research efforts translate into better treatment strategies and improved outcomes for patients with AML in the near future. IAP-based targeted therapy holds promise for enhancing and improving current chemotherapies for AML.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Carter, B., Andreeff, M. (2015). IAP Family of Proteins as Therapeutic Targets for Acute Myeloid Leukemia. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics