Physiological Monitoring for Procedural Sedation: The Routine and Beyond

Chapter

Abstract

Physiological monitoring of vital signs is essential for the safe practice of procedural sedation and analgesia. Oxygenation, ventilation, cortical activity, and hemodynamics can all be monitored noninvasively in spontaneously breathing patients. This chapter discusses the current guidelines and standards for patient monitoring, the essential monitoring modalities for procedural sedation and analgesia in children, and future directions in the field of monitoring.

Keywords

Physiologic monitoring Procedural sedation Oxygenation monitoring Ventilation monitoring Hemodynamic monitoring Capnography Depth of sedation Bispectral index (BIS) Cerebral oximetry Noninvasive cardiovascular monitoring American Academy of Pediatrics (AAP) American Society of Anesthesiologists (ASA) Joint Commission American College of Emergency Physicians (ACEP) Electroencephalogram (EEG) Ramsay Sedation Scale (RSS) Observer’s Assessment of Alertness/Sedation Scale (OAA/S) University of Michigan Sedation Scale (UMSS) 

References

  1. 1.
    Krauss B, Green SM. Procedural sedation and analgesia in children. Lancet. 2006;367(9512):766–80.PubMedCrossRefGoogle Scholar
  2. 2.
    American Academy of Pediatrics, American Academy of Pediatric Dentistry. Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures: an update. Pediatrics. 2006;118:2587–602.CrossRefGoogle Scholar
  3. 3.
    American Society of Anesthesiologists. Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology. 2002;96:1004–17.CrossRefGoogle Scholar
  4. 4.
    American College of Emergency Physicians. Clinical policy: procedural sedation and analgesia in the emergency department. Ann Emerg Med. 2005;45:177–96.CrossRefGoogle Scholar
  5. 5.
    Sedation and Anesthesia Care standards. Oakbrook Terrace: Joint Commission on Accreditation of Healthcare Organizations. http://www.jcaho.org
  6. 6.
    Krauss B, Green SM. Procedural sedation and analgesia in children. N Engl J Med. 2000;342:948–56.CrossRefGoogle Scholar
  7. 7.
    New W. Pulse oximetry. J Clin Monit. 1985;1:126.PubMedCrossRefGoogle Scholar
  8. 8.
    Alexander CM, Teller LE, Gross JB. Principles of pulse oximetry: theoretical and practical considerations. Anesth Analg. 1989; 68:368–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Tremper KK, Barker SJ. Pulse oximetry. Anesthesiology. 1989;70:98–108.PubMedCrossRefGoogle Scholar
  10. 10.
    Sinex JE. Pulse oximetry: principles and limitations. Am J Emerg Med. 1999;17:59–67.PubMedCrossRefGoogle Scholar
  11. 11.
    Burton JH, Harrah JD, Germann CA, Dillon DC. Does end-tidal carbon dioxide monitoring detect respiratory events prior to current sedation monitoring practices? Acad Emerg Med. 2006; 13:500–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Fu ES, Downs JB, Schweiger JW, Miguel RV, Smith RA. Supplemental oxygen impairs detection of hypoventilation by pulse oximetry. Chest. 2004;126:1552–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Swedlow DB. Capnometry and capnography: the anesthesia disaster early warning system. Semin Anesth. 1986;3:194–205.Google Scholar
  14. 14.
    Smalhout B, Kalenda Z. An atlas of capnography. Kerckebusch Zeist: Utrecht; 1975.Google Scholar
  15. 15.
    Colman Y, Krauss B. Microstream capnography technology: a new approach to an old problem. J Clin Monit. 1999;15:403–9.CrossRefGoogle Scholar
  16. 16.
    Friesen RH, Alswang M. End-tidal PCO2 monitoring via nasal cannulae in pediatric patients: accuracy and sources of error. J Clin Monit. 1996;12(2):155–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Gravenstein N. Capnometry in infants should not be done at lower sampling flow rates. J Clin Monit. 1989;5:63–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Sasse FJ. Can we trust end-tidal carbon dioxide measurements in infants? J Clin Monit. 1985;1:147–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Berengo A, Cutillo A. Single-breath analysis of carbon dioxide concentration records. J Appl Physiol. 1961;16:522–30.Google Scholar
  20. 20.
    Krauss B, Deykin A, Lam A, Ryoo JJ, Hampton DR, Schmitt PW, et al. Capnogram shape in obstructive lung disease. Anesth Analg. 2005;100:884–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoffbrand BI. The expiratory capnogram: a measure of ventilation-perfusion inequalities. Thorax. 1966;21:518–23.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Yamanaka MK, Sue DY. Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure. Chest. 1987;92:832–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Hardman JG, Aitkenhead AR. Estimating alveolar dead space from the arterial to end-tidal CO2 gradient: a modeling analysis. Anesth Analg. 2003;97:1846–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Krauss B, Hess DR. Capnography for procedural sedation and analgesia in the emergency department. Ann Emerg Med. 2007; 50:172–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Lumb AB, editor. Respiratory system resistance. In: Nunn’s applied respiratory physiology. 6th ed. Oxford: Butterworth-Heinemann; 2005.Google Scholar
  26. 26.
    Wilson WC, Shapiro B. Perioperative hypoxia: the clinical spectrum and current oxygen monitoring methodology. Anesthesiol Clin North Am. 2001;19:769–812.CrossRefGoogle Scholar
  27. 27.
    West JB. Respiratory physiology, the essentials. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2000.Google Scholar
  28. 28.
    Yu L, Ting C-K, Hill BE, Orr JA, Brewer LM, Johnson KB, et al. Using the entropy of tracheal sounds to detect apnea during sedation in healthy nonobese volunteers. Anesthesiology. 2013; 118(6):1341–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Agrawal D, Feldman HA, Krauss B, Waltzman ML. Can bispectral index monitoring quantify depth of sedation during procedural sedation and analgesia in the pediatric emergency department? Ann Emerg Med. 2004;43:247–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Gill M, Green SM, Krauss B. A study of the bispectral index monitor during procedural sedation and analgesia in the emergency department. Ann Emerg Med. 2003;41:234–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Miner JR, Biros M, Heegaard W, Plummer D. Bispectral EEG analysis of patients undergoing procedural sedation in the emergency department. Acad Emerg Med. 2003;10:638–43.PubMedCrossRefGoogle Scholar
  32. 32.
    American Society of Anesthesiologists. Practice advisory for intraoperative awareness and brain function monitoring. Anesthesiology. 2006;104:847–64.CrossRefGoogle Scholar
  33. 33.
    Rosow C, Manberg PJ. Bispectral index monitoring. Anesthesiol Clin North Am. 2001;19:947–66.CrossRefGoogle Scholar
  34. 34.
    Malviya S, Voepel-Lewis T, Tait AR, Watcha MF, Sadhasivam S, Friesen RH. Effect of age and sedative agent on the accuracy of bispectral index in detecting depth of sedation in children. Pediatrics. 2007;120(3):e461–70.PubMedCrossRefGoogle Scholar
  35. 35.
    McDermott NB, VanSickle T, Motas D, Friesen RH. Validation of the bispectral index monitor during conscious and deep sedation in children. Anesth Analg. 2003;97(1):39–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Hans P, Dewandre P-Y, Brichant JF, Bonhomme V. Comparative effects of ketamine on bispectral index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth. 2005;94(3):336–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Overly FL, Wright RO, Connor FA, Fontaine B, Jay G, Linakis JG. Bispectral analysis during pediatric procedural sedation. Pediatr Emerg Care. 2005;21(1):6–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Turkmen A, Altan A, Turgut N, Vatansever S, Gokkaya S. The correlation between the Richmond agitation-sedation scale and bispectral index during dexmedetomidine sedation. Eur J Anaesthesiol. 2006;23(4):300–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Kasuya Y, Govinda R, Rauch S, Mascha EJ, Sessler DI, Turan A. The correlation between bispectral index and observational sedation scale in volunteers sedated with dexmedetomidine and propofol. Anesth Analg. 2009;109(6):1811–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89(4):980–1002.PubMedCrossRefGoogle Scholar
  41. 41.
    Tortoriello TA, Stayer SA, Mott AR, McKenzie ED, Fraser CD, Andropoulos DB, et al. A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Paediatr Anaesth. 2005;15(6):495–503.PubMedCrossRefGoogle Scholar
  42. 42.
    Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology. 2000;93(4):947–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Padmanabhan P, Berkenbosch JW, Lorenz D, Pierce MC. Evaluation of cerebral oxygenation during procedural sedation in children using near infrared spectroscopy. Ann Emerg Med. 2009; 54(2):205–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Carlin RE, McGraw DJ, Calimlim JR, Mascia MF. The use of near-infrared cerebral oximetry in awake carotid endarterectomy. J Clin Anesth. 1998;10(2):109–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Absi MA, Lutterman J, Wetzel GT. Noninvasive cardiac output monitoring in the pediatric cardiac intensive care unit. Curr Opin Cardiol. 2010;25(2):77–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH. Development and evaluation of an impedance cardiac output system. Aerosp Med. 1966;37(12):1208–12.PubMedGoogle Scholar
  47. 47.
    Schmidt C, Theilmeier G, Van Aken H, Korsmeier P, Wirtz SP, Berendes E, et al. Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth. 2005;95(5):603–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Norozi K, Beck C, Osthaus WA, Wille I, Wessel A, Bertram H. Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth. 2008;100(1):88–94.PubMedCrossRefGoogle Scholar
  49. 49.
    Schubert S, Schmitz T, Weiss M, Nagdyman N, Huebler M, Alexi-Meskishvili V, et al. Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery: evaluation of transesophageal Doppler and electric velocimetry. J Clin Monit Comput. 2008;22(4):299–307.PubMedCrossRefGoogle Scholar
  50. 50.
    Suttner S, Schöllhorn T, Boldt J, Mayer J, Röhm KD, Lang K, et al. Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med. 2006;32(12):2053–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Wong J, Steil GM, Curtis M, Papas A, Zurakowski D, Mason KP. Cardiovascular effects of dexmedetomidine sedation in children. Anesth Analg. 2012;114(1):193–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Langhan ML, Mallory M, Hertzog J, Lowrie L, Cravero J, Pediatric Sedation Research Consortium. Physiologic monitoring practices during pediatric procedural sedation: a report from the Pediatric Sedation Research Consortium. Arch Pediatr Adolesc Med. 2012;166(11):990–8.Google Scholar
  53. 53.
    Coté CJ. American Academy of Pediatrics sedation guidelines: are we there yet? Arch Pediatr Adolesc Med. 2012;166(11):1067–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Kuhnle GE, Hornuss C, Lenk M, Salam AP, Wiepcke D, Edelmann-Gahr V, et al. Impact of propofol on mid-latency auditory-evoked potentials in children. Br J Anaesth. 2013;110(6):1001–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Cheung YM, Scoones GP, Hoeks SE, Stolker RJ, Weber F. Evaluation of the aepEX™ monitor of hypnotic depth in pediatric patients receiving propofol-remifentanil anesthesia. Paediatr Anaesth. 2013;23(10):891–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013;110(12):E1142–51.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Green SM, Krauss B. The semantics of ketamine. Ann Emerg Med. 2000;36:480–2.PubMedCrossRefGoogle Scholar
  58. 58.
    Green SM, Krauss B. Clinical practice guideline for emergency department ketamine dissociative sedation in children. Ann Emerg Med. 2004;44(5):460–71. Review.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Pediatric Emergency MedicineMorgan Stanley Children’s Hospital of New York, Columbia University Medical CenterNew YorkUSA
  2. 2.Division of Emergency MedicineBoston Children’s HospitalBostonUSA

Personalised recommendations