Skip to main content

Importance of Yeasts and Lactic Acid Bacteria in Food Processing

  • Chapter
  • First Online:
Food Processing: Strategies for Quality Assessment

Abstract

Fermented foods and beverages have been an important part of our lives in all over the world. Their production is one of the oldest manufacturing and preservation methods, dating back to ancient times. Yeasts, mainly Saccharomyces cerevisiae, and lactic acid bacteria have long been used for the production of many fermented products.

In food industry, yeasts have an important role in the production of alcoholic beverages, bioethanol, baker’s yeast and yeast-derived products. Lactic acid bacteria also have a fundamental effect on the production of some food products such as yoghurt, fermented vegetables, sour-dough bread and others.

This chapter gives some information on the beneficial aspects of yeasts and lactic acid bacteria in foods and beverages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas CA (2006) Production of antioxidants, aromas, colours, flavours, and vitamins by yeast. In: Querol A, Fleet GH (eds) Yeasts in food and beverages, vol 2, The yeast handbook. Springer, Heidelberg, pp 285–334

    Google Scholar 

  • Abdelgadir WS, Hamad SH, Møller PL, Jakobsen M (2001) Characterisation of the dominant microbiota of Sudanese fermented milk Rob. Int Dairy J 11:63–70

    Google Scholar 

  • Akbaria H, Karimia K, Lundin M, Taherzadeh M (2012) Optimization of baker’s yeast drying in industrial continuous fluidized bed dryer. Food Bioprod Process 90:52–57

    Google Scholar 

  • Alves M, Gonçalves T, Quintas C (2012) Microbial quality and yeast population dynamics in cracked green table olives’ fermentations. Food Control 23:363–368

    CAS  Google Scholar 

  • Amiot MJ, Tacchini M, Fleuriet A, Macheix JJ (1990) Le processus technologique de désamérisation des olives: caractérisation des fruits avant et pendant le traitement alcalin. Sci Aliment 10:619–631

    CAS  Google Scholar 

  • Amorim HV, Basso LC, Lopes ML (2009) Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage. In: Ingledew WM, Kelsall DR, Austin GD, Kluhspies C (eds) The alcohol text book, 5th edn. Nottingham University Press, Nottingham, pp 39–46

    Google Scholar 

  • Angulo L, Lopez E, Lema C (1993) Microflora present in kefir grains of the Galician region (North-West of Spain). J Dairy Res 60:263–267

    CAS  Google Scholar 

  • Arici M (2004) Microbiological and chemical properties of a drink called shalgam. Ernahrungs-Umschau 51(1):10–11

    CAS  Google Scholar 

  • Arici M, Daglioglu O (2002) Boza: a lactic acid fermented cereal beverage as a traditional Turkish food. Food Res Int 18:39–48

    CAS  Google Scholar 

  • Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A (2008) Role of yeasts in table olive production. Int J Food Microbiol 128:189–196

    Google Scholar 

  • Arroyo-López FN, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García-García P, Querol A, Garrido-Fernández A (2012) Yeasts in table olive processing: desirable or spoilage microorganisms. Int J Food Microbiol 160:42–49

    Google Scholar 

  • Aukrust TW, Blom A, Sandtorv BF, Slinde E (1994) Interactions between starter culture and raw material in lactic acid fermentation of sliced carrot. LWT Food Sci Technol 27:337–341

    Google Scholar 

  • Axelsson L (1998) Lactic acid bacteria: Classification and physiology. In: Salminen S, Von Wright A, (eds) lactic acid bacteria- Microbiology and functional aspects. Markel Dekker, New York, pp 1–72

    Google Scholar 

  • Bai FW, Anderson WA, Moo-Yong M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    CAS  Google Scholar 

  • Bamforth C (2003) Yeast and fermentation. In: Bamforth C (ed) Beer tap into the art and science of brewing. Oxford University Press, New York, pp 144–159

    Google Scholar 

  • Berry DR (1989) Manipulation of flavor production by yeast: physiological and genetic approaches. In: Piggott JR, Paterson A (eds) Distilled beverage flavour. Harwood, Chichester, UK, pp 299–307

    Google Scholar 

  • Berry DR (1995) Alcoholic beverage fermentations. In: Lea AGH, Piggott JR (eds) Fermented beverage production. Blackie, Glasgow, UK, pp 32–44

    Google Scholar 

  • Bintsis T, Robinson RK (2004) A study of the adjunct cultures on the aroma compounds of feta-type cheese. Food Chem 88(3):435–441

    CAS  Google Scholar 

  • Birch AN, Petersen MA, Hansen AS (2013) The aroma profile of wheat bread crumb influenced by yeast concentration and fermentation temperature. LWT Food Sci Technol 50:480–488

    CAS  Google Scholar 

  • Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Viticult 50:107–119

    CAS  Google Scholar 

  • Blanco P, Mirás-Avalos JM, Orriols I (2012) Effect of must characteristics on the diversity of Saccharomyces strains and their prevalence in spontaneous fermentations. J Appl Microbiol 112(5):936–944

    Google Scholar 

  • Blandino A, Al-Aseeri ΜE, Pandiella SS, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36:527–543

    CAS  Google Scholar 

  • Boekhout T, Robert V (2003) Yeasts in foods. Beneficial and detrimental aspects. CRC Press, Boca Raton, p 488

    Google Scholar 

  • Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Seto Y, Ter Schure E, Van Boven A, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154:87–97

    CAS  Google Scholar 

  • Briggs DE, Boulton CA, Brookes PA, Stevens R (2004) Fermentation technologies. In: Briggs DE, Boulton CA, Brookes PA, Stevens R (eds) Brewing science and practice. Woodhead; CRC Press, England, pp 509–542

    Google Scholar 

  • Cai Y, Okada H, Mori H, Benno Y, Nakase T (1999) Lactobacillus paralimentarius sp. nov., isolated from sourdough. Int J Syst Bacteriol 49:1451–1455

    CAS  Google Scholar 

  • Campbell I (2003) Microbiological aspects of brewing. In: Priest FG, Campbell I (eds) Brewing microbiology. Springer, New York, pp 1–17

    Google Scholar 

  • Cang Y, Lu L, Wang G (2002) Antioxidant role of carotenoids in Rhodotorula sp. and screening of carotenoid hyperproducing yeasts. Junwu Xitong 21(2):84–91

    CAS  Google Scholar 

  • Cantor MD, Van Den Temple T, Hansen TK, Ardö Y (2004) Blue cheese. In: Fox PF, McSweeney P, Cogan T, Guinee T (eds) Cheese: chemistry, physics and microbiology, major cheese groups, vol 2, 3rd edn. Chapman and Hall, London, pp 175–198

    Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    CAS  Google Scholar 

  • Chandrani W, Jayathilake AN (2000) Characteristics of two yeast strain (Candida tropicalis) isolated from Caryora urens (Khitul) toddy for single cell protein production. Natl J Sci Found (Sri Lanka) 28:79–86

    Google Scholar 

  • Chavan RS, Chavan SR (2011) Sourdough technology: a traditional way for wholesome foods: a review. Compr Rev Food Sci Food Saf 10:169–182

    Google Scholar 

  • Chavan RS, Jana A (2008) Frozen dough for bread making: a review. Int J Food Sci Technol Nutr 2:9–27

    Google Scholar 

  • Chaves ACSD, Kleerebezem M, Lerayer ALS, Hugenholtz J (1999) Improved yoghurt flavour by metabolic engineering of Streptococcus thermophilus. Sixth symposium on lactic acid bacteria, book of abstracts, G2

    Google Scholar 

  • Cheng Q, Rouviere PE, Tao L (2004) Mutant carotenoid-producing microorganisms and their use in carotenoid fermentation. PCT Int Appl WO 2004056974

    Google Scholar 

  • Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 102:4295–4303

    CAS  Google Scholar 

  • Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123–133

    CAS  Google Scholar 

  • Collar C (1996) Biochemical and technological assessment of the metabolism of pure and mixed cultures of yeast and lactic acid bacteria in breadmaking applications. Food Sci Technol Int 2:349–367

    CAS  Google Scholar 

  • Corsetti A, Lavermicocca P, Morea M, Baruzzi F, Tosti N, Gobbetti M (2001) Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy. Int J Food Microbiol 64:95–104

    CAS  Google Scholar 

  • Corsetti A, De Angelis M, Dellaglio F, Paparella A, Fox PF, Settanni L, Gobbetti M (2003) Characterization of sourdough lactic acid bacteria based on genotypic and cell-wall protein analysis. J Appl Microbiol 94:641–654

    CAS  Google Scholar 

  • Corsetti A, Settanni L, Van Sinderen D (2004) Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J Appl Microbiol 96:521–534

    CAS  Google Scholar 

  • Cortes S, Blanco P (2011) Yeast strain effect on the concentration of major volatile compounds and sensory profile of wines from Vitis vinifera var. treixadura. World J Microbiol Biotechnol 27:925–932

    CAS  Google Scholar 

  • Curtin C, Chambers P, Pretorius S (2011) Wine fermentation. In: Wheeler MB, Hoover DG, Heldman DR (eds) Encyclopedia of biotechnology in agriculture and food. Taylor & Francis, Boca Raton, pp 689–694

    Google Scholar 

  • Dağlioğlu O, Arici M, Konyali M, Gumus T (2002) Effects of tarhana fermentation and drying methods on the fate of Escherichia coli O157:H7 and Staphylacoccus aureus. Eur Food Res Technol 215:515–519

    Google Scholar 

  • De Benedictis M, Bleve G, Grieco F, Tristezza M, Tufariello M, Grieco F (2011) An optimized procedure for the enological selection of non-Saccharomyces starter cultures. A Van Leeuw J Microb 99(2):189–200

    Google Scholar 

  • De Vuyst L, Vancanneyt M (2007) Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol 24:120–127

    Google Scholar 

  • Deak T (2004) Spoilage yeasts. In: Steele R (ed) Understanding and measuring the shelf-life of food. Woodhead, Boca Raton, pp 91–110

    Google Scholar 

  • Deak T (2008) Handbook of food spoilage yeasts. CRC Press, Boca Raton, 325 pp

    Google Scholar 

  • Decock P, Cappelle S (2005) Bread technology and sourdough technology. Trends Food Sci Technol 16:113–120

    CAS  Google Scholar 

  • Del Rio L, Corpas J, Sandalio L, Palma J, Barroso J (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55(2):71–81

    Google Scholar 

  • Delgado A, Brito D, Peres C, Noé-Arroyo F, Garrido-Fernández A (2005) Bacteriocin production by Lactobacillus pentosus B96 can be expressed as a function of temperature and NaCl concentration. Food Microbiol 22:521–528

    CAS  Google Scholar 

  • Demain AL, Phaff HJ, Kurtzman CP (1998) The industrial and agricultural significance of yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts – a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 13–19

    Google Scholar 

  • Demirbas A (2007) Producing and using bioethanol as an automotive fuel. Energ Sour B 2:391–401

    CAS  Google Scholar 

  • Dickinson JR (2003) The formation of higher alcohols. In: Smart KA (ed) Brewing yeast fermentation performance, 2nd edn. Blackwell, Oxford, UK, pp 196–205

    Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    CAS  Google Scholar 

  • Dillon VM, Board RG (1991) Yeast associated with red meats. J Appl Microbiol 71:93–108

    CAS  Google Scholar 

  • Durán Quintana MC, García García P, Garrido-Fernández A (1999) Establishment of conditions for green olive fermentation at low temperature. Int J Food Microbiol 51:133–143

    Google Scholar 

  • Ehrmann MA, Muller MR, Vogel RF (2003) Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 53:7–13

    CAS  Google Scholar 

  • Erginkaya Z, Hammes WP (1992) Şalgam suyu fermantasyonu sırasında mikroorganizmalarin gelişimi ve izole edilen laktik asit bakterilerinin tanımlanmaları üzerine bir araştırma. Gida 17(5):311–314

    Google Scholar 

  • Erten H, Tangüler H, Canbaş A (2008) A traditional turkish lactic acid fermented beverage: Shalgam (Salgam). Food Rev Int 24:352–359

    CAS  Google Scholar 

  • Farnworth ER (1999) Kefir: from folklore to regulatory approval. J Nutraceut Funct Med Foods 57–68

    Google Scholar 

  • Farnworth ER (2006) Kefir a complex probiotic. Food Sci Technol Bull Funct Foods 2:1–17. http://www.foodsciencecentral.com/fsc/bulletin-ff-freeS

  • Farnworth ER, Mainville I (2003) Kefir: a fermented milk product. In: Farnworth ER (ed) Handbook of fermented functional foods. CRC Press, Boca Raton, pp 77–112

    Google Scholar 

  • Fernandez Diez MJ (1983) Olives. In: Rehm HJ, Reed G (eds) Biotechnology: food and feed production with microorganisms. Verlag Chemie, Florida, pp 379–397

    Google Scholar 

  • Ferreira AS, Viljoen BC (2003) Yeasts as adjunct starters in maturated Chedar cheese. Int J Food Microbiol 86:131–140

    CAS  Google Scholar 

  • Ferreira IMPLVO, Pinho O, Vieira E, Tavarela JG (2010) Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci Technol 21:77–84

    CAS  Google Scholar 

  • Fleet GH (1990) Yeasts in dairy products. J Appl Bacteriol 68:199–211

    CAS  Google Scholar 

  • Fleet GH (1998) The microbiology of alcoholic beverages. In: Fleet GH, Wood BJB (eds) Microbiology of fermented foods. Thomson Science, London, pp 217–255

    Google Scholar 

  • Fleet GH (2003a) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    CAS  Google Scholar 

  • Fleet GH (2003b) Yeasts in fruit and fruit products. In: Boekhout T, Robert V (eds) Yeasts in foods: beneficial and detrimental aspects. Behr’s Verlag, Hamburg, pp 267–287

    Google Scholar 

  • Fleet GH (2006) The commercial and community significance of yeasts in food and beverage production. In: Queol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Heidelberg, pp 1–13

    Google Scholar 

  • Fleet GH, Balia R (2006) The public health and probiotic significance of yeasts in foods and beverages. In: Queol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Heidelberg, pp 381–397

    Google Scholar 

  • Fleet GH, Heard GM (1993) Yeasts – growth during fermentation. In: Fleet GM (ed) Wine microbiology and biotechnology. Harwood Academic, London, pp 27–54

    Google Scholar 

  • Fleming HP, Da Eschel MA, Mcfeeters RF, Pierson MD (1989) Butyric acid spoilage of fermented cucumbers. J Food Sci 54(3):636–639

    CAS  Google Scholar 

  • Fleming HP, Humpries EG, Fasina OO, McFeeters RF, Thompson RL, Breidt J (2002) Bag in box technology: pilot system for process-ready, fermented cucumbers. Pickle Pak Sci 8:1–8

    Google Scholar 

  • Font De Valdez G, De Giori GS, Garro M, Mozzi F, Oliver G (1990) Lactic acid bacteria from naturally fermented vegetables. Microbiol Alim Nutr 8:175–179

    Google Scholar 

  • Franco W, Pérez-Díaz IM (2012) Development of a model system for the study of spoilage associated secondary cucumber fermentation during long term storage. J Food Sci 78(2):264–269

    Google Scholar 

  • Frengova GI, Simova ED, Beshkova DM, Simov ZI (2002) Exopolysaccharides produced by lactic acid bacteria of kefir grains. Z Naturforsch 57(9–10):805

    CAS  Google Scholar 

  • Frengova G, Simova E, Beshkova D (2003) Carotenoid production by lactoso-negative yeasts co-cultivated with lactic acid bacteria in whey ultrafiltrate. J Biosci 58(7/8):562–567

    CAS  Google Scholar 

  • Frengova G, Simova E, Beshkova D (2004) Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra. Appl Biochem Biotechnol 112(3):133–141

    CAS  Google Scholar 

  • Frölich-Wyder M-T (2003) Yeasts in dairy products. In: Boekhout T, Robert V (eds) Yeasts in food beneficial and detrimental aspects. Behr’s Verlag, Hamburg, pp 209–237

    Google Scholar 

  • Gadaga TH, Mutukumira AN, Narvhus JA (2001) Int J Food Microbiol 70:11–19

    CAS  Google Scholar 

  • Ganga MA, Martinez C (2004) Effect of wine yeast monoculture practice of biodiversity of non-Saccharomyces yeasts. J Appl Microbiol 96:76–83

    CAS  Google Scholar 

  • Garafolo A (1992) The ester synthesizing activity of yeast under different nutrient conditions. Riv Vitic Enol 45(3):41–58

    Google Scholar 

  • Gardini F, Suzzi G, Lombardi A, Galgano F, Crudeleb MA, Andrighetto C, Schirone M, Tofalo R (2001) A survey of yeasts in traditional sausages of Southern Italy. FEMS Yeast Res 1:161–167

    CAS  Google Scholar 

  • Garrido-Fernandez A, Garcia PG, Brenes MB (1995) Olive fermentations. In: Rehm HJ, Reed G, Puhler A, Stadler P (eds) Biotechnology: enzymes, biomass, food and feed. VCH Verlag, Weinheim, pp 593–627

    Google Scholar 

  • Garrido-Fernández A, Fernández Díaz MJ, Adams RM (1997) Table olives: production and processing. Chapman & Hall, London

    Google Scholar 

  • Garrote GL, Abraham AG, De Antoni GL (2001) Chemical and microbiological characterization of kefir grains. J Dairy Res 68:639–652

    CAS  Google Scholar 

  • Ghabbour N, Lamzira Z, Thonart P, Cidalia P, Markaouid M, Asehraou A (2011) Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives. Grasas Aceites 62:84–89

    CAS  Google Scholar 

  • Giannou V, Kessoglou V, Tzia C (2003) Quality and safety characteristics of bread made from frozen dough. Trends Food Sci Technol 14:99–108

    CAS  Google Scholar 

  • Gibson BR, Boulton CA, Box WG, Graham NS, Lawrence SJ, Linforth RST, Smart KA (2008) Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation. Yeast 25:549–562

    CAS  Google Scholar 

  • Gobbetti M (1998) Interactions between lactic acid bacteria and yeasts in sourdoughs. Trends Food Sci Technol 9:267–274

    CAS  Google Scholar 

  • Gobbetti M, Corsetti A, Rossi J, La Rosa F, De Vincenzi S (1994) Identification and clustering of lactic acid bacteria and yeasts from wheat sourdoughs of central Italy. Ital J Food Sci 1:85–94

    Google Scholar 

  • Gotcheva V, Pandiella SS, Angelov A, Roshkova Z, Webb C (2000) Microflora identification of the Bulgarian cereal-based fermented beverage boza. Process Biochem 36:127–130

    CAS  Google Scholar 

  • Guerzoni ME, Lanciotti R, Vannini L, Galgano F, Favati F, Gardini F, Suzzi G (2001) Variability of the lipolytic activity in Yarrowia lipolytica and its dependence on environmental conditions. Int J Food Microbiol 69:79–89

    CAS  Google Scholar 

  • Halasz A, Laszity R (1991) Use of yeast biomass in food production. CRC Press, Boca Raton, p 319

    Google Scholar 

  • Hammes WP, Gaenzle MG (1998) Sourdough breads and related products. In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn. Blackie Academic and Professional, London, pp 199–216

    Google Scholar 

  • Hammes WP, Hertel C (1998) New developments in meat starter cultures. Meat Sci 49(1): 125–138

    Google Scholar 

  • Hammes WP, Stolz P, Gaenzle M (1996) Metabolism of lactobacilli in traditional sourdoughs. Adv Food Sci 18(5/6):176–184

    CAS  Google Scholar 

  • Hammes WP, Brandt MJ, Francis KL, Rosenheim J, Seitter MFH, Vogelmann SA (2005) Microbial ecology of cereal fermentations. Trends Food Sci Technol 16:4–11

    CAS  Google Scholar 

  • Harris LJ (1998) The microbiology of vegetable fermentations. In: Wood BJB (ed) Microbiology of ferment food. Academic Professional, London, pp 45–72

    Google Scholar 

  • Harrison JS (1970) Miscellaneous products from yeast. In: Rose AH, Harrison JS (eds) The yeasts, vol III. Academic, London, pp 529–545

    Google Scholar 

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    CAS  Google Scholar 

  • Henick-Kling T (2002) Malolactic fermantation. In: Fleet GH (ed) Wine microbiology and biotechnology. Taylor and Francis, London, pp 289–326

    Google Scholar 

  • Heredia N, Wesley I, Garcia S (2009) Microbiologically safe foods. Wiley, Canada, p 667

    Google Scholar 

  • Hernández A, Martín A, Aranda E, Pérez-Nevado F, Córdoba MG (2007) Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol 24(4):346–351

    Google Scholar 

  • Hounhouigan DJ, Nout MJR, Nago CM, Houben JH, Rombouts FM (1993) Composition and microbiological and physical attributes of mawè, a fermented maize dough from Benin. Int J Food Sci Tech 28:513–517

    CAS  Google Scholar 

  • Huber JT (1997) Probiotics in cattle. In: Fuller R (ed) Probiotics 2: applications and practical aspects. Chapman and Hall, London, pp 162–186

    Google Scholar 

  • Hugenholtz J (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol Rev 12:165–178

    CAS  Google Scholar 

  • Hugenholtz J, Starrenburg M, Boels I, Sybesma W, Chaves AC, Mertens A, Kleerebezem M (2000) Metabolic engineering of lactic acid bacteria for the improvement of fermented dairy products. In: Proceedings of the international meeting of biothermokinetics. Stellenbosch University Press, pp 285–290

    Google Scholar 

  • Hurtado A, Reguan TC, Bordons A, Rozès N (2009) Influence of fruit ripeness and salt concentration on the microbial processing of Arbequina table olives. Food Microbiol 26:827–833

    CAS  Google Scholar 

  • Hurtado A, Reguant C, Bordons A, Rozès N (2010) Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives. Food Microbiol 27:731–740

    CAS  Google Scholar 

  • Hurtado A, Reguant C, Bordons A, Rozes N (2012) Lactic acid bacteria from fermented table olives. Food Microbiol 31:1–8

    CAS  Google Scholar 

  • Hutkins RW (2006) Microbiology and technology of fermented foods. Blackwell, Ames, p 473

    Google Scholar 

  • Ibanoglu S, Ibanoglu E (1998) Rheological characterization of some traditional Turkish soups. J Food Eng 35(2):251–256

    Google Scholar 

  • Ibanoglu S, Ibanoglu E (1999) Rheological properties of cooked Tarhana, a cereal based soup. Food Res Int 32:29–33

    Google Scholar 

  • Ic E, Ozcelik F (1995) Hiyar turşusu fermentasyonunda görülen mikroorganizmalar. Gida (Food) 20(3):173–178

    Google Scholar 

  • Ic E, Ozcelik F (1999) Hiyar turşularinin düşük tuzlu salamurada fermentasyonu üzerine bir araştirma. Gida (Food) 24(2):77–87

    Google Scholar 

  • Irigoyen A, Arana I, Castiella M, Torre P, Ibanez FC (2005) Microbiological, physicochemical and sensory characteristics of Kefir during storage. Food Chem 90:613–620

    CAS  Google Scholar 

  • Jacques N, Caserogola S (2008) Safety assessment of dairy microorganisms: the hemiascomycetous yeasts. Int J Food Microbiol 126:321–326

    CAS  Google Scholar 

  • Jakobsen M, Narwnjs J (1996) Yeasts and their possible beneficial and negative effects on the quality of dairy products. Int Dairy J 6:755–768

    Google Scholar 

  • Jakobsen M, Larsen MD, Jespersen L (2002) Production of bread, cheese and meat. In: Osiewacz HD (ed) A comprehensive freatise on fungi as experimental systems and applied research, The Mycota, industrial applications. Springer, Berlin, pp 3–22

    Google Scholar 

  • Jentsch M (2007) Top-fermented beer specialities in focus. Brauwelt Int 5:332–334

    Google Scholar 

  • Johanningsmeier SD, Franco W, Pérez-díaz IM, Mcfeeters RF (2012) Influence of sodium chloride, pH and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage. J Food Sci 77(7):397–404

    Google Scholar 

  • Johansson ML, Quednau M, Molin G, Ahrné S (1995) Randomly amplified polymorphic DNA (RAPD) for rapid typing of Lactobacillus plantarum strains. Lett Appl Microbiol 21:155–159

    CAS  Google Scholar 

  • Joseph R (1999) Yeasts: production and commercial uses. In: Robinson RK, Patel P, Batt CA (eds) Enc food microbiol. Academic, London, pp 2335–2341

    Google Scholar 

  • Kalac P, Špička J, Křížek M, Steidlová S, Pelikánová T (1999) Concentration of seven biogenic amines in sauerkraut. Food Chem 67:275–280

    CAS  Google Scholar 

  • Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    CAS  Google Scholar 

  • Kesenkaş H, Akbulut N (2006) Destek Kültür Olarak Kullanılan Bazı Mayaların Beyaz Peynir Aroması Üzerine Etkileri. Ege Üniv Ziraat Fak Derg 43(2):73–84

    Google Scholar 

  • Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100:1515–1523

    CAS  Google Scholar 

  • Kim JH, Breidt F (2007) Development of preservation prediction chart for long term storage of fermented cucumber. J Life Sci 17(2):1616–1621

    Google Scholar 

  • Kollar RE, Sturdik E, Sajbidor J (1992) Complete fractionation of Saccharomyces cerevisiae biomass. Food Biotechnol 6:225–237

    CAS  Google Scholar 

  • Krieger S (1993). The use of active dry malolactic starter cultures. In: Proceedings of ASVO seminar, 30 Jul 1992, McLaren Vale, pp 56–62

    Google Scholar 

  • Krieger SA, Hammes WP, Henick-Kling T (1990) Management of malolactic fermentation using starter cultures. Vineyard Winery Manage (Nov/Dec):45–50

    Google Scholar 

  • Kröckel L (2013) The role of lactic acid bacteria in safety and flavour development of meat and meat products. In: Kongo M (ed) Lactic acid bacteria- R&D for food, health and livestock purposes. InTech, Croatia, p 658

    Google Scholar 

  • Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma—a review. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  • Landete JM, Curiel JA, Rodríguez H, De Las RB, Muñoz R (2008) Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem 107:320–326

    CAS  Google Scholar 

  • Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66:4084–4090

    CAS  Google Scholar 

  • Lentini A, Rogers P, Higgins V, Chandler DI, Stanley M, Chambers P (2003) The impact of ethanol stress on yeast physiology. In: Smart K (ed) Brewing yeast fermentation performance. Blackwell, Oxford, pp 25–38

    Google Scholar 

  • Lin CW, Chen HL, Liu JR (1999) Identification and characterisation of lactic acid bacteria and yeasts isolated from kefir grains in Taiwan. Aust J Dairy Technol 54:14–18

    Google Scholar 

  • Lodolo EJ, Kock JLK, Axcell BC, Brooks M (2008) The yeast Saccharomyces cerevisiae- the main character in beer brewing. FEMS Yeast Res 8:1018–1036

    CAS  Google Scholar 

  • Lopez HW, Krespine V, Guy C, Messager A, Demigne C, Remesy C (2001) Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. J Agric Food Chem 49:2657–2662

    CAS  Google Scholar 

  • Marquina D, Toufani S, Llorente P, Santos A, Peinado JM (1997) Killer activity in yeast isolated from olive brines. Adv Food Sci 19:41–46

    Google Scholar 

  • Marshall VM, Cole WN, Brooker BE (1984) Observations on the structure of kefir grains and the distribution of the microflora. J Appl Bacteriol 57(3):491–497

    Google Scholar 

  • Martinez-Anaya MA (2003) Associations and interactions of microorganisms in dough fermentations: effects on dough and bread characteristics. In: Lorenz K, Kulp K (eds) Handbook of dough fermentations. Marcel Dekker, New York, pp 63–95

    Google Scholar 

  • McKay M, Buglass AJ, Lee CG (2011) Alcoholic fermentation. In: Buglass AJ (ed) Handbook of alcoholic beverages: technical, analytical and nutritional aspects. Wiley, Chichester, pp 72–95

    Google Scholar 

  • McSweeney PLH, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait 80:293–324

    CAS  Google Scholar 

  • Mecteau MR, Arul J, Tweddell RJ (2002) Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycol Res 106:688–696

    CAS  Google Scholar 

  • Meignen B, Onno B, Gelinas P, Infantes M, Guilois S, Cahagnier B (2001) Optimization of sourdough fermentation with Lactobacillus brevis and baker’s yeast. Food Microbiol 18:239–245

    CAS  Google Scholar 

  • Meroth CB, Walter J, Hertel C, Brandt MJ, Hammes WP (2003) Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:475–482

    CAS  Google Scholar 

  • Moona SK, Kimb SW, Choi GW (2012) Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321. J Biotechnol 157:584–589

    Google Scholar 

  • Müller MRA, Ehrmann MA, Vogel RF (2000) Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period. Int J Syst Evol Microbiol 50:2127–2133

    Google Scholar 

  • Murphy MG, O’Connor L, Walsh D, Condon S (1985) Oxygen dependent lactate utilization by Lactobacillus plantarum. Arch Microbiol 121:75–79

    Google Scholar 

  • Mussatto SI, Dragone G, Guimaraes PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    CAS  Google Scholar 

  • Nagodawithana T (1992) Yeast derived flavors and flavor enhancers and their probable mode of action. Food Technol 46:138–144

    CAS  Google Scholar 

  • Nagodawithana T (1994) Savory flavours. In: Gabelman A (ed) Bioprocess production of flavour fragrance and color ingredients. Wiley, New York, pp 135–168

    Google Scholar 

  • Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S, Nakamura N, Shimonaga T, Hattori M, Ashikari T (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16:115–129

    CAS  Google Scholar 

  • Nasseri AT, Rasaul S, Morowvat MH, Ghasemi Y (2011) Single cell protein: production and process. Am J Food Technol 6(2):103–116

    CAS  Google Scholar 

  • Navarrete-Bolanos JL (2012) Improving traditional fermented beverages: how to evolve from spontaneous to directed fermentation. Eng Life Sci 12(4):410–418

    CAS  Google Scholar 

  • Olesen PT, Stahnke LH (2000) The influence of Debaryomyces hansenii and Candida utilis on the aroma formation in garlic spiced fermented sausages and model minces. Meat Sci 56:357–368

    CAS  Google Scholar 

  • Panagou EZ, Tassou CC (2006) Changes in volatile compounds and related biochemical profile during controlled fermentation of cv. Conservolea green olives. Food Microbiol 23:738–746

    CAS  Google Scholar 

  • Panagou EZ, Schillinger U, Franz C, Nychas GJE (2008) Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol 25:348–358

    CAS  Google Scholar 

  • Peppler HJ (1970) Food yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 3, Yeast technology. Academic, London, pp 421–462

    Google Scholar 

  • Peppler HJ (1979) Production of yeasts and yeast products. In: Peppler HJ, Perlman D (eds) Microbial technology, vol I, 2nd edn. Academic, New York, pp 157–185

    Google Scholar 

  • Peppler HJ (1982) Yeast extracts. Econ Microbiol 7:293–312

    Google Scholar 

  • Pinho O, Ferreira IMPLVO, Santos LHMLM (2006) Method optimization by solid-phase microextraction in combination with gas chromatography with mass spectrometry for analysis of beer volatile fraction. J Chromatogr A 1121:145–153

    CAS  Google Scholar 

  • Piodux M, Marshall VM, Zanoni P, Brooker B (1990) Lactobacilli isolated from sugary kefir grains capable of polysaccharide production and minicell formation. J Appl Bacteriol 69:311–320

    Google Scholar 

  • Pometto A, Shetty K, Paliyath G, Robert E (2006) Food biotechnology, 2nd edn, Food science and technology. CRC Press, Boca Raton, p 1903

    Google Scholar 

  • Pozo MA, Guichard E, Cayot N (2006) Flavor control in baked cereal products. Food Rev Int 22(4):335–379

    Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    CAS  Google Scholar 

  • Prillinger H, Molnar O, Eliskases-Lechner F, Lopandic K (1999) Phenotypic and genotypic identification of yeasts from cheese. A Van Leeuw J Microb 75:267–283

    Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    CAS  Google Scholar 

  • Randez-Gil F, Sanz P, Prieto JA (1999) Engineering baker’s yeast: room for improvement. Trends Biotechnol 17:237–244

    CAS  Google Scholar 

  • Reed G (1981) Use of microbial cultures: yeast products. Food Technol 35(1):89–94

    Google Scholar 

  • Reed G, Nagodawithana TW (1991) Yeast technology, 2nd edn. Avi Publishing, New York, p 765

    Google Scholar 

  • Rodriguez De Le Borbolla Y, Alcala JM, Rejano Navarro L (1979) Sobre la preparacion de las aceitunas estilo sevillano la fermentacion I. Grasas Aceites 30:175–185

    Google Scholar 

  • Rodriguez De Le Borbolla Y, Alcala JM, Rejano Navarro L (1981) Sobre la preparacion de las aceitunas estilo sevillano la fermentacion II. Grasas Aceites 32:103–113

    Google Scholar 

  • Rodriguez H, Curiel JA, Landet EJM, Rivas DLB, López DF, Gómez- Cordovés C, Mancheño JM, Muñoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90

    CAS  Google Scholar 

  • Rodriguez-Gómez F, Arroyo-López FN, López-López A, Bautista-Gallego J, Garrido-Fernández A (2010) Lipolytic activity of the yeast species associated with the fermentation/storage phase of ripe olive processing. Food Microbiol 27:604–612

    Google Scholar 

  • Rodríguez-Gómez F, Romero-Gil V, Bautista-Gallego J, Garrido-Fernández A, Arroyo-López FN (2012) Multivariate analysis to discriminate yeast strains with technological applications in table olive processing. World J Microbiol Biotechnol 28:1761–1770

    Google Scholar 

  • Roig JM, Hernandez JM (1991) El uso de microorganismos iniciadores (starters) en la fermentacion de aceitunas. Olivae 37:20–28

    Google Scholar 

  • Romano P, Capece A (2013) Saccharomyces cerevisiae as bakers’ yeast. In: Heldman DR, Wheeler MB, Hoover DG (eds) Encyclopedia of biotechnology in agriculture and food. Taylor and Francis, New York, pp 1–4

    Google Scholar 

  • Roostita R, Fleet GH (1996) The occurrence and growth of yeast in camembert and blueveined cheeses. Int J Food Microbiol 28:393–404

    CAS  Google Scholar 

  • Ruiz-Barba JL, Jimenez-Diaz R (1995) Availability of essential B group vitamins to Lactobacillus plantarum in green olive fermentation brines. Appl Environ Microbiol 61:1294–1297

    CAS  Google Scholar 

  • Ruiz-Barba JL, Jimenez-Diaz R, Piard JC (1991) Plasmid profiles and curing of plasmids in Lactobacillus plantarum strains isolated from green olive fermentations. J Appl Bacteriol 71(5):417–421

    CAS  Google Scholar 

  • Sabatini N, Mucciarella MR, Marsilio V (2008) Volatile compounds in uninoculated and inoculated table olives with Lactobacillus plantarum (Olea europaea L., cv. Moresca and Kalamata). LWT- Food Sci Tech 41:2017–2022

    CAS  Google Scholar 

  • Sagdic O, Kuscu A, Ozcan M, Ozcelik S (2002) Effects of Turkish spice extracts at variousconcentrations on the growth of Escherichia coli O157:H7. Food Microbiol 19:473–480

    CAS  Google Scholar 

  • Samelis J, Sofos JN (2003) Yeasts in meat and meat products. In: Boekhout T, Robert V (eds) Yeasts in food: beneficial and detrimental aspects. Behr V, Hamburg, pp 239–266

    Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    CAS  Google Scholar 

  • Sánchez AH, Rejano L, Montaño A, De Castro A (2001) Utilization at high pH of starter cultures of lactobacilli for Spanish-style green olive fermentation. Int J Food Microbiol 67:115–122

    Google Scholar 

  • Sanchez B, Reverol L, Galindo-Castro I, Bravo A, Rangel-Aldao R, Ramirez JL (2003) Brewer’s yeast oxidoreductase with activity on Maillard reaction intermediates of beer. Tech Quart MBAA 40(3):204–212

    CAS  Google Scholar 

  • Sánchez-Gómez AH, García P, Rejano L (2006) Trends in table olives production, elaboration of table olives. Grasas Aceites 57:86–94

    Google Scholar 

  • Santos A, Marquina D, Leal JA, Peinado JM (2000) (1➔6)-β-D-Glucan as cell wall receptor for Pichia membranifaciens killer toxin. Appl Environ Microb 66:1809–1813

    CAS  Google Scholar 

  • Satyanarayana T, Kunze G (2009) Yeast biotechnology: diversity and applications. Springer, New Delhi, p 766

    Google Scholar 

  • Selgas MD, Garcia ML (2007) Starter cultures: yeasts. In: Toldrá F (ed) Handbook of fermented meat and poultry. Blackwell, Ames, pp 159–170

    Google Scholar 

  • Sengun IY, Nielsen DS, Karapinar M, Jakobsen M (2009) Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food. Int J Food Microbiol 135:105–111

    CAS  Google Scholar 

  • Servili M, Settani L, Veneziani G, Esposto S, Massitti O, Taticchi A, Urbani S, Montedoro GF, Corsetti A (2006) The use of Lactobacillus pentosus 1MO to shorten the debittering process time of black table olives (Cv.Itrana and Leccino): a pilot-scale application. J Agri Food Chem 54:3869–3875

    CAS  Google Scholar 

  • Settani L, Tangüler H, Moschetti G, Reale S, Gargano V, Erten H (2011) Evolution of fermenting microbiata in tarhana produced under controlled technological conditions. Food Microbiol 28:1367–1373

    Google Scholar 

  • Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121:123–138

    CAS  Google Scholar 

  • Simova E, Beshkova D, Angelov A, Hristozova TS, Frengova G, Spasov Z (2002) Lactic acid bacteria and yeast in kefir grains and kefir made from them. J Ind Microbiol Biotechnol 28:1–6

    CAS  Google Scholar 

  • Simova ED, Frengova G, Beshkova DM (2003) Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-Lactobacillus casei subsp. Casei co-cultures in whey ultrafiltrate. J Biosci 58(3/4):225–229

    CAS  Google Scholar 

  • Sommer R (1998) Yeast extract: production, properties and components. Food Aust 50:181–183

    Google Scholar 

  • Spadaro D, Gullino ML (2004) State of the art and future prospects of the biological control of postharvest fruit diseases. Int J Food Microbiol 91:185–194

    Google Scholar 

  • Spinnler HE, Berger C, Lapadatescu C, Bonnarme P (2001) Production of sulphur compounds by several yeasts of technological interest for cheese ripening. Int Dairy J 11:245–252

    CAS  Google Scholar 

  • Squina FM, Yamashita F, Pereira JL, Mercadante AZ (2002) Production of carotenoids by Rhodotorula rubra and R. glutinis in culture medium supplemented with sugar cane juice. Food Biotechnol 16(3):227–235

    CAS  Google Scholar 

  • Stam H, Hoogland M, Laane C (1998) Food flavours from yeast. In: Wood BJ (ed) Microbiology of fermented foods, vol 2, 2nd edn. Blackie, London, pp 505–542

    Google Scholar 

  • Stewart GG, Russell I (1998) An introduction to brewing science and technology series III Brewer’s yeast. Institute of Brewing, London, p 108

    Google Scholar 

  • Strehaiano P, Ramon-Portugal F, Taillandier P (2006) Yeasts as biocatalysts. In: Queol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Heidelberg, pp 243–285

    Google Scholar 

  • Suomalainen H, Lehtonen M (1978) Yeast as a producer of aroma compounds. Dechema Monogr 82:207–220

    CAS  Google Scholar 

  • Suomalainen H, Lehtonen M (1979) The production of aroma compounds by yeast. J Inst Brew 85(3):149–156

    CAS  Google Scholar 

  • Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine R 11:139–173

    CAS  Google Scholar 

  • Takizawa S, Kojima S, Tamura S, Fujinaga S, Benno Y, Nakase T (1998) The composition of the Lactobacillus flora in kefir grains. Syst Appl Microbiol 21:121–127

    CAS  Google Scholar 

  • Tamang JP, Tamang B, Schillinger U, Franz CMAP, Gores M, Holzapfel WH (2005) Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. Int J Food Microbiol 105:347–356

    CAS  Google Scholar 

  • Tanguler H, Erten H (2008) Utilisation of spent brewer’s yeast for yeast extract production by autolysis: the effect of temperature. Food Bioprod Process 86:317–321

    Google Scholar 

  • Tangüler H, Erten H (2012a) Occurence and growth of lactic acid bacteria species during the fermentation of Shalgam (Şalgam), a traditional Turkish fermented beverage. LWT Food Sci Technol 46:36–41

    Google Scholar 

  • Tangüler H, Erten H (2012b) Chemical and microbiological characteristics of Shalgam (Şalgam); a traditional Turkish fermented beverage. J Food Qual 35:298–306

    Google Scholar 

  • Toba T, Arihara K, Adachi S (1987) Comparative study of polysaccharides from kefir grains, an encaosuied homofermentative Lactobacillus species and Lactobacillus kefir. Milchwissenschaft 42(9):565–568

    CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2006) Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria. Process Biochem 41:11–19

    CAS  Google Scholar 

  • Tofalo R, Perpetuini G, Schirone M, Suzzi G, Corsetti A (2013) Yeast biota associated to naturally fermented table olives from different Italian cultivars. Int J Food Microbiol 161:203–208

    CAS  Google Scholar 

  • Toldrá F (2002) Fermentation and starter cultures. In: Toldrá F (ed) Dry-cured meat products. Food & Nutrition Press, Trumbull, pp 89–112

    Google Scholar 

  • Van den Tempel T, Jacobsen M (2000) Debaryomyces hansenii and Yarrowia lipolytica as potential starter cultures for production of blue cheese. Int Dairy J 10:263–270

    Google Scholar 

  • Van Kranenburg R, Van Swam II, Marugg JD, Kleerebezem M, de Vos WM (1999) Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J Bacteriol 181:338–340

    Google Scholar 

  • Viljoen BC (2001) The interaction between yeasts and bacteria in dairy environments. Int J Food Microbiol 69:37–44

    CAS  Google Scholar 

  • Viljoen BC (2006) Yeast ecological interactions: yeast–yeast, yeast–bacteria, yeast fungi interactions and yeasts as biocontrol agents. In: Querol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Berlin, pp 83–110

    Google Scholar 

  • Vogelmann SA, Seitter M, Singer U, Brandt MJ, Hertel C (2009) Adaptability of lactic acid bacteria and yeasts to sourdough prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int J Food Microbiol 130:205–212

    CAS  Google Scholar 

  • Vrancken G, Vuyst LD, Van der Meulen R, Huys G, Vandamme P, Daniel HM (2010) Yeast species composition differs between artisan bakery and spontaneous laboratory sourdoughs. FEMS Yeast Res 10:471–481

    CAS  Google Scholar 

  • Walker GM (1999) Yeast physiology and biotechnology. Wiley, London, p 350

    Google Scholar 

  • Witthuhn RC, Schoeman T, Britz TJ (2004) Isolation and characterization of the microbial population of different South African kefir grains. Int J Dairy Technol 57:33–37

    Google Scholar 

  • Wouters JTM, Ayad EH, Hugenholtz J, Smit G (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12:91–109

    CAS  Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157

    CAS  Google Scholar 

  • Yaygin H (1995) Yoğurt, III. Süt ve Süt Ürünleri Sempozyumu 2-3 Haziran 1994 Istanbul, Milli Prodüktivite Merkezi Yayınları, No:548

    Google Scholar 

  • Young LS, Cauvain SP (2007) Technology of breadmaking, 2nd edn. Springer, New York, p 398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Erten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Erten, H. et al. (2014). Importance of Yeasts and Lactic Acid Bacteria in Food Processing. In: Malik, A., Erginkaya, Z., Ahmad, S., Erten, H. (eds) Food Processing: Strategies for Quality Assessment. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1378-7_14

Download citation

Publish with us

Policies and ethics