Skip to main content

FLT3-ITD. Clinical (Sorafenib/AC220)

  • Chapter
  • First Online:
Targeted Therapy of Acute Myeloid Leukemia

Part of the book series: Current Cancer Research ((CUCR))

  • 1972 Accesses

Abstract

A plethora of new molecular abnormalities has been identified to be associated with acute myelogenous leukemia (AML). These markers have contributed to a more accurate prognostic stratification of these patients, and have nurtured hopes for effective targeted therapies. One such abnormality is the FMS-like tyrosine kinase 3, or FLT3 gene mutation, present in approximately 30 % of AML patients. The presence of the FLT3 internal tandem duplication (FLT3-ITD) confers a poorer prognosis with higher risk of relapse for this subset of AML patients. Rapid development of a large number of FLT3 tyrosine kinase inhibitors (TKIs) has enabled an exciting era of research and treatment for patients with these abnormalities. The expectation is that FLT3 inhibition may offer improvements in outcomes in this poor prognosis group of patients. Early data suggest that this promise may be materializing for patients. This chapter will focus on two of these FLT3 inhibitors, sorafenib (Nexavar®) and AC220 (quizartinib).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auclair D, Miller D, Yatsula V, Pickett W, Carter C, Chang Y et al (2007) Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 21(3):439–445

    Article  CAS  PubMed  Google Scholar 

  • Awada A, Hendlisz A, Gil T, Bartholomeus S, Mano M, de Valeriola D et al (2005) Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer 92(10):1855–1861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belli BA, Dao A, Wierenga W, Armstrong RC (2011) AC220, a potent and specific FLT3 inhibitor, enhances the activity of combined cytarabine and daunorubicin chemotherapy in a FLT3-ITD Model of AML. ASH Annual Meeting Abstracts 118(21):1538. 10–13 Dec 2011

    Google Scholar 

  • Borthakur G, Kantarjian H, Ravandi F, Zhang W, Konopleva M, Wright JJ et al (2011) Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica 96(1):62–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunet S, Labopin M, Esteve J, Cornelissen J, Socie G, Iori AP et al (2012) Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J Clin Oncol 30(7):735–741

    Article  PubMed  Google Scholar 

  • Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ (2000) Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96(8):2655–2663

    CAS  PubMed  Google Scholar 

  • Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM et al (2006) BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 98(5):326–334

    Article  CAS  PubMed  Google Scholar 

  • Chao Q, Sprankle KG, Grotzfeld RM, Lai AG, Carter TA, Velasco AM et al (2009) Identification of N-(5-tert-butyl-isoxazol-3-yl)-N′-{4-[7-(2-morpholin-4-yl-ethoxy)imidazo[2,1-b][1,3]benzothiazol-2-yl]phenyl}urea dihydrochloride (AC220), a uniquely potent, selective, and efficacious FMS-like tyrosine kinase-3 (FLT3) inhibitor. J Med Chem 52(23):7808–7816

    Article  CAS  PubMed  Google Scholar 

  • Cortes J, Foran J, Ghirdaladze D, DeVetten MP, Zodelava M, Holman P et al (2009) AC220, a potent, selective, second generation FLT3 receptor tyrosine kinase (RTK) inhibitor, in a first-in-human (FIH) phase 1 AML study. ASH Annual Meeting Abstracts 114(22). 5–8 Dec 2009

    Google Scholar 

  • Cortes JE, Perl AE, Smith CC, Kovacsovics T, Dombret H, Dohner H et al (2011) A phase II open-label, AC220 monotherapy efficacy study in patients with refractory/relapsed FLT3-ITD positive acute myeloid leukemia: updated interim results. ASH Annual Meeting Abstracts 118(21). 10–13 Dec 2011

    Google Scholar 

  • Crump M, Hedley D, Kamel-Reid S, Leber B, Wells R, Brandwein J et al (2010) A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: a NCIC (National Cancer Institute of Canada) clinical trials group study. Leuk Lymphoma 51(2):252–260

    Article  CAS  PubMed  Google Scholar 

  • Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134

    Article  CAS  PubMed  Google Scholar 

  • Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M et al (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27(20):3312–3318

    Article  CAS  PubMed  Google Scholar 

  • Fabian MA, Biggs WH, 3rd, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23(3):329–336

    Article  CAS  PubMed  Google Scholar 

  • Fiskus W, Smith CC, Smith J, Wise SC, Lasater E, Damon LE et al (2011) Activity of allosteric, switch-pocket, ABL/FLT3 kinase inhibitor DCC2036 against cultured and primary AML progenitors with FLT-ITD or FLT3 kinase domain mutations. ASH Annual Meeting Abstracts 118(21):2611. 10–13 Dec 2011

    Google Scholar 

  • Fukuda S, Broxmeyer HE, Pelus LM (2005) FLT3 ligand and the FLT3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood 105(8):3117–3126

    Article  CAS  PubMed  Google Scholar 

  • Hotte SJ, Hirte HW (2002) BAY 43–9006: early clinical data in patients with advanced solid malignancies. Curr Pharm Des 8(25):2249–2253

    Article  CAS  PubMed  Google Scholar 

  • Inaba H, Rubnitz JE, Coustan-Smith E, Li L, Furmanski BD, Mascara GP et al (2011) Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol 29(24):3293–3300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kampa-Schittenhelm KM, Trikha M, Schlenk RF, Doehner H, Doehner K, Heinrich MC et al (2010) AC220, a potent second generation class I/III tyrosine kinase inhibitor, displays a distinct inhibition profile on mutant-FLT3 as well as -KIT isoforms. ASH Annual Meeting Abstracts 116(21):291. 4–7 Dec 2010

    Google Scholar 

  • Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132

    Article  CAS  PubMed  Google Scholar 

  • Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M (2002) Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 16(9):1713–1724

    Article  CAS  PubMed  Google Scholar 

  • Lierman E, Lahortiga I, Van Miegroet H, Mentens N, Marynen P, Cools J (2007) The ability of sorafenib to inhibit oncogenic PDGFRbeta and FLT3 mutants and overcome resistance to other small molecule inhibitors. Haematologica 92(1):27–34

    Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390

    Article  CAS  PubMed  Google Scholar 

  • Man CH, Fung TK, Ho C, Han HH, Chow HC, Ma AC et al (2012) Sorafenib treatment of FLT3-ITD+ acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent non-responsiveness associated with a D835 mutation. Blood 119(22):5133–5143

    Article  CAS  PubMed  Google Scholar 

  • Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A et al (2009) Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 113(26):6567–6571

    Article  CAS  PubMed  Google Scholar 

  • Metzelder S, Schroeder T, Finck A, Scholl S, Fey M, Gotze K et al (2012) High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia (AML) synergizes with alloimmune effects to induce sustained responses. Leukemia 2012 Apr 16. (epub ahead of print)

    Google Scholar 

  • Mohle R, Schittenhelm M, Failenschmid C, Bautz F, Kratz-Albers K, Serve H et al (2000) Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Br J Haematol 110(3):563–572

    Article  CAS  PubMed  Google Scholar 

  • Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV (1996) Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 92(1):97–103

    Article  CAS  PubMed  Google Scholar 

  • Patel HK, Grotzfeld RM, Lai AG, Mehta SA, Milanov ZV, Chao Q et al (2009) Arylcarboxyamino-substituted diaryl ureas as potent and selective FLT3 inhibitors. Bioorg Med Chem Lett 19(17):5182–5185

    Article  CAS  PubMed  Google Scholar 

  • Pemmaraju N, Kantarjian H, Ravandi F, Cortes J (2011) FLT3 inhibitors in the treatment of acute myeloid leukemia: the start of an era? Cancer 117(15):3293–3304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perl AE, Jeschke GR, Smith CC, Mangan JK, Luger SM, Carroll M (2011) Phospho-specific flow cytometry of fixed whole blood demonstrates in vivo FLT3 inhibition in circulating leukemic blasts during AC220 therapy and accurately detects the development of therapeutic resistance. ASH Annual Meeting Abstracts 118(21):3502. 10–13 Dec 2011

    Google Scholar 

  • Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M (2010) FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 115(7):1425–1432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY et al (2010) Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol 28(11):1856–1862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Safaian NN, Czibere A, Bruns I, Fenk R, Reinecke P, Dienst A et al (2009) Sorafenib (Nexavar) induces molecular remission and regression of extramedullary disease in a patient with FLT3-ITD+ acute myeloid leukemia. Leuk Res 33(2):348–350

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Yang X, Knapper S, White P, Smith BD, Galkin S et al (2011) FLT3 ligand impedes the efficacy of FLT3 inhibitors in vitro and in vivo. Blood 117(12):3286–3293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sayar H, Cripe L, Cangany M, Weisenbach J, Sargent KJ, Goswami C et al (2010) Cyclic administration of combination of sorafenib and vorinostat in poor-risk AML: a pharmacodynamically-oriented extended phase I trial. ASH Annual Meeting Abstracts 116(21):3272. 4–7 Dec 2010

    Google Scholar 

  • Serve H, Wagner R, Sauerland C, Brunnberg U, Krug U, Schaich M et al (2010) Sorafenib in combination with standard induction and consolidation therapy in elderly AML patients: results from a randomized, placebo-controlled phase II trial. ASH Annual Meeting Abstracts 116(21):333. 4–7 Dec 2010

    Google Scholar 

  • Sharma M, Ravandi F, Bayraktar UD, Chiattone A, Bashir Q, Giralt S et al (2011) Treatment of FLT3-ITD-positive acute myeloid leukemia relapsing after allogeneic stem cell transplantation with sorafenib. Biol Blood Marrow Transplant 17(12):1874–1877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith CC, Perl AE, Lasater E, Zhang C, Jeschke GR, Damon LE et al (2011a) PLX3397 is an investigational selective FLT3 inhibitor that retains activity against the clinically-relevant FLT3-ITD/F691 L “gatekeeper” mutation in vitro. ASH Annual Meeting Abstracts 118(21):764. 10–13 Dec 2011

    Google Scholar 

  • Smith CC, Damon LE, Zhu X, Salerno S, Shah N (2011b) Analysis of in vitro activity of the clinically-active ABL/FLT3 inhibitor ponatinib (AP24534) against AC220-resistant FLT3-ITD mutants. ASH Annual Meeting Abstracts 118(21):930. 10–13 Dec 2011

    Google Scholar 

  • Smith CC, Chin J, Wang Q, Salerno S, Damon LE, Hunt JP et al (2011c) Validation of FLT3-ITD as a therapeutic target in human acute myeloid leukemia. ASH Annual Meeting Abstracts 118(21):937. 10–13 Dec 2011

    Google Scholar 

  • Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ et al (2012) Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 485(7397):260–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M et al (2005) Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23(5):965–972

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm S, Chien DS (2002) BAY 43-9006: preclinical data. Curr Pharm Des 8(25):2255–2257

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  CAS  PubMed  Google Scholar 

  • Wright I, Kapoor A (2011) Current systemic management of metastatic renal cell carcinoma—first line and second line therapy. Curr Opin Support Palliat Care 5(3):211–221

    Article  PubMed  Google Scholar 

  • Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B et al (2009) AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 114(14):2984–2992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O et al (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113(24):6215–6224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG et al (2008a) Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia 22(4):808–818

    Google Scholar 

  • Zhang W, Konopleva M, Shi YX, McQueen T, Harris D, Ling X et al (2008) Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 100(3):184–198

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Eduardo Cortes M.D. .

Editor information

Editors and Affiliations

Conclusion

Conclusion

The standard backbone of treatment for AML (i.e., anthracycline- and cytarabine-based therapies) has remained largely unchanged over the past 40 years, and outcomes remain overall poor in this hematologic malignancy. Therapeutic strategies inhibiting the kinase activity of FLT3 in patients with AML with FLT3 mutations have yielded promising results thus far, as this approach represents one of the first attempts at rational, biologically based personalized treatment in patients with AML. However, significant challenges still remain as most of the responses are transient and mechanisms of resistance need to be overcome and discovered. The optimal ways to combine FLT3 inhibitors with other agents need to be investigated and is likely to vary from patient to patient. Further translational and clinical research is warranted to continue to investigate FLT3 inhibitors in the clinic with particular attention to the biology of FLT3 and better characterization of the various mechanisms of FLT3 resistance. Still, FLT3 inhibitors are likely to become an important tool in our quest to conquer AML.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Pemmaraju, N., Cortes, J. (2015). FLT3-ITD. Clinical (Sorafenib/AC220). In: Andreeff, M. (eds) Targeted Therapy of Acute Myeloid Leukemia. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1393-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1393-0_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1392-3

  • Online ISBN: 978-1-4939-1393-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics