Skip to main content

Bcl-2 Family: Translational Aspects

  • Chapter
  • First Online:
Book cover Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

  • 2000 Accesses

Abstract

The Bcl-2 family of antiapoptotic and proapoptotic proteins serve as key regulators of the mitochondrial pathway of apoptosis. Multiple signals from a variety of cell death stimuli converge upon mitochondria to trigger the intrinsic apoptotic cascade. Bcl-2 family proteins are intimately related to prognosis and therapeutic resistance in acute myeloid leukemia (AML), making them rational targets for drug development. Also, directly targeting Bcl-2 family proteins circumvents many of the problems associated with targeting upstream molecules. The Bcl-2 antisense oligonucleotide oblimersen failed to live up to its initial promise in large phase III trials. The discovery of ABT-737, a novel, small-molecule inhibitor of specific protein–protein interactions, gave a much-needed impetus to the field of “BH3 mimetic” research. The demonstration that Mcl-1, an antiapoptotic Bcl-2 family protein that is not inhibited by ABT-737 or its analogs, is of crucial importance in AML, underscores the need for rational drug combinations that simultaneously target multiple arms of the apoptotic regulatory machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (2014) BCL-2 inhibitor yields high response in CLL and SLL. Cancer Discov 4(2):OF5

    PubMed Central  CAS  PubMed  Google Scholar 

  • Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496

    Google Scholar 

  • Albershardt TC, Salerni BL, Soderquist RS et al (2011) Multiple BH3 mimetics antagonize antiapoptotic MCL1 protein by inducing the endoplasmic reticulum stress response and up-regulating BH3-only protein NOXA. J Biol Chem 286:24882–24895

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andersen MH, Svane IM, Kvistborg P et al (2005) Immunogenicity of Bcl-2 in patients with cancer. Blood 105:728–734

    CAS  PubMed  Google Scholar 

  • Andersen RS, Wenandy L, Sorensen RB, thor Straten P, Andersen MH (2008) Mcl-1 and anticancer vaccination: identification of an HLA-A2-restricted epitope. Leukemia 22:668–9

    CAS  PubMed  Google Scholar 

  • Andreeff M, Jiang S, Zhang X et al (1999) Expression of Bcl-2-related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 13:1881–1892

    CAS  PubMed  Google Scholar 

  • Bagrintseva K, Geisenhof S, Kern R et al (2005) FLT3-ITD-TKD dual mutants associated with AML confer resistance to FLT3 PTK inhibitors and cytotoxic agents by overexpression of Bcl-x(L). Blood 105:3679–3685

    CAS  PubMed  Google Scholar 

  • Bhat UG, Gartel AL (2010) Nucleoside analog ARC targets Mcl-1 to induce apoptosis in leukemia cells. Leukemia 24:851–855

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bogenberger JM, Kornblau SM, Pierceall WE, Lena R, Chow D, Shi CX, Mantei J, Ahmann G, Gonzales IM, Choudhary A, Valdez R, Camoriano J, Fauble V, Tiedemann RE, Qiu YH, Coombes KR, Cardone M, Braggio E, Yin H, Azorsa DO, Mesa RA, Stewart AK, Tibes R (2014) BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia 28(8):1657–1665

    Google Scholar 

  • Bolanos-Meade J, Karp JE, Guo C et al (2003) Timed sequential therapy of acute myelogenous leukemia in adults: a phase II study of retinoids in combination with the sequential administration of cytosine arabinoside, idarubicin and etoposide. Leuk Res 27:313–321

    CAS  PubMed  Google Scholar 

  • Bradbury DA, Aldington S, Zhu YM, Russell NH (1996) Down-regulation of Bcl-2 in AML blasts by all-trans retinoic acid and its relationship to CD34 antigen expression. Br J Haematol 94:671–675

    CAS  PubMed  Google Scholar 

  • Campbell CJ, Lee JB, Levadoux-Martin M et al (2010) The human stem cell hierarchy is defined by a functional dependence on Mcl-1 for self-renewal capacity. Blood 116:1433–1442

    CAS  PubMed  Google Scholar 

  • Campos L, Rouault JP, Sabido O et al (1993) High expression of Bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81:3091–3096

    CAS  PubMed  Google Scholar 

  • Campos L, Sabido O, Rouault JP, Guyotat D (1994) Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells. Blood 84:595–600

    CAS  PubMed  Google Scholar 

  • Campos L, Sabido O, Viallet A, Vasselon C, Guyotat D (1999) Expression of apoptosis-controlling proteins in acute leukemia cells. Leuk Lymphoma 33:499–509

    CAS  PubMed  Google Scholar 

  • Carter BZ, Mak DH, Schober WD et al (2006) Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells. Blood 108:630–637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carter BZ, Mak DH, Woessner R et al (2009) Inhibition of KSP by ARRY-520 induces cell cycle block and cell death via the mitochondrial pathway in AML cells. Leukemia 23:1755–1762

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carter BZ, Mak DH, Shi Y et al (2012) MRx102, a triptolide derivative, has potent antileukemic activity in vitro and in a murine model of AML. Leukemia 26:443–450

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cencic R, Carrier M, Trnkus A, Porco JA, Jr, Minden M, Pelletier J (2010) Synergistic effect of inhibiting translation initiation in combination with cytotoxic agents in acute myelogenous leukemia cells. Leuk Res 34:535–541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Dai Y, Harada H, Dent P, Grant S (2007) Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67:782–791

    CAS  PubMed  Google Scholar 

  • Chen S, Dai Y, Pei XY, Grant S (2009) Bim upregulation by histone deacetylase inhibitors mediates interactions with the Bcl-2 antagonist ABT-737: evidence for distinct roles for Bcl-2, Bcl-XL, and Mcl-1. Mol Cell Biol 29:6149–6169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chonghaile TN, Letai A (2008) Mimicking the BH3 domain to kill cancer cells. Oncogene 27(1):149–157

    Google Scholar 

  • Chou FS, Wunderlich M, Griesinger A, Mulloy JC (2011) N-Ras(G12D) induces features of stepwise transformation in preleukemic human umbilical cord blood cultures expressing the AML1-ETO fusion gene. Blood 117:2237–2240

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dai Y, Rahmani M, Grant S (2003) Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene 22:7108–7122

    CAS  PubMed  Google Scholar 

  • Dai G, Chan KK, Liu S et al (2005) Cellular uptake and intracellular levels of the bcl-2 antisense g3139 in cultured cells and treated patients with acute myeloid leukemia. Clin Cancer Res 11:2998–3008

    CAS  PubMed  Google Scholar 

  • Davids MS, Letai A (2012) Targeting the B-cell lymphoma/leukemia 2 family in cancer. J Clin Oncol 30(25):3127–3135

    Google Scholar 

  • Davids MS, Letai A (2013) ABT-199: taking dead aim at Bcl-2. Cancer Cell 23:139–141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis RE, Greenberg PL (1998) Bcl-2 expression by myeloid precursors in myelodysplastic syndromes: relation to disease progression. Leuk Res 22:767–777

    CAS  PubMed  Google Scholar 

  • Del Gaizo Moore V, Letai A (2012) BH3 profiling—Measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett [Epub ahead of print]

    Google Scholar 

  • Del Poeta G, Venditti A, Del Principe MI et al (2003) Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). Blood 101:2125–2131

    CAS  PubMed  Google Scholar 

  • Del Poeta G, Ammatuna E, Lavorgna S et al (2010) The genotype nucleophosmin mutated and FLT3-ITD negative is characterized by high bax/bcl-2 ratio and favourable outcome in acute myeloid leukaemia. Br J Haematol 149:383–387

    CAS  PubMed  Google Scholar 

  • van Delft MF, Wei, Mason KD et al (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10:389–399

    PubMed Central  PubMed  Google Scholar 

  • Deng G, Lane C, Kornblau S et al (1998) Ratio of bcl-xshort to bcl-xlong is different in good- and poor-prognosis subsets of acute myeloid leukemia. Mol Med 4:158–164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dodou K, Anderson RJ, Small DA, Groundwater PW (2005) Investigations on gossypol: past and present developments. Expert Opin Investig Drugs 14:1419–1434.

    CAS  PubMed  Google Scholar 

  • Doi K, Li R, Sung SS et al (2012) Discovery of Marinopyrrole A (Maritoclax) as a Selective Mcl-1 Antagonist that Overcomes ABT-737 Resistance by Binding to and Targeting Mcl-1 for Proteasomal Degradation. J Biol Chem 287:10224–10235

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elstner E, Linker-Israeli M, Umiel T et al (1996) Combination of a potent 20-epi-vitamin D3 analogue (KH 1060) with 9-cis-retinoic acid irreversibly inhibits clonal growth, decreases bcl-2 expression, and induces apoptosis in HL-60 leukemic cells. Cancer Res 56:3570–3576

    CAS  PubMed  Google Scholar 

  • Estey EH, Thall PF, Pierce S et al (1999) Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin + /- all-trans retinoic acid + /- granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood 93:2478–2484

    CAS  PubMed  Google Scholar 

  • Ewings KE, Hadfield-Moorhouse K, Wiggins CM et al (2007) ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-XL. EMBO J 26:2856–2867

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gandhi L, Camidge DR, Ribeiro de Oliveira M et al (2011) Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol 29:909–916

    CAS  PubMed  Google Scholar 

  • Glaser SP, Lee EF, Trounson E et al (2012) Antiapoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev 26:120–5

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goff et al (2013) Phase I Trial of Vorinostat (SAHA) in Combination with Alvocidib (Flavopiridol) in Patients with Relapsed, Refractory or (Selected) Poor Prognosis Acute Leukemia or Refractory Anemia with Excess Blasts-2 (RAEB-2). ASH Annual Meeting Abstracts 112:2986 ASH Dec 6–9, 2008

    Google Scholar 

  • Gores GJ, Kaufmann SH (2012) Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors. Genes Dev 26:305–311

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hao JH, Yu M, Liu FT, Newland AC, Jia L (2004) Bcl-2 inhibitors sensitize tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by uncoupling of mitochondrial respiration in human leukemic CEM cells. Cancer Res 64:3607–3616

    CAS  PubMed  Google Scholar 

  • Hermanson D, Addo SN, Bajer AA et al (2009) Dual mechanisms of sHA 14–1 in inducing cell death through endoplasmic reticulum and mitochondria. Mol Pharmacol 76:667–678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hess CJ, Berkhof J, Denkers F et al (2007) Activated intrinsic apoptosis pathway is a key related prognostic parameter in acute myeloid leukemia. J Clin Oncol 25:1209–1215

    CAS  PubMed  Google Scholar 

  • Hogstrand K, Hejll E, Sander B, Rozell B, Larsson LG, Grandien A (2012) Inhibition of the intrinsic but not the extrinsic apoptosis pathway accelerates and drives myc-driven tumorigenesis towards acute myeloid leukemia. PLoS ONE 7:e31366

    PubMed Central  PubMed  Google Scholar 

  • Holkova B, Supko JG, Ames MM, Reid JM, Shapiro GI, Perkins EB, Ramakrishnan V, Tombes MB, Honeycutt C, McGovern RM, Kmieciak M, Shrader E, Wellons MD, Sankala H, Doyle A, Wright J, Roberts JD, Grant S (2013) A phase I trial of vorinostat and alvocidib in patients with relapsed, refractory, or poor prognosis acute leukemia, or refractory anemia with excess blasts-2. Clin Cancer Res 19(7):1873–1883

    Google Scholar 

  • Irish JM, Anensen N, Hovland R et al (2007) Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109:2589–2596

    CAS  PubMed  Google Scholar 

  • Irvine AE, McMullin MF, Ong YL (2002) Bcl-2 family members as prognostic indicators in AML. Hematology 7:21–31

    CAS  PubMed  Google Scholar 

  • Jarvis WD, Turner AJ, Povirk LF, Traylor RS, Grant S (1994) Induction of apoptotic DNA fragmentation and cell death in HL-60 human promyelocytic leukemia cells by pharmacological inhibitors of protein kinase C. Cancer Res 54:1707–1714

    CAS  PubMed  Google Scholar 

  • Jayanthan A, Incoronato A, Singh A et al (2011) Cytotoxicity, drug combinability, and biological correlates of ABT-737 against acute lymphoblastic leukemia cells with MLL rearrangement. Pediatr Blood Cancer 56:353–360

    PubMed  Google Scholar 

  • Jin L, Tabe Y, Kojima K, Shikami M, Benito J, Ruvolo V, Wang RY, McQueen T, Ciurea SO, Miida T, Andreeff M, Konopleva M (2013) PI3K inhibitor GDC-0941 enhances apoptotic effects of BH-3 mimetic ABT-737 in AML cells in the hypoxic bone marrow microenvironment. J Mol Med (Berl) 91(12):1383–1397

    Google Scholar 

  • Josefsson EC, James C, Henley KJ et al (2011) Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. J Exp Med 208:2017–2031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Joudeh J, Claxton D (2012) Obatoclax mesylate: pharmacology and potential for therapy of hematological neoplasms. Expert Opin Investig Drugs 21:363–373

    CAS  PubMed  Google Scholar 

  • Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kasper S, Breitenbuecher F, Heidel F et al (2012) Targeting MCL-1 sensitizes FLT3-ITD-positive leukemias to cytotoxic therapies. Blood Cancer Journal 2:e60

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaufmann SH, Karp JE, Svingen PA et al (1998) Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 91:991–1000

    CAS  PubMed  Google Scholar 

  • Keith FJ, Bradbury DA, Zhu YM, Russell NH (1995) Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 9:131–138

    CAS  PubMed  Google Scholar 

  • Kessel D, Reiners J Jr (2007) Initiation of apoptosis and autophagy by the Bcl-2 antagonist HA14–1. Cancer Lett 249:294–299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khaw SL, Huang DC, Roberts AW (2011) Overcoming blocks in apoptosis with BH3-mimetic therapy in haematological malignancies. Pathology 43:525–535

    CAS  PubMed  Google Scholar 

  • Kim KT, Levis M, Small D (2006) Constitutively activated FLT3 phosphorylates BAD partially through pim-1. Br J Haematol 134:500–509

    CAS  PubMed  Google Scholar 

  • Kim R, Emi M, Matsuura K, Tanabe K (2007) Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy. Cancer Gene Ther 14:1–11

    CAS  PubMed  Google Scholar 

  • Kitada S, Kress CL, Krajewska M, Jia L, Pellecchia M, Reed JC (2008) Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood 111:3211–3219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kohl TM, Hellinger C, Ahmed F et al (2007) BH3 mimetic ABT-737 neutralizes resistance to FLT3 inhibitor treatment mediated by FLT3-independent expression of BCL2 in primary AML blasts. Leukemia 21:1763–1772

    CAS  PubMed  Google Scholar 

  • Kojima K, Konopleva M, Samudio IJ, Schober WD, Bornmann WG, Andreeff M (2006) Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle 5:2778–2786

    CAS  PubMed  Google Scholar 

  • Kojima K, Shimanuki M, Shikami M, Andreeff M, Nakakuma H (2009) Cyclin-dependent kinase 1 inhibitor RO-3306 enhances p53-mediated Bax activation and mitochondrial apoptosis in AML. Cancer Sci 100:1128–1136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kojima K, Konopleva M, Tsao T et al (2010) Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 through Mcl-1/Noxa axis. Leukemia 24:33–43

    CAS  PubMed  Google Scholar 

  • Konopleva M, Tari AM, Estrov Z et al (2000) Liposomal Bcl-2 antisense oligonucleotides enhance proliferation, sensitize acute myeloid leukemia to cytosine-arabinoside, and induce apoptosis independent of other antiapoptotic proteins. Blood 95:3929–3038

    CAS  PubMed  Google Scholar 

  • Konopleva M, Tsao T, Ruvolo P et al (2002a) Novel triterpenoid CDDO-Me is a potent inducer of apoptosis and differentiation in acute myelogenous leukemia. Blood 99:326–335

    Google Scholar 

  • Konopleva M, Zhao S, Hu W et al (2002b) The antiapoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol 118:521–534

    Google Scholar 

  • Konopleva M, Contractor R, Tsao T et al (2006) Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10:375–388

    CAS  PubMed  Google Scholar 

  • Konopleva M, Watt J, Contractor R et al (2008) Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15–070 (obatoclax). Cancer Res 68:3413–3420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Konopleva M, Milella M, Ruvolo P et al (2012) MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 26:778–787

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kornblau SM, Thall PF, Estrov Z et al (1999) The prognostic impact of BCL2 protein expression in acute myelogenous leukemia varies with cytogenetics. Clin Cancer Res 5:1758–1766

    CAS  PubMed  Google Scholar 

  • Kornblau SM, Vu HT, Ruvolo P et al (2000) BAX and PKCalpha modulate the prognostic impact of BCL2 expression in acute myelogenous leukemia. Clin Cancer Res 6:1401–1409

    CAS  PubMed  Google Scholar 

  • Kuroda J, Taniwaki M (2009) Involvement of BH3-only proteins in hematologic malignancies. Crit Rev Oncol Hematol 71:89–101

    PubMed  Google Scholar 

  • Labi V, Grespi F, Baumgartner F, Villunger A (2008) Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ 15:977–987

    CAS  PubMed  Google Scholar 

  • Lauria F, Raspadori D, Rondelli D et al (1997) High bcl-2 expression in acute myeloid leukemia cells correlates with CD34 positivity and complete remission rate. Leukemia 11:2075–2078

    CAS  PubMed  Google Scholar 

  • Lee EF, Czabotar PE, Smith BJ et al (2007) Crystal structure of ABT-737 complexed with Bcl-XL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ 14:1711–1713

    CAS  PubMed  Google Scholar 

  • Lisovsky M, Estrov Z, Zhang X et al (1996) Flt3 ligand stimulates proliferation and inhibits apoptosis of acute myeloid leukemia cells: regulation of Bcl-2 and Bax. Blood 88:3987–3997

    CAS  PubMed  Google Scholar 

  • Luck SC, Russ AC, Botzenhardt U et al (2011) Deregulated apoptosis signaling in core-binding factor leukemia differentiates clinically relevant, molecular marker-independent subgroups. Leukemia 25:1728–1738

    CAS  PubMed  Google Scholar 

  • Malik SA, Orhon I, Morselli E et al (2011) BH3 mimetics activate multiple pro-autophagic pathways. Oncogene 30:3918–3029

    CAS  PubMed  Google Scholar 

  • Mandelin AM 2nd, Pope RM (2007) Myeloid cell leukemia-1 as a therapeutic target. Expert Opin Ther Targets 11:363–373

    CAS  PubMed  Google Scholar 

  • Marcucci G, Byrd JC, Dai G et al (2003) Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 101:425–432

    CAS  PubMed  Google Scholar 

  • Marcucci G, Stock W, Dai G et al (2005) Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 23:3404–3411

    CAS  PubMed  Google Scholar 

  • Marcucci G, Moser B, Blum W et al (2007) A phase III randomized trial of intensive induction and consolidation chemotherapy {+/-} oblimersen, a pro-apoptotic Bcl-2 antisense oligonucleotide in untreated acute myeloid leukemia patients > 60 years old. ASCO Meeting Abstracts 25:7012. ASCO 1–5, 2007

    Google Scholar 

  • Mason KD, Carpinelli MR, Fletcher JI et al (2007) Programmed anuclear cell death delimits platelet life span. Cell 128:1173–1186

    CAS  PubMed  Google Scholar 

  • Mazumder S, Choudhary GS, Al-Harbi S, Almasan A (2012) Mcl-1 phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B-cells. Cancer Res 72(12):3069–3079

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meng XW, Lee SH, Dai H et al (2007) Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43–9006)-induced TRAIL sensitization. J Biol Chem 282:29831–29846

    CAS  PubMed  Google Scholar 

  • Merino D, Khaw SL, Glaser SP et al (2012) Bcl-2, Bcl-XL and Bcl-w are not equivalent targets of ABT-737 and Navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 119(24):5807–5816

    PubMed Central  CAS  PubMed  Google Scholar 

  • Milella M, Kornblau SM, Estrov Z et al (2001) Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 108:851–859

    PubMed Central  CAS  PubMed  Google Scholar 

  • Milella M, Estrov Z, Kornblau SM et al (2002) Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood 99:3461–3464

    CAS  PubMed  Google Scholar 

  • Milella M, Konopleva M, Precupanu CM et al (2007) MEK blockade converts AML differentiating response to retinoids into extensive apoptosis. Blood 109:2121–2129

    CAS  PubMed  Google Scholar 

  • Minami Y, Yamamoto K, Kiyoi H, Ueda R, Saito H, Naoe T (2003) Different antiapoptotic pathways between wild-type and mutated FLT3: insights into therapeutic targets in leukemia. Blood 102:2969–2975

    CAS  PubMed  Google Scholar 

  • Minn AJ, Rudin CM, Boise LH, Thompson CB (1995) Expression of Bcl-XL can confer a multidrug resistance phenotype. Blood 86:1903–1910

    CAS  PubMed  Google Scholar 

  • Mizukawa B, Wei J, Shrestha M et al (2011) Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood 118:5235–5245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moore J, Seiter K, Kolitz J et al (2006) A Phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk Res 30:777–783

    CAS  PubMed  Google Scholar 

  • Nelson DM, Joseph B, Hillion J, Segal J, Karp JE, Resar LM (2011) Flavopiridol induces BCL-2 expression and represses oncogenic transcription factors in leukemic blasts from adults with refractory acute myeloid leukemia. Leuk Lymphoma 52:1999–2006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen M, Marcellus RC, Roulston A et al (2007) Small molecule obatoclax (GX15–070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 104:19512–19517

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nimmanapalli R, O’Bryan E, Kuhn D, Yamaguchi H, Wang HG, Bhalla KN (2003) Regulation of 17-AAG-induced apoptosis: role of Bcl-2, Bcl-XL, and Bax downstream of 17-AAG-mediated down-regulation of Akt, Raf-1, and Src kinases. Blood 102:269–275

    CAS  PubMed  Google Scholar 

  • Nordigarden A, Kraft M, Eliasson P et al (2009) BH3-only protein Bim more critical than Puma in tyrosine kinase inhibitor-induced apoptosis of human leukemic cells and transduced hematopoietic progenitors carrying oncogenic FLT3. Blood 113:2302–2311

    PubMed Central  PubMed  Google Scholar 

  • O’Brien S, Moore JO, Boyd TE et al (2009) 5-year survival in patients with relapsed or refractory chronic lymphocytic leukemia in a randomized, phase III trial of fludarabine plus cyclophosphamide with or without oblimersen. J Clin Oncol 27:5208–5212

    PubMed  Google Scholar 

  • Oki Y, Copeland A, Hagemeister F et al (2012) Experience with obatoclax mesylate (GX15–070), a small molecule pan-Bcl-2 family antagonist in patients with relapsed or refractory classical Hodgkin lymphoma. Blood 119:2171–2172

    CAS  PubMed  Google Scholar 

  • Oliver L, Mahe B, Gree R, Vallette FM, Juin P (2007) HA14–1, a small molecule inhibitor of Bcl-2, bypasses chemoresistance in leukaemia cells. Leuk Res 31:859–863

    CAS  PubMed  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    CAS  PubMed  Google Scholar 

  • Ong YL, McMullin MF, Bailie KE, Lappin TR, Jones FG, Irvine AE (2000) High bax expression is a good prognostic indicator in acute myeloid leukaemia. Br J Haematol 111:182–189

    CAS  PubMed  Google Scholar 

  • Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, Cortes J, DeAngelo DJ, Debose L, Mu H, Döhner H, Gaidzik VI, Galinsky I, Golfman LS, Haferlach T, Harutyunyan KG, Hu J, Leverson JD, Marcucci G, Müschen M, Newman R, Park E, Ruvolo PP, Ruvolo V, Ryan J, Schindela S, Zweidler-McKay P, Stone RM, Kantarjian H, Andreeff M, Konopleva M, Letai AG (2014) Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov 4(3):362–375

    Google Scholar 

  • Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A (2000) The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 96:3932–3938

    CAS  PubMed  Google Scholar 

  • Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    CAS  PubMed  Google Scholar 

  • Pepper CJ, Osman HY, Hewamana S, Walsby EJ, Burnett AK, Knapper SL (2009) Gossypol inhibits NF- {kappa}B, down regulates Mcl-1 and induces apoptosis of primary acute myeloid leukaemia cells. ASH Annual Meeting Abstracts 114:4813; ASH December 7–8, 2009

    Google Scholar 

  • Pisani F, Del Poeta G, Aronica G, Venditti A, Caravita T, Amadori S (1997) In vitro down-regulation of bcl-2 expression by all-trans retinoic acid in AML blasts. Ann Hematol 75:145–7

    CAS  PubMed  Google Scholar 

  • Ponassi R, Biasotti B, Tomati V et al (2008) A novel Bim-BH3-derived Bcl-XL inhibitor: biochemical characterization, in vitro, in vivo and ex-vivo antileukemic activity. Cell Cycle 7:3211–3224

    CAS  PubMed  Google Scholar 

  • Rahmani M, Davis EM, Bauer C, Dent P, Grant S (2005) Apoptosis induced by the kinase inhibitor BAY 43–9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 280:35217–35227

    CAS  PubMed  Google Scholar 

  • Rahmani M, Aust MM, Attkisson E, Williams DC, Jr, Ferreira-Gonzalez A, Grant S (2012) Inhibition of Bcl-2 anti-apoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process. Blood 119:6089–6098

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rahmani M, Aust MM, Attkisson E, Williams DC Jr, Ferreira-Gonzalez A, Grant S (2013) Dual inhibition of Bcl-2 and Bcl-XL strikingly enhances PI3K-inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. Cancer Res 73:1340–1351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raza A, Galili N, Borthakur G et al (2009) A safety and schedule seeking trial of Bcl-2 inhibitor obatoclax in previously untreated older patients with acute myeloid leukemia (AML). ASCO Meeting Abstracts 27:3579 ASCO May 29–June 2, 2009

    Google Scholar 

  • Reed JC (2008) Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood 111:3322–3330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reed JC, Pellecchia M (2005) Apoptosis-based therapies for hematologic malignancies. Blood 106:408–418

    CAS  PubMed  Google Scholar 

  • Reed JC, Stein C, Subasinghe C et al (1990) Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 50:6565–6570

    CAS  PubMed  Google Scholar 

  • Roberts AW, Seymour JF, Brown JR et al (2012) Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 30:488–496

    CAS  PubMed  Google Scholar 

  • Robinson BW, Behling KC, Gupta M et al (2008) Abundant antiapoptotic BCL-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol 141:827–839

    CAS  PubMed  Google Scholar 

  • Rosato RR, Almenara JA, Cartee L, Betts V, Chellappan SP, Grant S (2002) The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells. Mol Cancer Ther 1:253–266

    CAS  PubMed  Google Scholar 

  • Rosato RR, Almenara JA, Grant S (2003) The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 63:3637–3645

    CAS  PubMed  Google Scholar 

  • Rosato RR, Almenara JA, Maggio SC et al (2005) Potentiation of the lethality of the histone deacetylase inhibitor LAQ824 by the cyclin-dependent kinase inhibitor roscovitine in human leukemia cells. Mol Cancer Ther 4:1772–1785

    CAS  PubMed  Google Scholar 

  • Rosato RR, Almenara JA, Kolla SS et al (2007a) Mechanism and functional role of XIAP and Mcl-1 down-regulation in flavopiridol/vorinostat antileukemic interactions. Mol Cancer Ther 6:692–702

    Google Scholar 

  • Rosato RR, Almenara JA, Coe S, Grant S (2007b) The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res 67:9490–9500

    Google Scholar 

  • Rudin CM, Hann CL, Garon EB et al (2012) Phase 2 Study of Single Agent Navitoclax (ABT-263) and Biomarker Correlates in Patients with Relapsed Small Cell Lung Cancer. Clin Cancer Res 18(11):3163–3169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saeki K, Yuo A, Okuma E et al (2000) Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 7:1263–1269

    CAS  PubMed  Google Scholar 

  • Samudio I, Harmancey R, Fiegl M et al (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120:142–156

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schaich M, Illmer T, Seitz G et al (2001) The prognostic value of Bcl-XL gene expression for remission induction is influenced by cytogenetics in adult acute myeloid leukemia. Haematologica 86:470–477

    CAS  PubMed  Google Scholar 

  • Scheijen B, Ngo HT, Kang H, Griffin JD (2004) FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 23:3338–3349

    CAS  PubMed  Google Scholar 

  • Schimmer AD (2007) Novel therapies targeting the apoptosis pathway for the treatment of acute myeloid leukemia. Curr Treat Options Oncol 8:277–286

    PubMed  Google Scholar 

  • Schimmer AD, O’Brien S, Kantarjian H et al (2008) A phase I study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res 14:8295–8301

    CAS  PubMed  Google Scholar 

  • Schoenwaelder SM, Jarman KE, Gardiner EE et al (2011) Bcl-XL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 118:1663–1674

    CAS  PubMed  Google Scholar 

  • Shoemaker AR, Oleksijew A, Bauch J et al (2006) A small-molecule inhibitor of Bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res 66:8731–9

    CAS  PubMed  Google Scholar 

  • Skommer J, Das SC, Nair A, Brittain T, Raychaudhuri S (2011) Nonlinear regulation of commitment to apoptosis by simultaneous inhibition of Bcl-2 and XIAP in leukemia and lymphoma cells. Apoptosis 16:619–626

    CAS  PubMed  Google Scholar 

  • Smith BD, Bambach BJ, Vala MS et al (1998) Inhibited apoptosis and drug resistance in acute myeloid leukaemia. Br J Haematol 102:1042–1049

    CAS  PubMed  Google Scholar 

  • Souers AJ, Leverson JD, Boghaert ER et al (2013) ABT-1999, a potent and selective Bcl-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19:202–208

    CAS  PubMed  Google Scholar 

  • van Stijn A, van der Pol MA, Kok A et al (2003) Differences between the CD34+ and CD34− blast compartments in apoptosis resistance in acute myeloid leukemia. Haematologica 88:497–508

    PubMed  Google Scholar 

  • van Stijn A, Feller N, Kok A, van der Pol MA, Ossenkoppele GJ, Schuurhuis GJ (2005) Minimal residual disease in acute myeloid leukemia is predicted by an apoptosis-resistant protein profile at diagnosis. Clin Cancer Res 11:2540–6

    CAS  PubMed  Google Scholar 

  • Suarez L, Vidriales B, Garcia-Larana J et al (2001) Multiparametric analysis of apoptotic and multidrug resistance phenotypes according to the blast cell maturation stage in elderly patients with acute myeloid leukemia. Haematologica 86:1287–1295

    CAS  PubMed  Google Scholar 

  • Suarez L, Vidriales MB, Garcia-Larana J et al (2004) CD34+ cells from acute myeloid leukemia, myelodysplastic syndromes, and normal bone marrow display different apoptosis and drug resistance-associated phenotypes. Clin Cancer Res 10:7599–7606

    CAS  PubMed  Google Scholar 

  • Suarez L, Vidriales MB, Moreno MJ et al (2005) Differences in antiapoptotic and multidrug resistance phenotypes in elderly and young acute myeloid leukemia patients are related to the maturation of blast cells. Haematologica 90:54–59

    CAS  PubMed  Google Scholar 

  • Tang R, Faussat AM, Majdak P et al (2006) Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells. Mol Cancer Ther 5:723–731

    CAS  PubMed  Google Scholar 

  • Testa U, Riccioni R (2007) Deregulation of apoptosis in acute myeloid leukemia. Haematologica 92:81–94

    CAS  PubMed  Google Scholar 

  • Tian D, Das SG, Doshi JM, Peng J, Lin J, Xing C (2008) sHA 14–1, a stable and ROS-free antagonist against antiapoptotic Bcl-2 proteins, bypasses drug resistances and synergizes cancer therapies in human leukemia cell. Cancer Lett 259:198–208

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tse C, Shoemaker AR, Adickes J et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–8

    CAS  PubMed  Google Scholar 

  • Vallera DA, Jin N, Shu Y, Panoskaltsis-Mortari A, Kelekar A, Chen W (2003) Retroviral immunotoxin gene therapy of leukemia in mice using leukemia-specific T-cell transduced with an interleukin-3/Bax fusion protein gene. Hum Gene Ther 14:1787–1798

    CAS  PubMed  Google Scholar 

  • Vandenberg CJ, Cory S (2013) ABT-199, a Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 121:2285–2288

    PubMed Central  CAS  PubMed  Google Scholar 

  • Venditti A, Del Poeta G, Maurillo L et al (2004) Combined analysis of bcl-2 and MDR1 proteins in 256 cases of acute myeloid leukemia. Haematologica 89:934–9

    CAS  PubMed  Google Scholar 

  • Vogler M, Hamali HA, Sun XM et al (2011) BCL2/BCL-X(L) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood 117:7145–7154

    CAS  PubMed  Google Scholar 

  • Walensky LD, Kung AL, Escher I et al (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang ZG, Rivi R, Delva L et al (1998) Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARalpha independent manner. Blood 92:1497–1504

    CAS  PubMed  Google Scholar 

  • Wang JL, Liu D, Zhang ZJ et al (2000a) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 97:7124–7129

    Google Scholar 

  • Wang JL, Zhang ZJ, Choksi S et al (2000b) Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res 60:1498–1502

    Google Scholar 

  • Wei Y, Kadia T, Tong W et al (2010) The combination of a histone deacetylase inhibitor with the Bcl-2 homology domain-3 mimetic GX15–070 has synergistic antileukemia activity by activating both apoptosis and autophagy. Clin Cancer Res 16:3923–3932

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weinlich R, Dillon CP, Green DR (2011) Ripped to death. Trends Cell Biol 21:630–637

    PubMed Central  CAS  PubMed  Google Scholar 

  • White MJ, Schoenwaelder SM, Josefsson EC et al (2012) Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function. Blood 119:4283–4290

    CAS  PubMed  Google Scholar 

  • Willis SN, Chen L, Dewson G et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-XL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson WH, O’Connor OA, Czuczman MS et al (2010) Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 11:1149–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiang Z, Luo H, Payton JE et al (2010) Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest 120:2109–2118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Inokuchi K, Dan K (2002) The study for loss of bcl-xs expression as a prognostic factor in acute myeloid leukemia. Leuk Res 26:1119–1123

    CAS  PubMed  Google Scholar 

  • Yamaguchi R, Perkins G (2012) Finding a Panacea among combination cancer therapies. Cancer Res 72:18–23

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Liu L, Sternberg D et al (2005) The FLT3 internal tandem duplication mutation prevents apoptosis in interleukin-3-deprived BaF3 cells due to protein kinase A and ribosomal S6 kinase 1-mediated BAD phosphorylation at serine 112. Cancer Res 65:7338–7347

    CAS  PubMed  Google Scholar 

  • Yin S, Wang R, Zhou F, Zhang H, Jing Y (2011) Bcl-XL is a dominant antiapoptotic protein that inhibits homoharringtonine-induced apoptosis in leukemia cells. Mol Pharmacol 79:1072–1083

    CAS  PubMed  Google Scholar 

  • Yinjun L, Jie J, Weilai X, Xiangming T (2004) Homoharringtonine mediates myeloid cell apoptosis via upregulation of pro-apoptotic bax and inducing caspase-3-mediated cleavage of poly(ADP-ribose) polymerase (PARP). Am J Hematol 76:199–204

    PubMed  Google Scholar 

  • Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S et al (2009) FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood 114:5034–5043

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu C, Rahmani M, Dai Y et al (2003) The lethal effects of pharmacological cyclin-dependent kinase inhibitors in human leukemia cells proceed through a phosphatidylinositol 3-kinase/Akt-dependent process. Cancer Res 63:1822–1833

    CAS  PubMed  Google Scholar 

  • Yu C, Bruzek LM, Meng XW et al (2005) The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43–9 Oncogene 24:6861–6869

    CAS  PubMed  Google Scholar 

  • Zhang H, Nimmer PM, Tahir SK et al (2007a) Bcl-2 family proteins are essential for platelet survival. Cell Death Differ 14:943–951

    Google Scholar 

  • Zhang L, Ming L, Yu J (2007b) BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat 10:207–217

    Google Scholar 

  • Zhang M, Ling Y, Yang CY et al (2007c) A novel Bcl-2 small molecule inhibitor 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB)-induced apoptosis in leukemia cells. Ann Hematol 86:471–481

    Google Scholar 

  • Zhang W, Konopleva M, Ruvolo VR et al (2008) Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 22:808–818

    CAS  PubMed  Google Scholar 

  • Zhang W, Ruvolo VR, Gao C, Zhou L, Bornmann W, Tsao T, Schober WD, Smith P, Guichard S, Konopleva M, Andreeff M (2014) Evaluation of apoptosis induction by concomitant inhibition of MEK, mTOR, and Bcl-2 in human acute myelogenous leukemia cells. Mol Cancer Ther 13(7):1848–1859

    Google Scholar 

  • Zhao S, Konopleva M, Cabreira-Hansen M et al (2004) Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 18:267–275

    CAS  PubMed  Google Scholar 

  • Zheng A, Mantymaa P, Saily M, Siitonen T, Savolainen ER, Koistinen P (1999) An association between mitochondrial function and all-trans retinoic acid-induced apoptosis in acute myeloblastic leukaemia cells. Br J Haematol 105:215–224

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the following awards to Dr. Grant: RO1 CA093738, RO1 CA100866, P50 CA130805, P50 CA142509, and RC2 CA148431 from the National Institutes of Health, and award #6181–10 from the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prithviraj Bose M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Bose, P., Grant, S. (2015). Bcl-2 Family: Translational Aspects. In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics