The Clinical Development of Aurora Kinase Inhibitors in Acute Myeloid Leukemia

  • Kevin R. Kelly
  • Ciara L. Freeman
  • Francis J. Giles
Part of the Current Cancer Research book series (CUCR)


The Aurora family of serine/threonine kinases is essential for chromosome alignment, segregation, centrosomal maturation, mitotic spindle formation, and cytokinesis during mitosis. Their fundamental role in cell cycle regulation and aberrant expression in a broad range of malignancies prompted the development of small molecules that selectively inhibit their activity. Recent studies have revealed new insights into the cellular effects of Aurora kinase inhibition in the treatment of acute myeloid leukemia (AML). Moreover, early-phase clinical studies on AML have shown that these agents have therapeutic efficacy both alone and in combination with chemotherapy.


Aurora kinases Acute myeloid leukemia 


  1. Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, ­disease, and regeneration. Physiol Rev 87(2):521–544CrossRefPubMedCentralPubMedGoogle Scholar
  2. Arkenau HT et al (2011) A phase I dose escalation study of AT9283, a small molecule inhibitor of aurora kinases, in patients with advanced solid malignancies. Ann Oncol 23(5):1307–1313Google Scholar
  3. Bantscheff M et al (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25(9):1035–1044CrossRefPubMedGoogle Scholar
  4. Baxter EJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061CrossRefPubMedGoogle Scholar
  5. Bischoff JR et al (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J17 (11):3052–3065CrossRefGoogle Scholar
  6. Boss DS et al (2011) Clinical evaluation of AZD1152, an i.v. inhibitor of Aurora B kinase, in ­patients with solid malignant tumors. Ann Oncol 22(2):431–437CrossRefPubMedGoogle Scholar
  7. Briassouli P et al (2007) Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of Ikappa Balpha. Cancer Res 67(4):1689–1695CrossRefPubMedGoogle Scholar
  8. Carpinelli P, Moll J (2008) Aurora kinases and their inhibitors: more than one target and one drug. Adv Exp Med Biol 610:54–73CrossRefPubMedGoogle Scholar
  9. Carter TA et al (2005) Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci U S A 102:11011–11016CrossRefPubMedCentralPubMedGoogle Scholar
  10. Cheng H, Force T (2010) Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 106(1):21–34CrossRefPubMedGoogle Scholar
  11. Chieffi P et al (2006) Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate 66(3):326–333CrossRefPubMedGoogle Scholar
  12. Cohen RB et al (2009a) A phase I dose-escalation study of danusertib (PHA-739358) administered as a 24-hour infusion with and without granulocyte colony-stimulating factor in a 14-day cycle in patients with advanced solid tumors. Clin Cancer Res 15(21):6694–6701Google Scholar
  13. Cohen RB et al (2009b) A phase I dose-escalation study of danusertib (PHA-739358) administered as a 24-hour infusion with and without granulocyte colony-stimulating factor in a 14-day cycle in patients with advanced solid tumors. Clin Cancer Res 15(21):6694–6701Google Scholar
  14. Cortes-F, Dombret JH, Schafhausen P, Brummendorf TH, Boissel N, Latini F, Capolongo L, ­Laffranchi B, Comis S (2009) Danusertib Hydrochloride (PHA-739358), a multi-kinase ­aurora inhibitor, elicits clinical benefit in advanced chronic myeloid leukemia and philadelphia chromosome positive acute lymphoblastic leukemia. Blood (ASH Annual Meeting Abstracts) 114:864Google Scholar
  15. Crane R et al (2004) Aurora A, meiosis and mitosis. Biol Cell 96(3):215–229CrossRefPubMedGoogle Scholar
  16. Crane R, Kloepfer A, Ruderman JV (2004) Requirements for the destruction of human Aurora-A. J Cell Sci 117(Pt 25):5975–5983CrossRefPubMedGoogle Scholar
  17. Crosio C et al (2002) Mitotic phosphorylation of histone H3: spatio-temporal regulation by ­mammalian Aurora kinases. Mol Cell Biol 22(3):874–885CrossRefPubMedCentralPubMedGoogle Scholar
  18. Dai Y et al (2008) Vorinostat synergistically potentiates MK-0457 lethality in chronic myelogenous leukemia cells sensitive and resistant to imatinib mesylate. Blood 112(3):793–804CrossRefPubMedCentralPubMedGoogle Scholar
  19. Dees EC, I.J., Burris H, Astsaturov IA, Stinchcombe T, Liu H, Galvin K, Venkatakrishnan K, Fingert HJ, Cohen RB (2010) Phase I study of the investigational drug MLN8237, an Aurora A kinase (AAK) inhibitor, in patients (pts) with solid tumors. J Clin Oncol 28:15s(15):abstr 3010Google Scholar
  20. Dees EC et al (2011) Phase 1 study of MLN8054, a selective inhibitor of Aurora A kinase in patients with advanced solid tumors. Cancer Chemother Pharmacol 67(4):945–954CrossRefPubMedCentralPubMedGoogle Scholar
  21. Ditchfield C et al (2003) Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161(2):267–280CrossRefPubMedCentralPubMedGoogle Scholar
  22. Ducat D, Zheng Y (2004) Aurora kinases in spindle assembly and chromosome segregation. Exp Cell Res 301(1):60–67CrossRefPubMedGoogle Scholar
  23. Fancelli D et al (2005) Potent and selective Aurora inhibitors identified by the expansion of a novel scaffold for protein kinase inhibition. J Med Chem 48(8):3080–3084CrossRefPubMedGoogle Scholar
  24. Fancelli D et al (2006) 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J Med Chem 49(24):7247–7251CrossRefPubMedGoogle Scholar
  25. Farruggio DC, Townsley FM, Ruderman JV (1999) Cdc20 associates with the kinase aurora2/Aik. Proc Natl Acad Sci U S A 96(13):7306–7311CrossRefPubMedCentralPubMedGoogle Scholar
  26. Fiskus W et al (2008) Cotreatment with vorinostat enhances activity of MK-0457 (VX-680) against acute and chronic myelogenous leukemia cells. Clin Cancer Res 14(19):6106–6615CrossRefPubMedCentralPubMedGoogle Scholar
  27. Fletcher GC et al (2011) ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol Cancer Ther 10(1):126–137CrossRefPubMedGoogle Scholar
  28. Foran JM (2008) Phase I and pharmacodynamic trial of AT9283, an aurora kinase inhibitor, in patients with refractory leukemia. In: ASCO Annual MeetingGoogle Scholar
  29. Friedberg J, M.D., Jung J, Persky DO, Lossos IS, Danaee H, Zhou X, Jane E, Leonard J, Bernstein SH (2011) Phase 2 Trial of Alisertib (MLN8237), An Investigational, Potent Inhibitor of Aurora A Kinase (AAK), in Patients (pts) with Aggressive B- and T-Cell Non-Hodgkin Lymphoma (NHL). Blood (Ash Annual Meeting Abstracts) 111(14):4211Google Scholar
  30. Fu J et al (2007) Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5(1):1–10CrossRefPubMedGoogle Scholar
  31. Gadea BB, Ruderman JV (2005) Aurora kinase inhibitor ZM447439 blocks chromosome-induced spindle assembly, the completion of chromosome condensation, and the establishment of the spindle integrity checkpoint in Xenopus egg extracts. Mol Biol Cell 16(3):1305–1318CrossRefPubMedCentralPubMedGoogle Scholar
  32. Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152(4):669–682CrossRefPubMedCentralPubMedGoogle Scholar
  33. Giles F et al (2006) MK-0457 is a novel Aurora Kinase and Janus Kinase 2 (JAK2) inhibitor with activity in transformed JAK2-positive myeloproliferative disease (MPD). ASH Annual Meeting Abstracts 108(11):4893Google Scholar
  34. Giles F et al (2006) MK-0457, a novel multikinase inhibitor, has activity in refractory aml, including transformed jak2 positive myeloproliferative disease (mpd), and in philadelphia-positive all. ASH Annual Meeting Abstracts 108(11):1967Google Scholar
  35. Giles FJ et al (2007) MK-0457, a novel kinase inhibitor, is active in patients with chronic ­myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109(2):500–502CrossRefPubMedGoogle Scholar
  36. Glover DM et al (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81(1):95–105CrossRefPubMedGoogle Scholar
  37. Goldberg S, Craig GE, Lister J, Kassis J, Pigneux A, Schiller GJ, Jung J, Leonard J, Fingert H, Westervelt P (2010) Phase 2 study of MLN8237, an investigational Aurora A Kinase (AAK) inhibitor in patients with acute myelogenous leukemia (AML) or myelodysplastic syndromes (MDS). In: Annual Meeting of American Society of HematologyGoogle Scholar
  38. Gontarewicz A et al (2008) Simultaneous targeting of Aurora kinases and Bcr-Abl kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR-ABL mutations including T315I. Blood 111(8):4355–4364CrossRefPubMedGoogle Scholar
  39. Goodall J, Squires MS, Lock V, Ravandi F, Kantarjian HM, Foran J, Thompson NT, Lyons JF (2008) Outcome of Aurora kinase inhibition of acute myeloid leukemia by AT9283 is ­dependent upon the presence or absence of mutations in type 1 oncogenic kinase signalling ­pathways. Blood (ASH Annual Meeting Abstracts) 112:1613Google Scholar
  40. Goto H et al (2003) Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278(10):8526–8530CrossRefPubMedGoogle Scholar
  41. Harrington EA et al (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10(3):262–267CrossRefPubMedGoogle Scholar
  42. Hata T et al (2005) RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res ­65(7):2899–2905CrossRefPubMedGoogle Scholar
  43. Hauf S et al (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161(2):281–294CrossRefPubMedCentralPubMedGoogle Scholar
  44. Hirota T et al (2003) Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114(5):585–598CrossRefPubMedGoogle Scholar
  45. Hook KE et al (2012) An integrated genomic approach to identify predictive biomarkers of ­response to the aurora kinase inhibitor PF-03814735. Mol Cancer Ther 11(3):710–719CrossRefPubMedGoogle Scholar
  46. Howard S et al (2009) Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J Med Chem 52(2):379–388CrossRefPubMedGoogle Scholar
  47. Huang XF et al (2008) Aurora kinase inhibitory VX-680 increases BAX/BCL-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia. Blood 111(5):2854–2865CrossRefPubMedGoogle Scholar
  48. Ikezoe T et al (2007) A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther 6(6):1851–1857CrossRefPubMedGoogle Scholar
  49. Jeng YM et al (2004) Overexpression and amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 10(6):2065–2071CrossRefPubMedGoogle Scholar
  50. Kantarjian HM, Sekeres MA, Vincent R et al (2010) Phase I study to assess the safety and tolerability of azd1152 in combination with low dose cytosine arabinoside in patients with acute myeloid leukemia (AML). ASH Annual Meeting Abstracts 116:656Google Scholar
  51. Katayama H et al (2004) Phosphorylation by Aurora kinase A induces MDM2-mediated destabilization and inhibition of p53. Nat Genet 36(1):55–62CrossRefPubMedGoogle Scholar
  52. Kelly KR et al (2011) The novel Aurora A kinase inhibitor MLN8237 is active in resistant chronic myeloid leukaemia and significantly increases the efficacy of nilotinib. J Cell Mol Med 15(10):2057–2070CrossRefPubMedGoogle Scholar
  53. Kelly KR et al (2012) Targeting aurora a kinase activity with the investigational agent alisertib increases the efficacy of cytarabine through a FOXO-dependent mechanism. Int J Cancer 131(11):2693–2703Google Scholar
  54. Kelly KR, Goy A, Berdeja JG, Reeder CB, McDonagh KT, Zhou X, Danaee H, Xiao H, Benaim Eand Shea TC (2011) Results from a phase 1 multicenter trial of alisertib (MLN8237)—an ­investigational Aurora A kinase inhibitor—in patients with advanced hematologic malignancies. ASH Annual Meeting Abstracts 118(118):4110Google Scholar
  55. Kelly KR, Goy A, Berdeja JG, Reeder CB, McDonagh KT, Zhou X, Danaee H, Xiao H, Benaim Eand Shea TC (2011) Results from a phase 1 multicenter trial of alisertib (MLN8237)—an ­investigational Aurora A kinase inhibitor—in patients with advanced hematologic malignancies. In: Proc Am Soc HematolGoogle Scholar
  56. Kimura M et al (1999) Cell cycle-dependent expression and centrosome localization of a third ­human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274(11):7334–7340CrossRefPubMedGoogle Scholar
  57. Kobayashi M, Nakamura Satoki, Ono Takaaki, Sugimoto Yuya, Sahara Naohi, Shinjo Kaori, Shigeno Kazuyuki, Ohnishi Kazunori (2006) Analysis of aurora kinase expressions and cell cycle regulation by aurora-c in leukemia cells. Blood (ASH Annual Meeting Abstracts) 108:1366Google Scholar
  58. Liu Q, Ruderman JV (2006) Aurora A, mitotic entry, and spindle bipolarity. Proc Natl Acad Sci U S A 103(15):5811–5816CrossRefPubMedCentralPubMedGoogle Scholar
  59. Lowenberg B et al (2011) Phase 1/2 study to assess the safety, efficacy, and pharmacokinetics of barasertib (AZD1152) in patients with advanced acute myeloid leukemia. Blood ­118(23):6030–6036CrossRefPubMedCentralPubMedGoogle Scholar
  60. Lu LY et al (2008) Aurora A is essential for early embryonic development and tumor suppression. J Biol Chem 283(46):31785–3190CrossRefPubMedCentralPubMedGoogle Scholar
  61. Manfredi MG et al (2011) Characterization of Alisertib (MLN8237), an investigational ­small-molecule inhibitor of Aurora A Kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res 17(24):7614–7624Google Scholar
  62. Marumoto T et al (2002) Roles of Aurora-A kinase in mitotic entry and G2 checkpoint in ­mammalian cells. Genes Cells 7(11):1173–1182CrossRefPubMedGoogle Scholar
  63. Marumoto T et al (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278(51):51786–51795CrossRefPubMedGoogle Scholar
  64. Miyoshi Y et al (2001) Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer 92(3):370–3CrossRefPubMedGoogle Scholar
  65. Monier K, Mouradian S, Sullivan KF (2007) DNA methylation promotes Aurora-B-driven ­phosphorylation of histone H3 in chromosomal subdomains. J Cell Sci 120(Pt 1):101–114CrossRefPubMedGoogle Scholar
  66. Moore AS et al (2010) Aurora kinase inhibitors: novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias. Leukemia 24(4):671–678CrossRefPubMedGoogle Scholar
  67. Nair JS et al (2009) Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780. Mol Biol Cell 20(8):2218–2228CrossRefPubMedCentralPubMedGoogle Scholar
  68. Ouchi M et al (2004) BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem 279(19):19643–19648CrossRefPubMedGoogle Scholar
  69. Pollard CE, Valentin JP, Hammond TG (2008) Strategies to reduce the risk of drug-induced QT interval prolongation: a pharmaceutical company perspective. Br J Pharmacol 154(7):1538–1543CrossRefPubMedCentralPubMedGoogle Scholar
  70. Pratz KW et al (2009).A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood 113(17):3938–3946CrossRefPubMedCentralPubMedGoogle Scholar
  71. Qi W et al (2011) Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma. Biochem Pharmacol 81(7):881–890CrossRefPubMedCentralPubMedGoogle Scholar
  72. Reiter R et al (2006) Aurora kinase A messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma. Clin Cancer Res 12(17):5136–5141CrossRefPubMedGoogle Scholar
  73. Sarno S et al (2007) The novel aurora kinase inhibitor as703569 shows potent anti-tumor activity in acute myeloid leukemia (AML). ASH Annual Meeting Abstracts 110(11):915Google Scholar
  74. Sausville EA (2004) Aurora kinases dawn as cancer drug targets. Nat Med, 10(3):234–235CrossRefPubMedGoogle Scholar
  75. Schnittger S et al (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100(1):59–66CrossRefPubMedGoogle Scholar
  76. Sen S, Zhou H, White RA (1997) A putative serine/threonine kinase encoding gene BTAK on ­chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. ­Oncogene 14(18):2195–2200CrossRefPubMedGoogle Scholar
  77. Severson AF et al (2000) The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the ­mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 10(19):1162–1171CrossRefPubMedGoogle Scholar
  78. Shiotsu Y et al (2007) KW-2449, a novel multi-kinase inhibitor against FLT3, Abl, FGFR1 and Aurora, suppresses the growth of aml both in vitro and in vivo. ASH Annual Meeting Abstracts 110(11):1832Google Scholar
  79. Shiotsu Y et al (2009) KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood ­114(8):1607–1617CrossRefPubMedGoogle Scholar
  80. Shiotsu Y, Kiyoi Hitoshi, Ozeki Kazutaka, Umehara Hiroshi, Shimizu Makiko, Akinaga Shiro, Naoe Tomoki (2007) KW-2449, a novel multi-kinase inhibitor against FLT3, Abl, FGFR1 and Aurora, suppresses the growth of aml both in vitro and in vivo. Blood (ASH Annual Meeting Abstracts) 110:1832Google Scholar
  81. Smith SL et al (2005) Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer 93(6):719–729CrossRefPubMedCentralPubMedGoogle Scholar
  82. Sonet A, Graux C, Maertens J, Hartog C-M (2008) Phase I, dose-escalation study of 2 dosing regimens of AS703569, an inhibitor of aurora and other kinases, administered orally in patients with advanced hematological malignancies. Blood (ASH Annual Meeting Abstracts) 112:2963Google Scholar
  83. Steeghs N et al (2009a) Phase I pharmacokinetic and pharmacodynamic study of the aurora ­kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J Clin Oncol 27(30):5094–5101Google Scholar
  84. Steeghs N et al (2009b) Phase I pharmacokinetic and pharmacodynamic study of the aurora ­kinase inhibitor danusertib in patients with advanced or metastatic solid tumors. J Clin Oncol 27(30):5094–5101Google Scholar
  85. Tsuboi K et al (2011) A Phase I study to assess the safety, pharmacokinetics and efficacy of barasertib (AZD1152), an Aurora B kinase inhibitor, in Japanese patients with advanced acute myeloid leukemia. Leuk Res 35(10):1384–1389CrossRefPubMedGoogle Scholar
  86. Ulisse S et al (2006) Expression of Aurora kinases in human thyroid carcinoma cell lines and ­tissues. Int J Cancer 119(2):275–282CrossRefPubMedGoogle Scholar
  87. Vader G, Medema RH, Lens SM (2006) The chromosomal passenger complex: guiding Aurora-B through mitosis. J Cell Biol 173(6):833–837CrossRefPubMedCentralPubMedGoogle Scholar
  88. Wilkinson RW et al (2007) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13(12):3682–3688CrossRefPubMedGoogle Scholar
  89. Yang J et al (2007) AZD1152, a novel and selective aurora B kinase inhibitor, induces growth ­arrest, apoptosis, and sensitization for tubulin depolymerizing agent or topoisomerase II inhibitor in human acute leukemia cells in vitro and in vivo. Blood 110(6):2034–2040CrossRefPubMedGoogle Scholar
  90. Yee KWL et al (2009) A phase i study of enmd-2076 in patients with relapsed or refractory leukemia. ASH Annual Meeting Abstracts 116:3307Google Scholar
  91. Zhou H et al (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20(2):189–193CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York 2015

Authors and Affiliations

  • Kevin R. Kelly
    • 1
  • Ciara L. Freeman
    • 2
  • Francis J. Giles
    • 3
  1. 1.Institute for Drug Development, Cancer Therapy, and Research CenterUniversity of Texas, Health Science Center, Hematology Clinic—Cancer Therapy & Research CenterSan AntonioUSA
  2. 2.Department of HaematologyBarts and The London NHS TrustLondonUK
  3. 3.HRB Clinical Research Facility, Galway & Trinity College DublinNational University of IrelandGalwayIreland

Personalised recommendations