Overview of the Handbook

Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 216)

Abstract

This chapter provides a brief introduction to the handbook, including an overview of the contents of the other chapters.

Keywords

Response Surface Methodology Stochastic Approximation Simulation Optimization Stochastic Programming Problem Simultaneous Perturbation Stochastic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by the National Science Foundation under Grants CMMI-0856256 and ECCS-0901543, and by the Air Force Office of Scientific Research under Grant FA9550-10-10340.

References

  1. 1.
    J. Banks, editor. Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice. John Wiley & Sons, New York, 1998.Google Scholar
  2. 2.
    J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete-Event System Simulation. Prentice-Hall, Upper Saddle River, NJ, 5th edition, 2009.Google Scholar
  3. 3.
    G. E. P. Box and K. B. Wilson. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1):1–45, 1951.Google Scholar
  4. 4.
    H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. Simulation-based Algorithms for Markov Decision Processes. Springer, New York, 2007.CrossRefGoogle Scholar
  5. 5.
    H. S. Chang, J. Hu, M. C. Fu, and S. I. Marcus. Simulation-Based Algorithms for Markov Decision Processes. Springer, New York, 2nd edition, 2013.CrossRefGoogle Scholar
  6. 6.
    C.-H. Chen, Q.-S. Jia, and L. H. Lee, editors. Stochastic Simulation Optimization for Discrete Event Systems: Perturbation Analysis, Ordinal Optimization, and Beyond. World Scientific, Singapore, 2013.Google Scholar
  7. 7.
    M. C. Fu. Sample path derivatives for (s, S) inventory systems. Operations Research, 42(2):351–364, 1994.Google Scholar
  8. 8.
    M. C. Fu. Optimization for simulation: Theory vs. practice (Feature Article). INFORMS Journal on Computing, 14(3):192–215, 2002.Google Scholar
  9. 9.
    M. C. Fu. Approximate dynamic programming. In S. I. Gass and M. C. Fu, editors, Encyclopedia of Operations Research and Management Science, pages 73–77. Springer, New York, 3rd edition, 2013.Google Scholar
  10. 10.
    M. C. Fu and D. Gross. Simulation of stochastic discrete-event systems. In S. I. Gass and M. C. Fu, editors, Encyclopedia of Operations Research and Management Science, pages 1410–1418. Springer, New York, 3rd edition, 2013.Google Scholar
  11. 11.
    M. C. Fu and K. J. Healy. Techniques for simulation optimization: An experimental study on an (s, S) inventory system. IIE Transactions, 29(3):191–199, 1997.Google Scholar
  12. 12.
    S. I. Gass and M. C. Fu, editors. Encyclopedia of Operations Research and Management Science. Springer, New York, 3rd edition, 2013.Google Scholar
  13. 13.
    M. Gendreau and J.-Y. Potvin, editors. Handbook of Metaheuristics. Springer, New York, 2nd edition, 2010.Google Scholar
  14. 14.
    F. W. Glover and G. A. Kochenberger, editors. Handbook of Metaheuristics. Springer, New York, 2003.Google Scholar
  15. 15.
    A. Gosavi. Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning. Kluwer, Boston, MA, 2003.CrossRefGoogle Scholar
  16. 16.
    S. G. Henderson and B. L. Nelson, editors. Handbooks in Operations Research and Management Science: Simulation. North-Holland/Elsevier, Amsterdam, 2006.Google Scholar
  17. 17.
    J. Hu, M. C. Fu, and S. I. Marcus. A model reference adaptive search method for global optimization. Operations Research, 55(3):549–568, 2007.CrossRefGoogle Scholar
  18. 18.
    J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. Annals of Mathematical Statistics, 23:462–266, 1952.CrossRefGoogle Scholar
  19. 19.
    S. Kim. Gradient-based simulation optimization. In L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, editors, Proceedings of the 2006 Winter Simulation Conference, pages 159–167. IEEE, Piscataway, NJ, 2006.CrossRefGoogle Scholar
  20. 20.
    M. Laguna and R. Marti. Heuristics. In S. I. Gass and M. C. Fu, editors, Encyclopedia of Operations Research and Management Science, pages 695–703. Springer, New York, 3rd edition, 2013.Google Scholar
  21. 21.
    A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New York, 3rd edition, 2000.Google Scholar
  22. 22.
    N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American Statistical Association, 44(247):335–341, September 1949.Google Scholar
  23. 23.
    A. Nemirovski, A. Judisky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.CrossRefGoogle Scholar
  24. 24.
    R. Pasupathy and S. G. Henderson. A testbed of simulation-optimization problems. In L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, editors, Proceedings of the 2006 Winter Simulation Conference, pages 255–263. IEEE, Piscataway, NJ, 2006.CrossRefGoogle Scholar
  25. 25.
    R. Pasupathy and S. G. Henderson. Simopt: A library of simulation optimization problems. In S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, editors, Proceedings of the 2011 Winter Simulation Conference, pages 4080–4090. IEEE, Piscataway, NJ, 2011.Google Scholar
  26. 26.
    W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley, New York, 2nd edition, 2011.CrossRefGoogle Scholar
  27. 27.
    H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22:400–407, 1951.CrossRefGoogle Scholar
  28. 28.
    R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer, 2004.Google Scholar
  29. 29.
    S. Sen. Stochastic programming. In S. I. Gass and M. C. Fu, editors, Encyclopedia of Operations Research and Management Science, pages 1486–1496. Springer, New York, 3rd edition, 2013.Google Scholar
  30. 30.
    K. Sörenson and F. W. Glover. Metaheuristics. In S. I. Gass and M. C. Fu, editors, Encyclopedia of Operations Research and Management Science, pages 960–970. Springer, New York, 3rd edition, 2013.Google Scholar
  31. 31.
    J. C. Spall. Multivariate stochastic approximation using simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control, 37:332–341, 1992.CrossRefGoogle Scholar
  32. 32.
    J. C. Spall. Introduction to Stochastic Search and Optimization. Wiley-Interscience, New York, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of MarylandCollege ParkUSA

Personalised recommendations