Skip to main content

Citrus Juices Technology

  • Chapter
  • First Online:
Book cover Food Processing: Strategies for Quality Assessment

Part of the book series: Food Engineering Series ((FSES))

Abstract

Citrus fruits are widely grown throughout the world and contain various bioactive compounds with antioxidant activities including vitamin C, carotenoids, and phenolic compounds. These components are very important for human health and provide protection against harmful free radicals. Citrus fruits are mostly consumed as fresh fruits or fruit juices. To obtain high quality and safe citrus juice, certain critical points (oil extraction from peel, juice extraction, pulp removing, pasteurization, evaporation, and aseptic filling) need to be taken into consideration during citrus juice processing. Firstly, oil extraction from the peel is a necessary step to limit the level of peel oil components in the juice. Secondly, selected juice extraction techniques and process conditions are very important for the yield and total quality of the juice. Thirdly, the pulp removal is an important step to remove most of pectinmethylesterase (PME) and its heat resistance isoenzymes. Further inactivation of remaining PME enzymes and pathogenic or spoilage microorganisms is also obtained with the pasteurization step. Finally, equipment used for the juice production and the concentration conditions have various effects on the sensory properties of the citrus juices. As a result, minimal processing would be applied to citrus juices if the processing steps detailed above are optimized. Obtaining clarified citrus juices from the citruses which have lower carotenoid content including lemon and lime juice is a new trend these days. It is needed to be focused on enzymation (depectinization), clarification assistance agents, and filtration conditions during the clarified juices production. Citrus peel (flavedo) and layer of albedo are the main byproducts of the citrus juice industry. Citrus peel oil is obtained from flavedo layer which has a significant commercial value. Recently, promising nonthermal food preservation technologies were developed including pulsed electric fields (PEF), high pressure processing (HPP), and ultrasonication process (US). These technologies are highly appreciated for their ability to extend the shelf life of food products without the application of heat, thus also preserving the quality attributes such as sensory quality and nutritional value, as well as controlling the microbiological safety of food products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysinghe DC, Li X, Sun CD, Zhang WS, Zhou CH, Chen KS (2007) Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem 104:1338–1344

    CAS  Google Scholar 

  • Ağçam (2011) Effects of pulsed electric fields and thermal process treatments on quality and shelf life of orange juices (in Turkish). Dissertation, Çukurova University

    Google Scholar 

  • Ağçam E, Akyıldız A, Akdemir Evrendilek G (2014) Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem 143:354–361

    Google Scholar 

  • Ahmad N, Bhatti MB (1971) Studies on the stabilization of cloud in orange juices and concentrates. Agric Pak 22(1):41–47

    CAS  Google Scholar 

  • Altan A (1995) Determination of some technological characteristics of five cultivars of oranges grown in the Çukurova region for the juice industry. Gida 20(4):215–225

    Google Scholar 

  • Anagnostopoulou MA, Kefalas P, Kokkalou E, Assimopoulou AN, Papageorgiou VP (2005) Analysis of antioxidant compounds in sweet orange peel by HPLC-diode array detection-electrospray ionization mass spectrometry. Biomed Chrom 19(2):138–148

    CAS  Google Scholar 

  • Anon (2013a) JBT Citrus juice extractor-pulp recovery. http://www.jbtfoodtech.com/en/Solutions/Equipment/Citrus-Juice-Extractor. Accessed Oct 2013

  • Anon (2013b) The thermally accelerated short time evaporator (TASTE) http://www.jbtfoodtech.com/en/Solutions/Equipment/TASTE-Evaporator. Accessed Oct 2013

  • Arena E, Fallico B, Maccarone E (2001) Evaluation of antioxidant capacity in blood orange juices as influenced by constituents, concentration process and storage. Food Chem 74:423–427

    CAS  Google Scholar 

  • Attaway JA, Carter RD, Fellers PJ (1989) Trends in citrus industry-the production and handling of fresh-squeezed, unpasteurized orange juice. Fluss Obst 56:613–616

    Google Scholar 

  • Baker RA, Bruemmer JH (1969) Cloud stability in the absence of various orange juice soluble components. Proc Fla State Hort Soc 82:215–220

    Google Scholar 

  • Baker RA, Bruemmer JH (1972) Influence of pectate hesperidin floc on orange juice clarification. Proc Fla State Hort Soc 85:225–229

    CAS  Google Scholar 

  • Baker RA, Cameron RG (1999) Clouds of citrus juices and juice drinks. Food Technol 53(1):64–69

    Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203

    CAS  Google Scholar 

  • Barbosa-Cánovas GV, Sepúlveda D (2005) Present status and the future of PEF technology. In: Barbosa-Cánovas GV, Tapia MS, Cano MP (eds) Novel food processing, 1st edn. CRC Press, Boca Raton, pp 1–2

    Google Scholar 

  • Barros HR, Ferreira TA, Genovese MI (2012) Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem 134:1892–1898

    CAS  Google Scholar 

  • Basak S, Ramaswamy HS, Simpson BK (2001) High pressure inactivation of pectin methyl esterase in orange juice using combination treatments. J Food Biochem 25(6):509–526

    CAS  Google Scholar 

  • Benavente-Garcia O, Castillo J (2008) Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56:6185–6205

    CAS  Google Scholar 

  • Benavente-García O, Castillo J, Marín FR, Ortuño A, Del Río JA (1997) Uses and properties of citrus flavonoids. J Agric Food Chem 45:4505–4515

    Google Scholar 

  • Bennett RD (1987) Paper presented at the meeting of the citrus products technical committee. U.S. Department of Agriculture Fruit and Vegetable Laboratory, Pasadena, CA

    Google Scholar 

  • Bennett RD, Albach RF (1981) The nature of freeze-ınduced white spots on orange segment walls. J Agric Food Chem 29:511–514

    CAS  Google Scholar 

  • Berhow MA, Hagegawa S, Manners GD (2000) Citrus limonoids: functional chemicals in agricultural and foods. American Chemical Society, Washington, DC

    Google Scholar 

  • Berk Z (2009) Freeze drying (lyophilization) and freeze concentration. In: Food process engineering and technology. Elsevier, New York, p 522

    Google Scholar 

  • Bermejo A, Llosá MJ, Cano A (2011) Analysis of bioactive compounds in seven citrus cultivars. Food Sci Technol Int 17(1):55–62

    CAS  Google Scholar 

  • Bocco A, Cuvelier ME, Richard H, Berset C (1998) Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46:2123–2129

    CAS  Google Scholar 

  • Braddock RJ (1995) Byproducts of citrus fruits. Food Tech 49:74–77

    Google Scholar 

  • Braddock RJ (1999) Handbook of citrus by-products and processing technology. Wiley, New York

    Google Scholar 

  • Braddock RJ, Marcy JE (1987) Quality of freeze concentrated orange juice. J Food Sci 52:159–162

    CAS  Google Scholar 

  • Braddock RJ, Nikdel S, Nagy S (1988) Composition of some organic and inorganic compounds in reverse osmosis-concentrated citrus juices. J Food Sci 53:508–512

    CAS  Google Scholar 

  • Buedo AP, Elustondo MP, Urbicain MJ (2001) Non-enzymatic browning of peach juice concentrate during storage. Innovat Food Sci Emerg Technol 1:255–260

    Google Scholar 

  • Bull MK, Zerdin K, Howe E, Goicoechea D, Paramanandhan P, Stockman R, Sellahewa J, Szabo EA, Johnson RL, Stewart CM (2004) The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innovat Food Sci Emerg Technol 5:135–149

    CAS  Google Scholar 

  • Calabrò ML, Galtieri V, Cutroneo P, Tommasini S, Ficarra P, Ficarra R (2004) Study of the extraction procedure by experimental design and validation of a LC method for determination of flavonoids in Citrus bergamia juice. J Pharmaceut Biomed Anal 35:349–363

    Google Scholar 

  • Cameron RG, Niedz RP, Grohmann K (1994) Variable heat stability for multiple forms of pectin methylesterase from citrus tissue culture cells. J Agric Food Chem 42:903–908

    CAS  Google Scholar 

  • Carneiro L, Gomez FS, Matta VM, Cabral LMC (2002) Cold sterilization and clarification of pineapple juice by tangential microfiltration. Desalination 148:93–98

    CAS  Google Scholar 

  • Cassano A, Drioli E, Galaverna G, Marchelli R, DiSilvestro G, Cagnasso P (2003) Clarification and concentration of food and carrot juices by integrated membrane processes. J Food Eng 57:153–163

    Google Scholar 

  • Cassano A, Donato L, Drioli E (2007) Ultrafiltration of kiwifruit juice: operating parameters, juice quality and membrane fouling. J Food Eng 79:613–621

    CAS  Google Scholar 

  • Castro AJ, Swanson BG, Barbosa-Cánovas GV, Dunker AK (2001) Pulsed electric field denaturation of bovine alkaline phosphatase. In: Barbosa-Cánovas GV, Zhang QH (eds) Pulsed electric fields in food processing. Fundamental aspects and applications. Technomic, Lancaster, pp 83–103

    Google Scholar 

  • Chandler B, Nicol K (1975) Some relationships of naringin: their importance in orange juice bitterness. CSIRO Food Res Q 35:79–88

    CAS  Google Scholar 

  • Chaudhary P, Jayaprakasha GK, Porat R, Patil BS (2012) Degreening and postharvest storage influences ‘Star Ruby’ grapefruit (Citrus paradisi Macf.) bioactive compounds. Food Chem 135(3):1667–1675

    CAS  Google Scholar 

  • Chen SC, Hernandez E (1997) Design and performance evaluation of evaporators. In: Valentas KJ, Rotstein E, Singh RP (eds) Handbook of food engineering practice. CRC Press, New York

    Google Scholar 

  • Chen CS, Wu MC (1998) Kinetic models for thermal inactivation of multiple pectinesterases in citrus juices. J Food Sci 63(5):747–750

    CAS  Google Scholar 

  • Chen CS, Carter RD, Buslig BS (1979) Energy requirements for the TASTE citrus juice evaporator. In: Changing energy use futures. Lecture, pp 1841–1848

    Google Scholar 

  • Chen CS, Shaw PE, Parish ME (1993) Orange and tangerine juices. In: Chen CS, Shaw PE, Nagy S (eds) Fruit juice processing technology. AG SCIENCE, Auburndale, FL, pp 110–165

    Google Scholar 

  • Cheryan M (2007) Membrane concentration of liquid foods. In: Heldman DR, Lund DB (eds) Handbook of food engineering, 2nd edn. CRC Press, Boca Raton, pp 590–595

    Google Scholar 

  • Chornomaz PM, Paglierob C, Marchesea J, Ochoa NA (2013) Impact of structural and textural membrane properties on lemon juice clarification. Food Bioprod Process 91:67–73

    CAS  Google Scholar 

  • Clegg KM (1964) Nonenzymic browning of lemon juice. J Sci Food Agric 15:878–885

    CAS  Google Scholar 

  • Corredig M, Kerr W, Wicker L (2001) Particle size distribution of orange juice cloud after addition of sensitized pectin. J Agric Food Chem 49(5):2523–2526

    CAS  Google Scholar 

  • Corteś C, Torregrosa F, Esteve MJ, Frígola A (2006) Changes of colour and carotenoids contents during high intensity pulsed electric field treatment in orange juices. Food Chem Toxicol 44:1932–1939

    Google Scholar 

  • Cortés C, Esteve MJ, Frígola A (2008) Effect of refrigerated storage on ascorbic acid content of orange juice treated by pulsed electric fields and thermal pasteurization. Eur Food Res Technol 227:629–635

    Google Scholar 

  • Couture R, Rouseff R (1992) Debittering and deacidifying sour orange (Citrus aurantium) juice using neutral and anion exchange resins. J Food Sci 57(2):380–384

    CAS  Google Scholar 

  • Crandall PG, Davis KC, Carter RD, Sadler GD (1988) Viscosity reduction by homogenization of orange juice concentrate in a pilot TASTE evaporator. J Food Sci 53:1477–1481

    Google Scholar 

  • Croak S, Corredig M (2006) The role of pectin in orange juice stabilization: Effect of pectin methylesterase and pectinase activity on the size of cloud particles. Food Hydrocoll 20(7):961–965

    CAS  Google Scholar 

  • Crupi F, Rispoli G (2002) Citrus juices technology. In: Dugo G, Di Giacomo A (eds) The genus citrus. Taylor & Francis, London, pp 77–113

    Google Scholar 

  • De Bruijn J, Venegas A, Borquez R (2002) Influence of crossflow ultrafiltration on membrane fouling and apple juice quality. Desalination 148:131–136

    Google Scholar 

  • Deshpande SS, Sathe SK, Salunkhe DK (1984) Freeze concentration of fruit juices. Food Sci Nutr 20:173–248

    CAS  Google Scholar 

  • Dhuique-Mayer C, Caris-Veyrat C, Ollitrault P, Curk F, Amiot MJ (2005) Varietal and interspecific influence on micronutrient contents in citrus from the Mediterranean area. J Agric Food Chem 53:2140–2145

    CAS  Google Scholar 

  • Di Giacomo A, Calvarano M, Tribulato E (1977) Sul contenuto di limonina del succo diarancia. Nota IV. Ruolo del portinnesto sulle cultivar ‘Valencia Late’ e Moro. Essenz Deriv Agrum 47:156–166

    Google Scholar 

  • Dias MG, Filomena M, Camões GFC, Oliveira L (2009) Carotenoids in traditional Portuguese fruits and vegetables. Food Chem 113:808–815

    CAS  Google Scholar 

  • Dinsmore HL, Nagy S (1972) Colorimetric furfural measurement as an index of deterioration in stored citrus juices. J Food Sci 37:768–770

    CAS  Google Scholar 

  • Eagerman BA, Rouse AH (1976) Heat inactivation tempurature-time relationships for pectinesterase inactivation in citrus juices. J Food Sci 41:1396–1397

    CAS  Google Scholar 

  • Elez-Martínez P, Martín-Belloso O (2007) Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chem 102:201–209

    Google Scholar 

  • Elez-Martínez P, Suárez-Recio M, Martín-Belloso O (2007) Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields. J Food Eng 78:184–193

    Google Scholar 

  • Ellerbee LM (2009) Orange juice cloud stability and the influence of calcium and hesperidin. Dissertation, University of Georgia

    Google Scholar 

  • Erazo GS, Beuchemin CLF, Abbot CFJ (1984) Preliminary study on processing of oranges of the cv. Washington, Thompson, Chilena and Valencia. Alimentos 9(2):9–16

    Google Scholar 

  • Espachs-Barroso A, Van Loey A, Hendrickx M, Martin-Belloso O (2006) Inactivation of plant pectin methylesterase by thermal or high intensity pulsed electric field treatments. Innovat Food Sci Emerg Technol 7:40–48

    CAS  Google Scholar 

  • Espamer L, Pagliero C, Ochoa NA, Marchese J (2006) Clarification of lemon juice using membrane process. Desalination 200:565–567

    CAS  Google Scholar 

  • FAO (2011) Food and Agricultural Organization of the United Nations (FAOSTAT). Availablefrom: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed Oct 2013

  • Fayoux SC, Hernandez RJ, Holland RV (2007) The debittering of navel orange juice using polymeric films. J Food Sci 72(4):144–154

    Google Scholar 

  • Fellers PJ (1988) Shelf life and quality of freshly squeezed unpasteurized polyethylene-bottled citrus juices. J Food Sci 53:1699–1702

    Google Scholar 

  • Fernández-Vázquez R, Stinco CM, Hernanz D, Heredia FJ, Vicario IM (2013) Industrial orange juice debittering: effect on volatile compounds and overall quality attributes. Int J Food Sci Technol 48:1861–1867

    Google Scholar 

  • Filomena M, Valim CFA, Menezes HC (1998) Formation of crystalline agglomeratesduring storage of concentrated orange juice. Fruit Process 8:232–236

    Google Scholar 

  • Fisher JF, Wheaton TA (1976) A high-pressure liquid chromatographic method for the resolution and quantitation of naringin and naringenin rutinoside in grapefruit juice. J Agric Food Chem 24:898–899

    CAS  Google Scholar 

  • Fong CH, Hasegawa S, Herman Z, Ou P (1990) Limonoid glucosides in citrus juices. J Food Sci 54:1505–1506

    Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    CAS  Google Scholar 

  • Galati EM, Monforte MT, Kirjavainen S, Forestieri AM, Tripodo MM (1994) Biological effects of hesperidin, a citrus flavonoid: antiinflammatory and analgesic activity. Farmaco 49(11):709–712

    CAS  Google Scholar 

  • Gama JJT, Sylos CM (2005) Major carotenoid composition of Brazilian Valencia orange juice: identification and quantifiation by HPLC. Food Res Int 38:899–903

    CAS  Google Scholar 

  • García AF, Butz P, Bognàr A, Tauscher B (2001) Antioxidative capacity, nutrient content and sensory quality of orange juice and an orange-lemon-carrot juice product after high pressure treatment and storage in different packaging. Eur Food Res Technol 213:290–296

    Google Scholar 

  • Gardner PT, White TAC, McPhail DB, Duthie GG (2000) The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem 68(4):471–474

    CAS  Google Scholar 

  • Garg A, Garg S, Zaneveld LJD, Singla AK (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytothery Res 15:655–669

    CAS  Google Scholar 

  • Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C (2007) Flavonoid composition of citrus juices. Molecules 12:1641–1673

    CAS  Google Scholar 

  • Ghasemi K, Ghasemi Y, Ebrahimzadeh MA (2009) Antioxidant activity, phenol and flavonoid contents of 13 Citrus species peels and tissues. Pak J Pharm Sci 22(3):277–281

    CAS  Google Scholar 

  • Gómez-López VM, Orsolani L, Martínez-Yépez A, Tapia MS (2010) Microbiological and sensory quality of sonicated calcium-added orange juice. Food Sci Technol 43:808–813

    Google Scholar 

  • González-Molina E, Domínguez-Perles R, Moreno DA, García-Viguera C (2010) Natural bioactive compounds of Citrus limon for food and health. J Pharmaceut Biomed Anal 51:327–345

    Google Scholar 

  • Goodner K, Braddock RJ, Parish ME (1998) Inactivation of pectinesterase in orange and grapefruit juices by high pressure. J Agric Food Chem 46:1997–2000

    CAS  Google Scholar 

  • Gorinstein S, Belloso OM, Park Y, Haruenkit R, Lojek A, Ciz M et al (2001) Comparison of some biochemical characteristics of different citrus fruits. Food Chem 74:309–315

    CAS  Google Scholar 

  • Gorinstein S, Cvikrova M, Machackova I, Haruenkit R, Park Y, Jung S et al (2004) Characterization of antioxidant compounds in Jaffa sweeties and white grapefruits. Food Chem 84:503–510

    CAS  Google Scholar 

  • Gross J, Gabai M, Lifshitz A (1972) A comparative study of the carotenoid pigments in juice of Shamouti, Valencia, and Washington oranges, three varieties of Citrus sinensis. Phytochemistry 11:303–308

    CAS  Google Scholar 

  • Guadagni DG, Maier VP, Turnbaugh JG (1973) Effects of some citrus constituents on taste thresholds for limonin and naringin bitterness. J Sci Food Agric 24:1199–1205

    Google Scholar 

  • Hashinaga F, Itoo S (1981) Seasonal changes of limonoids in the component parts of several citrus fruits. Proc Int Soc Citricult 2:901–905

    CAS  Google Scholar 

  • Heinz V, Alvarez I, Angersbach A, Knorr D (2002) Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design. Trends Food Sci Technol 12:103–111

    Google Scholar 

  • Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart-disease- the zutphen elderly study. Lancet 342(8878): 1007–1011

    CAS  Google Scholar 

  • Hofsommer HJ, Fisher-Hayloff-Cook KP, Radke HJ (1991) Neue technologische aspekte–zur enterbitterung von citrussaeften. Fluessiges Obst 58:62–64

    CAS  Google Scholar 

  • Horowitz RM (1986) Taste effects of flavonoids. Prog Clin Biol Res 213:163–175

    CAS  Google Scholar 

  • Huelin FE, Coggiola IM, Sidhu GS, Kenneth BH (1971) The anaerobic decomposition of ascorbic acid in the pH range of foods and in more acid solutions. J Sci Food Agric 22:540–542

    CAS  Google Scholar 

  • İçdemir G (2012) Grapefruit juice production and determination of quality parameters (in Turkish) Dissertation, University of Çukurova

    Google Scholar 

  • Irwe S, Olsson I (1994) Reduction of pectinesterase activity in orange juice by high pressure treatment. In: Singh RP, Oliveria FA (eds) Minimal processing of foods and process optimization. CRC Press, Ann Arbor, pp 35–42

    Google Scholar 

  • Jiao B, Cassano A, Drioli E (2004) Recent advances on membrane processes for the concentration of fruit juices: a review. J Food Eng 63:303–324

    Google Scholar 

  • Johnson JR, Braddock RJ, Chen CS (1995) Kinetics of ascorbic acid loss and nonenzymatic browning in orange juice serum: experimental rate constants. J Food Sci 60:502–505

    CAS  Google Scholar 

  • Jordan MJ, Goodner KL, Castillo M, Laencina J (2005) Comparison of two headspace solid phase microextraction fibres for the detection of volatile chemical concentration changes due to industrial processing of orange juice. J Sci Food Agric 85:391–396

    Google Scholar 

  • Kandaswami C, Perkins E, Soloniuk DS, Drzewiecki G, Middleton E (1991) Antiproliferative effects of citrus flavonoids on a human squamous cell carcinoma in vitro. Cancer Lett 56:147–152

    CAS  Google Scholar 

  • Kanner J, Fishbein J, Shalom P, Harel S, Ben-Gera I (1982) Storage stability of orange juice concentrate packaged aseptically. J Food Sci 47:429–431

    CAS  Google Scholar 

  • Karim MR, Hashinaga F (2002) Isolation and characterization of limonoid glucosyltransferase from pummelo albedo tissue. Food Chem 76:431–436

    CAS  Google Scholar 

  • Katsaros GI, Tsevdou M, Panagiotou T, Taoukis PS (2010) Kinetic study of high pressure microbial and enzyme inactivation and selection of pasteurisation conditions for Valencia orange juice. Int J Food Sci Technol 45:1119–1129

    CAS  Google Scholar 

  • Kaul TM, Middleton E, Ogra PL (1985) Antiviral effect of flavonoids on human viruses. J Med Virol 15:71–79

    CAS  Google Scholar 

  • Kefford JF, Chandler BV (1970) The chemical constituents of citrus fruits. Academic, New York, p 94

    Google Scholar 

  • Kelebek H, Selli S (2011) Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. J Sci Food Agric 91(10):1855–1862

    CAS  Google Scholar 

  • Kimball DA (1991a) Citrus processing quality control and technology. Van Nostrand Reinhold, New York

    Google Scholar 

  • Kimball DA (1991b) Citrus processing, quality control and technology. AVI Book Van Nostrand Reinhold, New York, pp 117–125, 272–278

    Google Scholar 

  • Kimball DA (1999) Citrus processing. A complete guide, 2nd edn. Aspen, Maryland

    Google Scholar 

  • Kimball D, Kimball D (1991) Bitterness in citrus juices. In: Citrus processing. Springer, Netherlands, pp 136–161

    Google Scholar 

  • Kimball DA, Norman SI (1990a) Changes in California navel orange juice during commercial debittering. J Food Sci 55(1):273–274

    Google Scholar 

  • Kimball DA, Norman SI (1990b) Processing effects during commercial debittering of California navel orange juice. J Agric Food Chem 38(6):1396–1400

    CAS  Google Scholar 

  • Kimball D, Parish M, Braddock R (2004) Oranges and tangerines. In: Barrett DM, Somogyi LP, Ramaswamy HS (eds) Processing fruits: science and technology, 2nd edn, Major processed products. CRC Press, Boca Raton, pp 617–638, 841

    Google Scholar 

  • Kırca A, Cemeroğlu B (2003) Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chem 81(4):583–587

    Google Scholar 

  • Klavons JA, Bennett RD, Vannier SH (1991) Nature of the protein constituent of commercial orange juice cloud. J Agric Food Chem 39(9):1545–1548

    CAS  Google Scholar 

  • Klavons JA, Bennett RD, Vannier SH (1994) Physical/chemical nature of pectin associated with commercial orange juice cloud. J Food Sci 59(2):399–401

    CAS  Google Scholar 

  • Knorr D, Zenker M, Heinz V, Lee D (2004) Applications and potential of ultrasonics in food processing. Trends Food Sci Technol 15(5):261–266

    CAS  Google Scholar 

  • Koca N, Burdurlu HS, Karadeniz F (2003) Kinetics of nonenzymatic browning reaction in citrus juice concentrates during storage. Turk J Agric For 27:353–360

    CAS  Google Scholar 

  • Krinsky NI (1989) Carotenoids and cancer in animal models. J Nutr 119:123–126

    CAS  Google Scholar 

  • Kuldiloke J, Eshtiaghi M, Zenker M, Knorr D (2007) Inactivation of lemon pectinesterase by thermosonication. Int J Food Eng 3:art. 3

    Google Scholar 

  • Ladaniya MS (2008) Citrus fruit: biology, technology and evaluation. Academic Pr Elsevier, San Diego, p 558

    Google Scholar 

  • Lee HS, Coates GA (1999) Vitamin C in frozen, fresh squeezed, unpasteurized, polyethylene-bottled orange juice: a storage study. Food Chem 65:165–168

    CAS  Google Scholar 

  • Lee HS, Nagy S (1988a) Quality changes and nonenzymic browning intermediates in grapefruit juice during storage. J Food Sci 53:168–172

    Google Scholar 

  • Lee HS, Nagy S (1988b) Relationship of sugar degradation to detrimental changes in citrus juice quality. Food Technol 42:91–94

    CAS  Google Scholar 

  • Lee CY, Downing DL, Iredale HD, Chapman JA (1976) The variations of ascorbic acid content in vegetable processing. Food Chem 1:15–22

    CAS  Google Scholar 

  • Lee HS, Castle WS, Coates GA (2001) High-performance liquid chromatography for the characterization of carotenoids in the new sweet orange (Earlygold) grown in Florida, USA. J Chromatogr A 371–377

    Google Scholar 

  • Maccarone E, Campisi S, Fallico B, Rapisarda P, Sgarlata R (1998) Flavor components of Italian orange juice. J Agric Food Chem 46:2293–2298

    CAS  Google Scholar 

  • Maier VP, Beverly GD (1968) Limonin monolactone, the nonbitter precursor responsible for delayed bitterness in certain citrus juices. J Food Sci 33:488–496

    CAS  Google Scholar 

  • Maier VP, Hasegawa S, Hera E (1969) Limonin D-ring-lactone hydrolase. A new enzyme from citrus seeds. Phytochemistry 8:405–407

    CAS  Google Scholar 

  • Maier VP, Bennett RD, Hasegwa S (1977) Limonin and other limonoids. In: Nagy S, Shaw PE, Veldius MK (eds) Citrus science and technology. The AVI Publishing Company Inc, Westport, pp 355–396

    Google Scholar 

  • Mannheim CH, Passy N (1974) In: Spicer A (ed) Advances in preconcentration and dehydration. Applied Science, London

    Google Scholar 

  • Manthey JA, Grohmann K (2001) Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J Agric Food Chem 49:3268–3273

    CAS  Google Scholar 

  • Marshall MR, Marcy JE, Braddock RJ (1985) Effects of total solids level on heat inactivation of pectinesterase in orange juice. J Food Sci 50:220–222

    CAS  Google Scholar 

  • Matsumoto H, Ikoma Y (2012) Effect of different postharvest temperatures on the accumulation of sugars, organic acids, and amino acids in the juice sacs of satsuma mandarin (Citrus unshiu Marc.) fruit. J Agric Food Chem 60:9900–9909

    CAS  Google Scholar 

  • Medina BG, Garcia A (1988) Concentration of orange juice by reverse osmosis. J Food Process Eng 10:217–230

    Google Scholar 

  • Melendez-Martinez AJ, Vicario IM, Heredia FJ (2004) Importancia nutricional de los pigmentos carotenoides. Arch Latinoam Nutr 54:149–154

    CAS  Google Scholar 

  • Melendez-Martinez AJ, Vicario IM, Heredia FJ (2007) Analysis of carotenoids in orange juice (review). J Food Compos Anal 20:638–649

    CAS  Google Scholar 

  • Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ (2008) The complex carotenoid pattern of orange juices from concentrate. Food Chem 109:546–553

    Google Scholar 

  • Meydav S, Saguy I, Kopelman IJ (1977) Browning determination in citrus products. J Agric Food Chem 25:602–604

    CAS  Google Scholar 

  • Miller EG, Gonzales-Sanders AP, Couvillon AM, Binnie WH, Hasegawa S, Lam LKT (1994) Citrus limonoids as inhibitors of oral carcinogenesis. Food Technol 110–114

    Google Scholar 

  • Mizrahi S, Berk Z (1970) Physico-chemical characteristics of orange juice cloud. J Sci Food Agric 21(5):250–253

    CAS  Google Scholar 

  • Mondor M, Girard B, Moresoli C (2000) Modeling flux behavior for membrane filtration of apple juice. Food Res Int 33:539–548

    Google Scholar 

  • Moshonas MG, Shaw PE (1989) Changes in composition of volatile components in aseptically packaged orange juice during storage. J Agric Food Chem 37(1):157–161

    CAS  Google Scholar 

  • Moshonas MG, Shaw PE (1994) Quantitative determination of 46 volatile constituents in fresh, unpasteurized orange juices using dynamic headspace gas chromatography. J Agric Food Chem 42:1525–1528

    CAS  Google Scholar 

  • Moulehi I, Bourgou S, Ourghemmi I, Tounsi MS (2012) Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Ind Crop Prod 39:74–80

    CAS  Google Scholar 

  • Mouly PP, Arzouyan CR, Gaydou EM, Estienne JM (1994) Differentiation of Citrus juices by factorial discriminant analysis using liquid chromatography of flavanone glycosides. J Agric Food Chem 42:70–79

    CAS  Google Scholar 

  • Mouly PP, Gaydou EM, Corsetti J (1999) Determination of the geographical origin of Valencia orange juice using carotenoid liquid chromatographic profiles. J Chromatogr A 844:149–159

    CAS  Google Scholar 

  • Nagy S, Randal V (1973) Use of furfural content as an index of storage temperature abuse in commercially processed orange juice. J Agric Food Chem 21:272–275

    CAS  Google Scholar 

  • Nienaber U, Shellhammer TH (2001a) High-pressure processing of orange juice: combination treatments and a shelf life study. J Food Sci 66:332–336

    CAS  Google Scholar 

  • Nienaber U, Shellhammer TH (2001b) High-pressure processing of orange juice: kinetics of pectinmethylesterase inactivation. J Food Sci 66:328–331

    CAS  Google Scholar 

  • Nisperos-Carriedo MO, Shaw PE (1990a) Comparison of volatile flavor components in fresh and processed orange juices. J Agric Food Chem 38:1048–1052

    CAS  Google Scholar 

  • Nisperos-Carriedo MO, Shaw PE (1990b) Volatile flavor components of fresh and processed orange juices. Food Technol 44:134–138

    CAS  Google Scholar 

  • Nonthanum P, Tansakul A (2008) Freeze concentration of lime juice. Int J Sci Technol 1:27–37

    Google Scholar 

  • Nunez JM, Laencina J, Saura D (1989) Effect of adding chemical reducing agents for storing concentrated lemon juice. Essenze Deriv Agrum 59(4):386–387

    Google Scholar 

  • O’Donnella CP, Tiwarib BK, Bourkec P, Cullen PJ (2010) Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci Technol 21:358–367

    Google Scholar 

  • Ohlsson T, Bengtsson N (2002) Minimal processing of foods with nonthermal methods. In: Minimal processing technologies in the food industry. CRC Press, Boca Raton, pp 54–55

    Google Scholar 

  • Olsen RW, Hill EC (1964) Debittering of concentrated grapefruit juice with naringinase. Florida Agric Exp Station J Ser 321–325

    Google Scholar 

  • Olson JA (1999) Carotenoids and human health. Arch Latinoam Nutr 49:7–11

    Google Scholar 

  • Ozaki Y, Miyake M, Inaba N, Ayano S, Ifuku Y, Hasegawa S (2000) Limonoid glucosides of Satsuma mandarin (Citrus unshiu Marcov.) and its processing products. ACS symposium series, pp 107–119

    Google Scholar 

  • Pala ÇU, Toklucu AK (2013) Microbial, physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage. Food Sci Technol 50:426–431

    CAS  Google Scholar 

  • Parish ME (1998) Orange juice quality after treatment by thermal pasteurization or isostatic high pressure. Food Sci Technol 31:439–442

    CAS  Google Scholar 

  • Pecoroni S, Flocke R, Gunnewig W (2013) Separators, decanters and process lines from GEA Westfalia separator for citrus processing. www.wsus.com

  • Perez OE, Pilosof AMR (2004) Pulsed electric fields effects on the molecular structure and gelation of β-lactoglobulin concentrate and egg white. Food Res Int 37:102–110

    CAS  Google Scholar 

  • Perez-Cacho PR, Rouseff RL (2008) Fresh squeezed orange juice odor: a review. Crit Rev Food Sci Nutr 48:681–695

    CAS  Google Scholar 

  • Peri C (1974) Concentration of orange juice by reverse osmosis. Sci Technol Degli Alim 4:43–47

    Google Scholar 

  • Peterson JJ, Beecher GR, Bhagwat SA, Dwyer JT, Gebhardt SE, Haytowitz DB, Holden JM (2006) Flavanones in grapefruit, lemons, and limes: a compilation and review of the data from the analytical literature. J Food Compos Anal 19:74–80

    Google Scholar 

  • Pichaiyongvongdee S, Haruenkit R (2009) Comparative studies of limonin and naringin distribution in different parts of pummelo [Citrus grandis (L.) Osbeck] cultivars grown in Thailand. Kasetsart J (Nat Sci) 43:28–36

    CAS  Google Scholar 

  • Pino J (1986) Changes caused by storage temperature on volatile constituents of concentrated grapefruit juice. Technologia Quimica 7(2):67–72

    CAS  Google Scholar 

  • Pino J, Ramos M, Sanchez S, Torricella R (1987) Change in orange juice during production frozen concentrate and ways to increase its quality. Technologia Quimica 8(6–13):81

    Google Scholar 

  • Plaza L, Sánchez-Moreno C, Elez-Martínez P, de Ancos B, Martín-Belloso O, Cano MP (2006) Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. Eur Food Res Technol 223:487–493

    CAS  Google Scholar 

  • Plaza L, Sánchez-Moreno C, de Ancos B, Elez-Martínez P, Martín-Belloso O, Cano MP (2011) Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. Food Sci Technol 44:834–839

    CAS  Google Scholar 

  • Polydera AC, Stoforos NG, Taoukis PS (2003) Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. J Food Eng 60:21–29

    Google Scholar 

  • Pupin AM, Dennis MJ, Toledo MCF (1998) Flavanone glycosides in Brazilian orange juice. Food Chem 61(3):275–280

    CAS  Google Scholar 

  • Puri M, Marwaha SS, Kothari RM, Kennedy JF (1996) Biochemical basis of bitterness in citrus fruit juices and biotech approaches for debittering. Crit Rev Biotechnol 16:145–155

    CAS  Google Scholar 

  • Rahman MS, Ahmed A, Chen XD (2006) Freezing-melting process and desalination: I. Review of the state-of-the-art. Sep Purif Rev 35:59–96

    CAS  Google Scholar 

  • Ramaswamy H, Marcotte M (2006) Seperation and concentreation In: Food processing: principles and applications. CRC Press, Boca Raton, pp 320–325

    Google Scholar 

  • Ranganna S, Gobindarajan VS, Ramanna KV (1983) Citrus fruits. II. Chemistry, technology and quality evaluation. B. Technology. CRC Crit Rev Food Sci Nutr 19:1–98

    CAS  Google Scholar 

  • Rapisarda P, Tomaino A, Lo Cascio R, Bonina F, De Pasquale A, Saija A (1999) Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. J Agric Food Chem 47:4718–4723

    CAS  Google Scholar 

  • Rapisarda P, Lo Bianco M, Pannuzzo P, Timpanaro N (2008) Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes Citrus sinensis (L.) Osbeck. Postharv Biol Technol 49:348–354

    CAS  Google Scholar 

  • Rastogi NK (2010) Food processing on physicochemical changes of foods: a review. In: Devahastin S (ed) Physicochemical aspects of food engineering and processing. CRC Press, Boca Raton, pp 107–108

    Google Scholar 

  • Raventós M, Hernández E, Auleda JM (2012) Freeze concentration applications in fruit processing. In: Rodrigues S, Fernandes FAN (eds) Advances in fruit processing technologies. CRC Press, Boca Raton, pp 263–270

    Google Scholar 

  • Rivas A, Rodrigo D, Martínez A, Barbosa-Cánovas GV, Rodrigo M (2006) Effect of PEF and heat pasteurization on the physical–chemical characteristics of blended orange and carrot juice. Food Sci Technol 39:1163–1170

    CAS  Google Scholar 

  • Robbins RJ (2003) Phenolic acids in foods: an overview of analyticalmethodology. J Agric Food Chem 51:2866–2887

    CAS  Google Scholar 

  • Robertson GL, Samaniego CML (1986) Effect of initial dissolved oxygen levels on the degradation of ascorbic acid and the browning of lemon juice during storage. J Food Sci 51:184–187

    CAS  Google Scholar 

  • Rodrigo D, Ruíz P, Torregrosa F, Martínez A, Barbosa-Cánovas GV, Rodrigo M (2001) Pulsed electric field inactivation of pectin methyl esterase in blended orange juice and carrot juice. EUROCAFT, Berlin

    Google Scholar 

  • Rodrigo D, Barbosa-Cánovas GV, Martínez A, Rodrigo M (2003) Weibull distribution function based on an empirical mathematical model for inactivation of Escherichia coli by pulsed electric fields. J Food Prot 66:1007–1012

    CAS  Google Scholar 

  • Roig MG, Bello JF, Rivera ZS, Kennedy JF (1999) Studies on the occurrence of non-enzymatic browning during storage of citrus juice. Food Res Int 32:609–619

    CAS  Google Scholar 

  • Rothschild G, Karsenty A (1974) Influence of holding time before pasteurization, pasteurization and concentration on the turbidity of citrus juices. J Food Sci 39:1042–1044

    Google Scholar 

  • Rouse AH, Atkins CD (1952) Heat inactivation of pectinesterase in citrus juices. Food Tech 6:291–294

    CAS  Google Scholar 

  • Rouseff RL, Martin S, Youtsey F, Charles O (1987) Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J Agric Food Chem 35(6):1027–1030

    CAS  Google Scholar 

  • Rouseff R, Gmitter F, Grosser J (1994) Citrus breeding and flavour. In: Piggott JR, Peterson A (eds) Understanding natural flavors. Blackie Academic, London, pp 113–127

    Google Scholar 

  • Sadler G, Parish M, Clief D, Davis J (1997) The effect of volatile absorption by packaging polymers on flavor, microorganisms and ascorbic acid in reconstituted orange juice. Food Sci Technol 30(7):686–690

    CAS  Google Scholar 

  • Sampedro F, Geveke DJ, Fan X, Zhang HQ (2009) Effect of PEF, HHP and thermal treatment on PME inactivation and volatile compounds concentration of an orange juice–milk based beverage. Innovat Food Sci Emerg Technol 10:463–469

    CAS  Google Scholar 

  • Sandhu KS, Minhas KS (2006) Oranges and citrus juices. In: Hui YH, Cano MP, Gusek T, Sidhu JS, Sinha NK (eds) Handbook of fruits and fruit processing: science and technology. Blackwell, Ames, pp 309–358

    Google Scholar 

  • Saura D, Laencina J, Pérez-López AJ, Lizama V, Carbonell-Barrachina AA (2003) Aroma of canned peach halves acidified with clarified lemon juice. J Food Sci 68(3):1080–1085

    CAS  Google Scholar 

  • Saura D, Marti N, Laencina J, Lizama V, Carbonell-Barrachina AA (2004) Sensory evaluation of canned peach halves acidified with clarified lemon juice. J Food Sci 69(2):74–78

    Google Scholar 

  • Saura D, Marti N, Valero M, Gonzalez E, Carbonell A, Laencina J (2012) Separation of aromatics compounds during the clarification of lemon juice by cross-flow filtration. Ind Crop Prod 36:543–548

    CAS  Google Scholar 

  • Schofield TF (1994) Aroma improvement by means of the spinning cone column. Fruit Process 4:144–147

    Google Scholar 

  • Schofield TF, Riley P (1998) Developments with the spinning cone column to extract natural concentrated aromas. Fruit Process 8:52–55

    Google Scholar 

  • Scott WC, Hearn CJ (1966) Processing qualities of new citrus hybrids. Proc Florida State Horticult Soc 79:304–306

    Google Scholar 

  • Selli S, Kelebek H (2011) Aromatic profile and odour-activity value of blood orange juices obtained from Moro and Sanguinello (Citrus sinensis L. Osbeck). Ind Crop Prod 33:727–733

    CAS  Google Scholar 

  • Selli S, Canbas A, Cabaroglu T (2004) Volatile flavour components of orange juice obtained from the Kozan variety of Turkey. J Food Compos Anal 17:789–796

    CAS  Google Scholar 

  • Shaw PE (1991) Fruit. In: Maarse H (ed) Volatile compounds in food and beverages. Marcel Dekker, New York, p 305

    Google Scholar 

  • Shaw PE, Moshonas M (1997) Quantification of volatile constituent in orange juice drinks and its use for comparison with pure juices by multivariate analysis. LWT Food Sci Technol 30:497–501

    CAS  Google Scholar 

  • Shaw PE, Baines L, Mitnes BA, Agmon G (2000) Commercial debittering processes to upgrade quality of citrus juice products. ACS Symp Ser Citrus Limonoid 758:120–131

    CAS  Google Scholar 

  • Shaw PE, Moshonas M, Buslig BS, Barros SM, Widmer WW (2005) Discriminant and principal component analyses to classify commercial orange juices based on relative amounts of volatile juice constituents. J Sci Food Agric 79:1949–1953

    Google Scholar 

  • Shinoda Y, Murata M, Homma S, Komura H (2004) Browning and decomposed products of model orange juice. Biosci Biotechnol Biochem 68:529–536

    CAS  Google Scholar 

  • Shinoda Y, Komura H, Homma S, Murata M (2005) Browning of model orange juice solution: Factors affecting the formation of decomposition products. Biosci Biotechnol Biochem 69:2129–2137

    CAS  Google Scholar 

  • Solomon O, Svanberg H, Sahlstrom A (1995) Effect of oxygen and fluorescent light on the quality of orange juice during storage at 8 °C. Food Chem 53:363–368

    CAS  Google Scholar 

  • Stéphane CF, Ruben JH, Robert VH (2007) The debittering of navel orange juice using polymeric films. J Food Sci 72:143–154

    Google Scholar 

  • Stevens JW, Pritchett DE, Baier WE (1950) Control of enzymatic flocculation of cloud in citrus juices. Food Technol 4:469–473

    CAS  Google Scholar 

  • Stinco CM, Fernández-Vázquez R, Hernanz D, Heredia FJ, Meléndez-Martínez AJ, Vicario IM (2013) Industrial orange juice debittering: impact on bioactive compounds and nutritional value. J Food Eng 116:155–161

    CAS  Google Scholar 

  • Sun J, Chu Y-F, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50:7449–7454

    CAS  Google Scholar 

  • Sun Y, Wang J, Gu S, Liu Z, Zhang Y, Zhang X (2010) Simultaneous determination of flavonoids in different parts of Citrus reticulata ‘Chachi’ fruit by high performance liquid chromatography—photodiode array detection. Molecules 15:5378–5388

    CAS  Google Scholar 

  • Tariq AM, Chaudry MS, Qureshi MJ (1974) Effect of processing and storage on the development of bitterness in the orange juice. Pak J Sci Ind Res 17(1):27–28

    Google Scholar 

  • Thijssen HA (1975) Current developments in the freeze concentration of liquid foods. In: Goldblith SA, Rey L, Rothmayr WW (eds) Freeze drying and advanced food technology. Academic, London

    Google Scholar 

  • Thijssen HAC (1986) The economics and potentials of freeze concentration for fruit juices. In: International federation of fruit juice producers, XIX scientific technical commission, symposium, Den Haag, May 12–15, The Hague, pp 97–103

    Google Scholar 

  • Tiwari BK, Muthukumarappan K, O'Donnell CP, Cullen PJ (2009a) Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innovat Food Sci Emerg Technol 10:166–171

    CAS  Google Scholar 

  • Tiwari BK, O’Donnell CP, Muthukumarappan K, Cullen PJ (2009b) Effect of sonication on orange juice quality parameters during storage. Int J Food Sci Technol 44:586–595

    CAS  Google Scholar 

  • Tiwari BK, O'Donnell CP, Muthukumarappan K, Cullen PJ (2009c) Effect of low temperature sonication on orange juice quality parameters using response surface methodology. Food Bioprocess Technol 2:109–114

    CAS  Google Scholar 

  • Tiwari BK, O'Donnell CP, Muthukumarappan K, Cullen PJ (2009d) Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurised juice. Food Sci Technol 42:700–704

    CAS  Google Scholar 

  • Tomás-Barberán FA, Clifford MN (2000) Review: flavanones, chalcones and dihydrochalcones-nature, occurrence and dietary burden. J Sci Food Agric 80:1073–1080

    Google Scholar 

  • Topuz A, Topakci M, Canakci M, Akinci I, Ozdemir F (2005) Physical and nutritional properties of four orange varieties. J Food Eng 66:519–523

    Google Scholar 

  • Toribio JL, Lozano JE (1984) Nonenzymatic browning in apple juice concentrate during storage. J Food Sci 49:889–892

    CAS  Google Scholar 

  • Torkamani AE, Niakousari M (2011) Impact of UV-C light on orange juice quality and shelf life. Int Food Res J 18:1265–1268

    CAS  Google Scholar 

  • Torregrosa F, Cortés C, Esteve MJ, Frígola A (2005) Effect of high-intensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids. J Agric Food Chem 53:9519–9525

    CAS  Google Scholar 

  • Torregrosa F, Esteve MJ, Frígola A, Cortés C (2006) Ascorbic acid stability during refrigerated storage of orange–carrot juice treated by high pulsed electric field and comparison with pasteurized juice. J Food Eng 73:339–345

    CAS  Google Scholar 

  • Tran MTT, Farid M (2004) Ultraviolet treatment of orange juice. Innovat Food Sci Emerg Technol 5:495–502

    CAS  Google Scholar 

  • Trifiro A, Gherardi S, Bigliardi D, Bazzarini R, Castaldo D (1984) Limonin, l-malic acid and d-isocitric acid contents of Italian Tarocco and Sanguinello oranges. Industria Conserve 59(1):12–17

    CAS  Google Scholar 

  • Uçan F (2013) Production of clear and naturally cloudy lemon juice concantre and determination of quality parameters. (in Turkish) Dissertation, University of Çukurova

    Google Scholar 

  • Valdramidis VP, Cullen PJ, Tiwari BK, O’Donnell CP (2010) Quantitative modelling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. J Food Eng 96:449–454

    CAS  Google Scholar 

  • Valero M, Recrosio N, Saura D, Muñoz N, Martí N, Lizama V (2007) Effects of ultrasonic treatments in orange juice processing. J Food Eng 80:509–516

    Google Scholar 

  • Van Den Broeck I, Ludikhuyze LR, Van Loey AM, Hendrickx ME (2000) Inactivation of orange pectinesterase by combined high pressure and temperature treatments: a kinetic study. J Agric Food Chem 48(5):1960–1970

    Google Scholar 

  • Van Pelt WHJM (1975) Freeze concentration of vegetable juices. In: Goldblith SA, Rey L, Rothmayr WW (eds) Freeze drying and advanced food technology. Academic, London

    Google Scholar 

  • Vercet A, Sanchez C, Burgos J, Montanes L, Lopez Buesca P (2001) The effects of manothermosonication on tomato pectic enzymes and tomato paste rheological properties. J Food Eng 53:273–278

    Google Scholar 

  • Versteeg C, Rombouts FM, Spaansen CH, Pilnik W (1980) Thermostability and orange juice cloud destabilizing properties of multiple pectinesterases from orange. J Food Sci 45:969–971

    CAS  Google Scholar 

  • Vervoort L, Van der Plancken I, Grauwet T, Timmermans RAH, Mastwijk HC, Matser AM, Hendrickx ME, Van Loey A (2011) Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice Part II: Impact on specific chemical and biochemical quality parameters. Innovat Food Sci Emerg Technol 12:466–477

    CAS  Google Scholar 

  • Voragen AGJ, Pilnik W, Thibault JF, Axelos MAV, Renard MGC (1995) Pectins. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 287–339

    Google Scholar 

  • Walker JB (1990) Membrane process for the production of superior quality fruit juice concentrates. In: Proceedings of the 1990 international congress on membranes and membrane processes, vol 1, pp 283–285

    Google Scholar 

  • Wang H, Cao GH, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44:701–705

    CAS  Google Scholar 

  • Wang YC, Chuang YC, Ku YH (2007) Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chem 102(4):1163–1171

    CAS  Google Scholar 

  • Wang YC, Chuang YC, Hsu HW (2008) The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem 106(1):277–284

    CAS  Google Scholar 

  • Wicker L, Ackerley JL, Corredig M (2002) Clarification of juice by thermolabile Valencia pectinmethylesterase is accelerated by cations. J Agric Food Chem 50:4091–4095

    CAS  Google Scholar 

  • Wicker L, Ackerley JL, Hunter JL (2003) Modification of pectin by pectinmethylesterase and the role in stability of juice beverages. Food Hydrocoll 17:809–814

    CAS  Google Scholar 

  • Widmer W (2000) Determination of naringin and neohesperidin in orange juice by liquid chromatography with UV detection to detect the presence of grapefruit juice: collaborative study. J AOAC Int 83(5):1155–1165

    CAS  Google Scholar 

  • Wilke B (2002) Aspetic packaging of fruit juices in thermoformed containers. Fruit Process 13(1):13–16

    Google Scholar 

  • Xu G, Liu D, Chen J, Ye X, Maa Y, Shi J (2008) Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem 106:545–551

    CAS  Google Scholar 

  • Yeom H, Streaker C, Zhang Q, Min D (2000a) Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J Agric Food Chem 48:4597–4605

    CAS  Google Scholar 

  • Yeom HW, Streaker CB, Zhang QH, Min DB (2000b) Effects of pulsed electric fields on the activities of microorganismis and pectin methyl esterase in orange juice. J Food Sci 65(8): 1359–1363

    CAS  Google Scholar 

  • Yeom HW, Zhang QH, Chism GW (2002) Inactivation of pectin methyl esterase in orange juice by pulsed electric field. J Food Sci 67:2154–2159

    CAS  Google Scholar 

  • Yoo KM, Lee KW, Park JB, Lee HJ, Hwang IK (2004) Variation in major antioxidants and total antioxidant activity of yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars. J Agric Food Chem 52:5907–5913

    CAS  Google Scholar 

  • Yusof S, Ghazali H, King GS (1990) Naringin content in local citrus fruits. Food Chem 37(2):113–121

    CAS  Google Scholar 

  • Zaare-Nahandi F, Hosseinkhani S, Zamani Z, Asadi-Abkenar A, Omidbaigi R (2008) Delay expression of limonoid UDP-glucosyltransferase makes delayed bitterness in citrus. Biochem Biophys Res Commun 371:59–62

    CAS  Google Scholar 

  • Zerdin K, Rooney ML, Vermue J (2003) The vitamin C content of orange juice packed in an oxygen scavenger material. Food Chem 82:387–395

    CAS  Google Scholar 

  • Zhang QH, Sastry SK, Yousef AE (1996) Integrated processing and aseptic packaging system using high voltage pulsed electric field technology. IFT Annual Meeting, New Orleans

    Google Scholar 

  • Ziegler RG (1989) A review of epidemiologic evidence that carotenoids reduce the risk of cancer. J Nutr 119:116–122

    CAS  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    CAS  Google Scholar 

  • Zulueta A, Esteve MJ, Frigola A (2010) Ascorbic acid in orange juice–milk beverage treated by high intensity pulsed electric fields and its stability during storage. Innovat Food Sci Emerg Technol 11:84–90

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asiye Akyildiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Akyildiz, A., Ağçam, E. (2014). Citrus Juices Technology. In: Malik, A., Erginkaya, Z., Ahmad, S., Erten, H. (eds) Food Processing: Strategies for Quality Assessment. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1378-7_3

Download citation

Publish with us

Policies and ethics