Is There Evidence for Long-Term Neurocognitive Effects of Sedatives?

  • Sulpicio G. SorianoEmail author
  • Laszlo Vutskits


The potential neurotoxic effects of drugs used for anesthesia and sedation have captured the attention of pediatric care providers. As early as in 1953, personality changes have been documented in children receiving anesthetic and sedative drugs. Despite this early observation, the utilization of anesthetics and sedatives to facilitate painful and distressing procedures on infants and children has become the standard of care. However, the irrefutable laboratory reports documenting the neurotoxic effect of anesthetic and sedative drugs on the developing brain have sparked public awareness to this potential side effect. Given the public health implications of this phenomenon, this chapter will discuss relevance of these issues in the context of the management of sedation in pediatric patients undergoing diagnostic and painful procedures.


Neurotoxic Pediatric Anesthesia Sedation Neuroapoptosis Anesthetic-induced developmental neurotoxicity (AIDN) 


  1. 1.
    Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):1681–707.PubMedCrossRefGoogle Scholar
  2. 2.
    Rappaport B, Mellon RD, Simone A, Woodcock J. Defining safe use of anesthesia in children. N Engl J Med. 2011;364(15):1387–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Eckenhoff JE. Relationship of anesthesia to postoperative personality changes in children. AMA Am J Dis Child. 1953;86(5):587–91.PubMedGoogle Scholar
  4. 4.
    Durrmeyer X, Vutskits L, Anand KJS, Rimensberger PC. Use of analgesic and sedative drugs in the nicu: Integrating clinical trials and laboratory data. Pediatr Res. 2010;67(2):117–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Loepke AW. Developmental neurotoxicity of sedatives and anesthetics: a concern for neonatal and pediatric critical care medicine? Pediatr Crit Care Med. 2010;11(2):217–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5(9):709–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Stratmann G. Review article: Neurotoxicity of anesthetic drugs in the developing brain. Anesth Analg. 2011;113(5):1170–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Paule MG, Li M, Allen RR, Liu F, Zou X, Hotchkiss C, et al. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol. 2011;33(2):220–30.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Li Y, Liang G, Wang S, Meng Q, Wang Q, Wei H. Effects of fetal exposure to isoflurane on postnatal memory and learning in rats. Neuropharmacology. 2007;53(8):942–50.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Vutskits L, Gascon E, Tassonyi E, Kiss JZ. Clinically relevant concentrations of propofol but not midazolam alter in vitro dendritic development of isolated gamma-aminobutyric acid-positive interneurons. Anesthesiology. 2005;102(5):970–6.PubMedCrossRefGoogle Scholar
  11. 11.
    De Roo M, Klauser P, Briner A, Nikonenko I, Mendez P, Dayer A, et al. Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS One. 2009;4(9):e7043.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Briner A, De Roo M, Dayer A, Muller D, Habre W, Vutskits L. Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology. 2010;112(3):546–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Penzes P, Cahill ME, Jones KA, Vanleeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14(3):285–93.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sanders RD, Xu J, Shu Y, Januszewski A, Halder S, Fidalgo A, et al. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology. 2009;110(5):1077–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Anand KJ, Garg S, Rovnaghi CR, Narsinghani U, Bhutta AT, Hall RW. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res. 2007;62(3):283–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu JR, Liu Q, Li J, Baek C, Han XH, Athiraman U, et al. Noxious stimulation attenuates ketamine-induced neuroapoptosis in the developing rat brain. Anesthesiology. 2012;117(1):64–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Anand KJ, Soriano SG. Anesthetic agents and the immature brain: Are these toxic or therapeutic? Anesthesiology. 2004;101(2):527–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Young C, Jevtovic-Todorovic V, Qin YQ, Tenkova T, Wang H, Labruyere J, et al. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol. 2005;146(2):189–97.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Cattano D, Young C, Straiko MM, Olney JW. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg. 2008;106(6):1712–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Shih J, May LD, Gonzalez HE, Lee EW, Alvi RS, Sall JW, et al. Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology. 2012;116(3):586–602 [Research Support, Non-U.S. Gov’t].PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, et al. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology. 2013;118(3):502–15.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Buss RR, Sun W, Oppenheim RW. Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci. 2006;29:1–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3(1):79–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Hofacer RD, Deng M, Ward CG, Joseph B, Hughes EA, Jiang C, et al. Cell-age specific vulnerability of neurons to anesthetic toxicity. Ann Neurol. 2013;73(6):695–704.PubMedCrossRefGoogle Scholar
  25. 25.
    Krzisch M, Sultan S, Sandell J, Demeter K, Vutskits L, Toni N. Propofol anesthesia impairs the maturation and survival of adult-born hippocampal neurons. Anesthesiology. 2013;118(3):602–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Fredriksson A, Ponten E, Gordh T, Eriksson P. Neonatal exposure to a combination of n-methyl-d-aspartate and gamma-aminobutyric acid type a receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology. 2007;107(3):427–36 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  27. 27.
    Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, et al. Blockade of nmda receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283(5398):70–4 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].PubMedCrossRefGoogle Scholar
  28. 28.
    Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–82.PubMedGoogle Scholar
  29. 29.
    Cattano D, Straiko MM, Olney JW. Chloral hydrate induces and lithium prevents neuroapoptosis in the infant mouse brain. Anesthesiology. 2008;109:A315.Google Scholar
  30. 30.
    Slikker Jr W, Paule MG, Wright LK, Patterson TA, Wang C. Systems biology approaches for toxicology. J Appl Toxicol. 2007;27(3):201–17 [Review].PubMedCrossRefGoogle Scholar
  31. 31.
    Edwards DA, Shah HP, Cao W, Gravenstein N, Seubert CN, Martynyuk AE. Bumetanide alleviates epileptogenic and neurotoxic effects of sevoflurane in neonatal rat brain. Anesthesiology. 2010;112(3):567–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Sanchez V, Feinstein SD, Lunardi N, Joksovic PM, Boscolo A, Todorovic SM, et al. General anesthesia causes long-term impairment of mitochondrial morphogenesis and synaptic transmission in developing rat brain. Anesthesiology. 2011;115(5):992–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Soriano SG, Liu Q, Li J, Liu J-R, Han XH, Kanter JL, et al. Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology. 2010;112(5):1155–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu JR, Baek C, Han XH, Shoureshi P, Soriano SG. Role of glycogen synthase kinase-3beta in ketamine-induced developmental neuroapoptosis in rats. Br J Anaesth. 2013;110 Suppl 1:i3–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Lu LX, Yon J-H, Carter LB, Jevtovic-Todorovic V. General anesthesia activates bdnf-dependent neuroapoptosis in the developing rat brain. Apoptosis. 2006;11(9):1603–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Lemkuil BP, Head BP, Pearn ML, Patel HH, Drummond JC, Patel PM. Isoflurane neurotoxicity is mediated by p75ntr-rhoa activation and actin depolymerization. Anesthesiology. 2011;114(1):49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ben-Ari Y. Excitatory actions of gaba during development: The nature of the nurture. Nat Rev Neurosci. 2002;3(9):728–39 [Review].PubMedCrossRefGoogle Scholar
  38. 38.
    Slikker W, Zou X, Hotchkiss CE, Divine RL, Sadovova N, Twaddle NC, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci. 2007;98(1):145–58.PubMedCrossRefGoogle Scholar
  39. 39.
    Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Martin LD, et al. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 2012;116(2):372–84.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Creeley C, Dikranian K, Dissen G, Martin L, Olney J, Brambrink A. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth. 2013;110 Suppl 1:i29–38.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Stratmann G, Sall JW, May LD, Bell JS, Magnusson KR, Rau V, et al. Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology. 2009;110(4):834–48 [Research Support, Non-U.S. Gov’t].PubMedCrossRefGoogle Scholar
  42. 42.
    Briner A, Nikonenko I, De Roo M, Dayer A, Muller D, Vutskits L. Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology. 2011;115(2):282–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110(4):796–804 [Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Flick RP, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011;128(5):e1053–1061.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ing C, DiMaggio C, Whitehouse A, Hegarty MK, Brady J, von Ungern-Sternberg BS, et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 2012;130(3):e476–485.PubMedCrossRefGoogle Scholar
  46. 46.
    Block RI, Thomas JJ, Bayman EO, Choi JY, Kimble KK, Todd MM. Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology. 2012;117(3):494–503.PubMedCrossRefGoogle Scholar
  47. 47.
    DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G. A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol. 2009;21:286–91.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Dimaggio C, Sun L, Li G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg. 2011;113:1143–51.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bartels M, Althoff RR, Boomsma DI. Anesthesia and cognitive performance in children: No evidence for a causal relationship. Twin Res Hum Genet. 2009;12(3):246–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Hansen TG, Pedersen JK, Henneberg SW, Pedersen DA, Murray JC, Morton NS, et al. Academic performance in adolescence after inguinal hernia repair in infancy: A nationwide cohort study. Anesthesiology. 2011;114:1076–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Hansen TG, Pedersen JK, Henneberg SW, Morton NS, Christensen K. Educational outcome in adolescence following pyloric stenosis repair before 3 months of age: A nationwide cohort study. Paediatr Anaesth. 2013;23(10):883–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Roze JC, Denizot S, Carbajal R, Ancel PY, Kaminski M, Arnaud C, et al. Prolonged sedation and/or analgesia and 5-year neurodevelopment outcome in very preterm infants: Results from the epipage cohort. Arch Pediatr Adolesc Med. 2008;162(8):728–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Guerra GG, Robertson CM, Alton GY, Joffe AR, Cave DA, Dinu IA, et al. Neurodevelopmental outcome following exposure to sedative and analgesic drugs for complex cardiac surgery in infancy. Paediatr Anaesth. 2011;21(9):932–41.PubMedCrossRefGoogle Scholar
  54. 54.
    Guerra GG, Robertson CM, Alton GY, Joffe AR, Cave DA, Dinu IA, et al. Neurotoxicity of sedative and analgesia drugs in young infants with congenital heart disease: 4-year follow-up. Paediatr Anaesth. 2014;24(3):257–65.CrossRefGoogle Scholar
  55. 55.
    Beery KE, Buktenica NA. Beery-buktenica developmental test of visual motor inegration. 5th ed. Minneapolis: NCS Pearson Inc.; 2004.Google Scholar
  56. 56.
    Moser JJ, Veale PM, McAllister DL, Archer DP. A systematic review and quantitative analysis of neurocognitive outcomes in children with four chronic illnesses. Paediatr Anaesth. 2013;23(11):1084–96.PubMedCrossRefGoogle Scholar
  57. 57.
    Chrysostomou C, Schulman SR, Herrera Castellanos M, Cofer BE, Mitra S, da Rocha MG, et al. A phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates. J Pediatr. 2013;164(2):276–82.e1-3.PubMedCrossRefGoogle Scholar
  58. 58.
    Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: An a priori-designed analysis of the mends randomized controlled trial. Crit Care. 2010;14(2):R38.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Goodwin HE, Gill RS, Murakami PN, Thompson CB, Lewin 3rd JJ, Mirski MA. Dexmedetomidine preserves attention/calculation when used for cooperative and short-term intensive care unit sedation. J Crit Care. 2013;28(6):1113.e1117–0.CrossRefGoogle Scholar
  60. 60.
    FDA. The neurotoxicity of anesthetic and sedative drugs in juvenile animals and the implications for pediatric patients undergoing surgical, medical or diagnostic procedures requiring exposure to these agents. 2007.
  61. 61.
    Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH, Pediatric Sedation Research Consortium. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the pediatric sedation research consortium. Anesth Analg. 2009;108(3):795–804.PubMedCrossRefGoogle Scholar
  62. 62.
    SmartTots. Consensus statement on the use of anesthetics and sedatives in children. 2012.
  63. 63.
    Ramsay JG, Rappaport BA. SmartTots: a multidisciplinary effort to determine anesthetic safety in young children. Anesth Analg. 2011;113(5):963–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Jevtovic-Todorovic V, Absalom AR, Blomgren K, Brambrink A, Crosby G, Culley DJ, et al. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the bja salzburg seminar. Br J Anaesth. 2013;111(2):143–51.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Anesthesiology, Perioperative and Pain MedicineBoston Children’s HospitalBostonUSA
  2. 2.Department of Anesthesiology, Pharmacology and Intensive CareUniversity Hospital of GenevaGenevaSwitzerland

Personalised recommendations