A Self-Medication Hypothesis for Increased Vulnerability to Drug Abuse in Prenatally Restraint Stressed Rats

  • Marie-Line Reynaert
  • Jordan Marrocco
  • Eleonora Gatta
  • Jérôme Mairesse
  • Gilles Van Camp
  • Francesca Fagioli
  • Stefania MaccariEmail author
  • Ferdinando Nicoletti
  • Sara Morley-Fletcher
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 10)


Stress-related events that occur in the perinatal period can permanently change brain and behavior of the developing individual and there is increasing evidence that early-life adversity is a contributing factor in the etiology of drug abuse and mood disorders. Neural adaptations resulting from early-life stress may mediate individual differences in novelty responsiveness and in turn contribute to drug abuse vulnerability. Prenatal restraint stress (PRS) in rats is a well-documented model of early stress known to induce long-lasting neurobiological and behavioral alterations including impaired feedback mechanisms of the HPA axis, enhanced novelty seeking, and increased sensitiveness to psychostimulants as well as anxiety/depression-like behavior. Together with the HPA axis, functional alterations of the mesolimbic dopamine system and of the metabotropic glutamate receptors system appear to be involved in the addiction-like profile of PRS rats.


Prenatal stress HPA axis Dopamine Drug abuse Depression Psychostimulants Metabotropic glutamate receptors Hippocampus 


  1. Antakly T, Mercille S, Côté JP (1987) Tissue-specific dopaminergic regulation of the glucocorticoid receptor in the rat pituitary. Endocrinology 120(4):1558–1562PubMedCrossRefGoogle Scholar
  2. Bäckström P, Bachteler D, Koch S, Hyytiä P, Spanagel R (2004) mGluR5 antagonist MPEP reduces ethanol-seeking and relapse behavior. Neuropsychopharmacology 29(5):921–928PubMedCrossRefGoogle Scholar
  3. Battaglia G, Fornai F, Busceti CL, Aloisi G, Cerrito F, Blasi AD, Nicoletti F (2002) Selective blockade of mglu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J Neurosci 22(6):2135–2141PubMedGoogle Scholar
  4. Belozertseva IV, Kos T, Popik P, Danysz W, Bespalov AY (2007) Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests. Eur Neuropsychopharmacol 17(3):172–179PubMedCrossRefGoogle Scholar
  5. Berger MA, Barros VG, Sarchi MI, Tarazi FI., Antonelli MC (2002) Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Neurochem Res 27(11):1525–1533PubMedCrossRefGoogle Scholar
  6. Campbell JC, Szumlinski KK, Kippin TE (2009) Contribution of early environmental stress to alcoholism vulnerability. Alcohol 43(7):547–554PubMedCentralPubMedCrossRefGoogle Scholar
  7. Casolini P, Piazza PV, Kabbaj M, Leprat F, Angelucci L, Simon H, Maccari S (1993) The mesolimbic dopaminergic system exerts an inhibitory influence on brain corticosteroid receptor affinities. Neuroscience 55(2):429–434PubMedCrossRefGoogle Scholar
  8. Charmandari E, Kino T, Souvatzoglou E, Chrousos GP (2003) Pediatric stress: hormonal mediators and human development. Horm Res 59(4):161–179PubMedCrossRefGoogle Scholar
  9. Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, Conquet F (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 4(9):873–874PubMedCrossRefGoogle Scholar
  10. Coe CL, Kramer M, Czéh B, Gould E, Reeves AJ, Kirschbaum C, Fuchs E (2003) Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 54(10):1025–1034PubMedCrossRefGoogle Scholar
  11. Colby CR, Whisler K, Steffen C, Nestler EJ, Self DW (2003) Striatal cell type-specific overexpression of DeltaFosB enhances incentive for cocaine. J Neurosci 23(6):2488–2493PubMedGoogle Scholar
  12. Darnaudéry M, Maccari S (2008) Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev 57(2):571–585PubMedCrossRefGoogle Scholar
  13. Darnaudéry M, Perez-Martin M, Bélizaire G, Maccari S, Garcia-Segura LM (2006) Insulin-like growth factor 1 reduces age-related disorders induced by prenatal stress in female rats. Neurobiol Aging 27(1):119–127PubMedCrossRefGoogle Scholar
  14. Deminière JM, Piazza PV, Guegan G, Abrous N, Maccari S, Le Moal M, Simon H (1992) Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Res 586(1):135–139PubMedCrossRefGoogle Scholar
  15. Deroche V, Marinelli M, Maccari S, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci 15(11):7181–7188PubMedGoogle Scholar
  16. Fadda F, Cocco S, Stancampiano R, Rossetti ZL (1999) Long-term voluntary ethanol consumption affects neither spatial nor passive avoidance learning, nor hippocampal acetylcholine release in alcohol-preferring rats. Behav Brain Res 103(1):71–76PubMedCrossRefGoogle Scholar
  17. Fanselow MS, Dong H-W (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19PubMedCentralPubMedCrossRefGoogle Scholar
  18. Farr SA, Scherrer JF, Banks WA, Flood JF, Morley JE (2005) Chronic ethanol consumption impairs learning and memory after cessation of ethanol. Alcohol Clin Exp Res 29(6):971–982PubMedCrossRefGoogle Scholar
  19. Gál K, Bárdos G (1994) The effect of chronic alcohol treatment on the radial maze performance of rats. Neuroreport 5(4):421–424PubMedCrossRefGoogle Scholar
  20. Grace AA, Bunney BS, Moore H, Todd CL (1997) Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci 20(1):31–37PubMedCrossRefGoogle Scholar
  21. Härfstrand A, Fuxe K, Cintra A, Agnati LF, Zini I, Wikström AC, Steinbusch H (1986) Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc Natl Acad Sci U S A 83(24):9779–9783PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hausknecht K, Haj-Dahmane S, Shen R-Y (2013) Prenatal stress exposure increases the excitation of dopamine neurons in the ventral tegmental area and alters their responses to psychostimulants. Neuropsychopharmacology 38(2):293–301PubMedCentralPubMedCrossRefGoogle Scholar
  23. Helmlin HJ, Bracher K, Bourquin D, Vonlanthen D, Brenneisen R (1996) Analysis of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites in plasma and urine by HPLC-DAD and GC-MS. J Anal Toxicol 20(6):432–440PubMedCrossRefGoogle Scholar
  24. Henry C, Kabbaj M, Simon H, Le Moal M, Maccari S (1994) Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. J Neuroendocrinol 6(3):341–345PubMedCrossRefGoogle Scholar
  25. Henry C, Guegant G, Cador M, Arnauld E, Arsaut J, Le Moal M, Demotes-Mainard J (1995) Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Res 685:179–186PubMedCrossRefGoogle Scholar
  26. Hiramatsu M, Kumagai Y, Unger SE, Cho AK (1990) Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. J Pharmacol Exp Ther 254(2):521–527PubMedGoogle Scholar
  27. Homewood J, Bond NW, MacKenzie A (1997) The effects of single and repeated episodes of thiamin deficiency on memory in alcohol-consuming rats. Alcohol 14(1):81–91PubMedCrossRefGoogle Scholar
  28. Kalivas PW, Duffy P (1995) D1 receptors modulate glutamate transmission in the ventral tegmental area. J Neurosci 15(7 Pt 2):5379–5388PubMedGoogle Scholar
  29. Kalivas Peter W, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413. doi:10.1176/appi.ajp. 162.8.1403PubMedCrossRefGoogle Scholar
  30. Kelz MB, Chen J, Carlezon WA Jr, Whisler K, Gilden L, Beckmann AM, Nestler EJ (1999) Expression of the transcription factor DeltaFosB in the brain controls sensitivity to cocaine. Nature 401(6750):272–276PubMedCrossRefGoogle Scholar
  31. Kenny PJ, Paterson NE, Boutrel B, Semenova S, Harrison AA, Gasparini F, Markou A (2003) Metabotropic glutamate 5 receptor antagonist MPEP decreased nicotine and cocaine self-administration but not nicotine and cocaine-induced facilitation of brain reward function in rats. Ann N Y Acad Sci 1003:415–418PubMedCrossRefGoogle Scholar
  32. Kippin TE, Szumlinski KK, Kapasova Z, Rezner B, See RE (2008) Prenatal stress enhances responsiveness to cocaine. Neuropsychopharmacology 33(4):769–782PubMedCentralPubMedCrossRefGoogle Scholar
  33. Kjelstrup KG, Tuvnes FA, Steffenach H-A, Murison R, Moser EI, Moser M-B (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci U S A 99(16):10825–10830PubMedCentralPubMedCrossRefGoogle Scholar
  34. Koehl M, Darnaudéry M, Dulluc J, Van Reeth O, Le Moal M, Maccari S (1999) Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J Neurobiol 40(3):302–315PubMedCrossRefGoogle Scholar
  35. Koehl M, Bjijou Y, Le Moal M, Cador M (2000) Nicotine-induced locomotor activity is increased by preexposure of rats to prenatal stress. Brain Res 882(1–2):196–200PubMedCrossRefGoogle Scholar
  36. Koob GF (2008) A role for brain stress systems in addiction. Neuron 59(1):11–34PubMedCentralPubMedCrossRefGoogle Scholar
  37. Korkosz A, Kolomanska P, Kowalska K, Rogowski A, Radwanska K, Kaczmarek L, Bienkowski P (2004) Dissociation of ethanol and saccharin preference in fosB knockout mice. Physiol Behav 82(2–3):391–395PubMedCrossRefGoogle Scholar
  38. Krazem A, Marighetto A, Higueret P, Jaffard R (2003) Age-dependent effects of moderate chronic ethanol administration on different forms of memory expression in mice. Behav Brain Res 147(1–2):17–29PubMedCrossRefGoogle Scholar
  39. Krazem A, Mons N, Higueret P, Jaffard R (2003) Chronic ethanol consumption restores the age-related decrease in neurogranin mRNA level in the hippocampus of mice. Neurosci Lett 338(1):62–66PubMedCrossRefGoogle Scholar
  40. Laloux C, Mairesse J, Van Camp G, Giovine A, Branchi I, Bouret S, Maccari S (2012) Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. Psychoneuroendocrinology 37(10):1646–1658PubMedCrossRefGoogle Scholar
  41. Lardeux S, Baunez C (2008) Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology 33(3):634–642PubMedCrossRefGoogle Scholar
  42. Laviola G, Adriani W, Terranova ML, Gerra G (1999) Psychobiological risk factors for vulnerability to psychostimulants in human adolescents and animal models. Neurosci Biobehav Rev 23(7):993–1010PubMedCrossRefGoogle Scholar
  43. Liechti ME, Markou A (2008) Role of the glutamatergic system in nicotine dependence: implications for the discovery and development of new pharmacological smoking cessation therapies. CNS Drugs 22(9):705–724PubMedCrossRefGoogle Scholar
  44. Lowy MT (1990) MK-801 antagonizes methamphetamine-induced decreases in hippocampal and striatal corticosteroid receptors. Brain Res 533(2):348–352PubMedCrossRefGoogle Scholar
  45. Lukoyanov NV, Madeira MD, Paula-Barbosa MM (1999) Behavioral and neuroanatomical consequences of chronic ethanol intake and withdrawal. Physiol Behav 66(2):337–346PubMedCrossRefGoogle Scholar
  46. Maccari, S, Morley-Fletcher S (2007) Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology 32(Suppl 1):S10–S15PubMedCrossRefGoogle Scholar
  47. Maccari S, Piazza PV, Deminière JM, Angelucci L, Simon H, Le Moal M (1991a) Hippocampal type I and type II corticosteroid receptor affinities are reduced in rats predisposed to develop amphetamine self-administration. Brain Res 548(1–2):305–309PubMedCrossRefGoogle Scholar
  48. Maccari S, Piazza PV, Deminière JM, Lemaire V, Mormède P, Simon H, Le Moal M (1991b) Life events-induced decrease of corticosteroid type I receptors is associated with reduced corticosterone feedback and enhanced vulnerability to amphetamine self-administration. Brain Res 547(1):7–12PubMedCrossRefGoogle Scholar
  49. Maccari S, Piazza PV, Kabbaj M, Barbazanges A, Simon H, Le Moal M (1995) Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J Neurosci 15(1 Pt 1):110–116PubMedGoogle Scholar
  50. Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 27(1–2):119–127PubMedCrossRefGoogle Scholar
  51. Malpass A, White JM, Irvine RJ, Somogyi AA, Bochner F (1999) Acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA) in Sprague-Dawley and Dark Agouti rats. Pharmacol Biochem Behav 64(1):29–34PubMedCrossRefGoogle Scholar
  52. Markou A, Kosten TR, Koob GF (1998) Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18(3):135–174PubMedCrossRefGoogle Scholar
  53. Marrocco J, Mairesse J, Ngomba RT, Silletti V, Van Camp G, Bouwalerh H, Morley-Fletcher S (2012) Anxiety-like behavior of prenatally stressed rats is associated with a selective reduction of glutamate release in the ventral hippocampus. J Neurosci 32(48):17143–17154PubMedCrossRefGoogle Scholar
  54. Matthews DB, Morrow AL (2000) Effects of acute and chronic ethanol exposure on spatial cognitive processing and hippocampal function in the rat. Hippocampus 10(1):122–130PubMedCrossRefGoogle Scholar
  55. McEwen BS (2012) The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Dev Neurobiol 72(6):878–890PubMedCentralPubMedCrossRefGoogle Scholar
  56. McKee BL, Meshul CK (2005) Time-dependent changes in extracellular glutamate in the rat dorsolateral striatum following a single cocaine injection. Neuroscience 133(2):605–613PubMedCrossRefGoogle Scholar
  57. Morley-Fletcher S, Rea M, Maccari S, Laviola G (2003) Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats. Eur J Neurosci 18(12):3367–3374PubMedCrossRefGoogle Scholar
  58. Morley-Fletcher S, Darnaudery M, Koehl M, Casolini P, Van Reeth O, Maccari S (2003) Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine. Brain Res 989(2):246–251PubMedCrossRefGoogle Scholar
  59. Morley-Fletcher S, Puopolo M, Gentili S, Gerra G, Macchia T, Laviola G (2004) Prenatal stress affects 3,4-methylenedioxymethamphetamine pharmacokinetics and drug-induced motor alterations in adolescent female rats. Eur J Pharmacol 489(1–2):89–92PubMedCrossRefGoogle Scholar
  60. Morley-Fletcher S, Darnaudéry M, Mocaer E, Froger N, Lanfumey L, Laviola G Maccari S et al (2004) Chronic treatment with imipramine reverses immobility behaviour, hippocampal corticosteroid receptors and cortical 5-HT(1 A) receptor mRNA in prenatally stressed rats. Neuropharmacology 47(6):841–847PubMedCrossRefGoogle Scholar
  61. Morley-Fletcher S, Mairesse J, Soumier A, Banasr M, Fagioli F, Gabriel C, Maccari S (2011) Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats. Psychopharmacology 217(3):301–313PubMedCrossRefGoogle Scholar
  62. Mueller BR, Bale TL (2007) Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiol Behav 91(1):55–65PubMedCrossRefGoogle Scholar
  63. Naranjo CA, Tremblay LK, Busto UE (2001) The role of the brain reward system in depression. Prog Neuro Psychopharmacol Biol Psychiatry 25(4):781–823CrossRefGoogle Scholar
  64. Nash JF Jr, Meltzer HY, Gudelsky GA (1988) Elevation of serum prolactin and corticosterone concentrations in the rat after the administration of 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 245(3):873–879PubMedGoogle Scholar
  65. Nestler EJ (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem 78(3):637–647PubMedCrossRefGoogle Scholar
  66. Nicoletti F, Bruno V, Copani A, Casabona G, Knöpfel T (1996) Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci 19(7):267–271PubMedCrossRefGoogle Scholar
  67. Olausson P, Jentsch JD, Tronson N, Neve RL, Nestler EJ, Taylor JR (2006) DeltaFosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation. J Neurosci 26(36):9196–9204PubMedCrossRefGoogle Scholar
  68. Oscar-Berman M, Kirkley SM, Gansler DA, Couture A (2004) Comparisons of Korsakoff and non-Korsakoff alcoholics on neuropsychological tests of prefrontal brain functioning. Alcohol Clin Exp Res 28(4):667–675PubMedCentralPubMedCrossRefGoogle Scholar
  69. Paterson NE, Markou A (2005) The metabotropic glutamate receptor 5 antagonist MPEP decreased break points for nicotine, cocaine and food in rats. Psychopharmacology 179(1):255–261PubMedCrossRefGoogle Scholar
  70. Peters DA (1982) Prenatal stress: effects on brain biogenic amine and plasma corticosterone levels. Pharmacol Biochem Behav 17(4):721–725PubMedCrossRefGoogle Scholar
  71. Peters DA (1990) Maternal stress increases fetal brain and neonatal cerebral cortex 5-hydroxytryptamine synthesis in rats: a possible mechanism by which stress influences brain development. Pharmacol Biochem Behav 35(4):943–947PubMedCrossRefGoogle Scholar
  72. Piazza PV, Maccari S, Deminière JM, Le Moal M, Mormède P, Simon H (1991) Corticosterone levels determine individual vulnerability to amphetamine self-administration. Proc Natl Acad Sci U S A 88(6):2088–2092PubMedCentralPubMedCrossRefGoogle Scholar
  73. Pierce RC, Bell K, Duffy P, Kalivas PW (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci 16(4):1550–1560PubMedGoogle Scholar
  74. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47(4):379–391PubMedCrossRefGoogle Scholar
  75. Renthal W, Nestler EJ (2009) Chromatin regulation in drug addiction and depression. Dialogues Clin Neurosci 11(3):257–268PubMedCentralPubMedGoogle Scholar
  76. Ricaurte GA, DeLanney LE, Irwin I, Langston JW (1988) Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res 446(1):165–168PubMedCrossRefGoogle Scholar
  77. Rivet JM, Stinus L, LeMoal M, Mormède P (1989) Behavioral sensitization to amphetamine is dependent on corticosteroid receptor activation. Brain Res 498(1):149–153PubMedCrossRefGoogle Scholar
  78. Robles N, Sabriá J (2008) Effects of moderate chronic ethanol consumption on hippocampal nicotinic receptors and associative learning. Neurobiol Learn Mem 89(4):497–503PubMedCrossRefGoogle Scholar
  79. Rodrigues AJ, Leão P, Pêgo JM, Cardona D, Carvalho MM, Oliveira M, Sousa N (2012) Mechanisms of initiation and reversal of drug-seeking behavior induced by prenatal exposure to glucocorticoids. Mol Psychiatry 17(12):1295–1305PubMedCrossRefGoogle Scholar
  80. Seckl JR (2008) Glucocorticoids, developmental “programming” and the risk of affective dysfunction. Prog Brain Res 167:17–34PubMedCrossRefGoogle Scholar
  81. Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168(1–2):31–41. doi:10.1007/s00213- 002-1224-xGoogle Scholar
  82. Silvagni A, Barros VG, Mura C, Antonelli MC, Carboni E (2008) Prenatal restraint stress differentially modifies basal and stimulated dopamine and noradrenaline release in the nucleus accumbens shell: an “in vivo” microdialysis study in adolescent and young adult rats. Eur J Neurosci 28(4):744–758PubMedCrossRefGoogle Scholar
  83. Solinas M, Thiriet N, El Rawas R, Lardeux V, Jaber M (2009) Environmental enrichment during early stages of life reduces the behavioral, neurochemical, and molecular effects of cocaine. Neuropsychopharmacology 34(5):1102–1111. doi:10.1038/npp. 2008.51PubMedCrossRefGoogle Scholar
  84. Son GH, Geum D, Chung S, Kim EJ, Jo J-H, Kim C-M, Kim K (2006) Maternal stress produces learning deficits associated with impairment of NMDA receptor-mediated synaptic plasticity. J Neurosci 26(12):3309–3318PubMedCrossRefGoogle Scholar
  85. Steigerwald ES, Miller MW (1997) Performance by adult rats in sensory-mediated radial arm maze tasks is not impaired and may be transiently enhanced by chronic exposure to ethanol. Alcohol Clin Exp Res 21(9):1553–1559PubMedCrossRefGoogle Scholar
  86. Swerdlow NR, Koob GF, Cador M, Lorang M, Hauger RL (1993) Pituitary-adrenal axis responses to acute amphetamine in the rat. Pharmacol Biochem Behav 45(3):629–637PubMedCrossRefGoogle Scholar
  87. Tremblay LK, Naranjo CA, Cardenas L, Herrmann N, Busto UE (2002) Probing brain reward system function in major depressive disorder: altered response to dextroamphetamine. Arch Gen Psychiatry 59(5):409–416PubMedCrossRefGoogle Scholar
  88. Ungless MA, Argilli E, Bonci A (2010) Effects of stress and aversion on dopamine neurons: implications for addiction. Neurosci Biobehav Rev 35(2):151–156PubMedCrossRefGoogle Scholar
  89. Vallée M, Mayo W, Dellu F, Moal ML, Simon H, Maccari S (1997) Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 17(7):2626–2636PubMedGoogle Scholar
  90. Vallée M, MacCari S, Dellu F, Simon H, Le Moal M, Mayo W (1999) Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur J Neurosci 11(8):2906–2916PubMedCrossRefGoogle Scholar
  91. Van Waes V, Enache M, Dutriez I, Lesage J, Morley-Fletcher S, Vinner E, Darnaudéry M (2006) Hypo-response of the hypothalamic-pituitary-adrenocortical axis after an ethanol challenge in prenatally stressed adolescent male rats. Eur J Neurosci 24(4):1193–1200PubMedCrossRefGoogle Scholar
  92. Van Waes V, Enache M, Zuena A, Mairesse J, Nicoletti F, Vinner E et al (2009) Ethanol attenuates spatial memory deficits and increases mGlu1a receptor expression in the hippocampus of rats exposed to prenatal stress. Alcohol Clin Exp Res 33(8):1346–1354PubMedCrossRefGoogle Scholar
  93. Van Waes V, Darnaudéry M, Marrocco J, Gruber SH, Talavera E, Mairesse J et al (2011) Impact of early life stress on alcohol consumption and on the short- and long-term responses to alcohol in adolescent female rats. Behav Brain Res 221(1):43–49PubMedCrossRefGoogle Scholar
  94. Van Waes V, Enache M, Berton O, Vinner E, Lhermitte M, Maccari S, Darnaudéry M (2011) Effect of prenatal stress on alcohol preference and sensitivity to chronic alcohol exposure in male rats. Psychopharmacology 214(1):197–208PubMedCrossRefGoogle Scholar
  95. Yau JL, Kelly PA, Sharkey J, Seckl JR (1994) Chronic 3,4-methylenedioxymethamphetamine administration decreases glucocorticoid and mineralocorticoid receptor, but increases 5-hydroxytryptamine1 C receptor gene expression in the rat hippocampus. Neuroscience 61(1):31–40PubMedCrossRefGoogle Scholar
  96. Zachariou V, Sgambato-Faure V, Sasaki T, Svenningsson P, Berton O, Fienberg AA, Nestler EJ (2006) Phosphorylation of DARPP-32 at Threonine-34 is required for cocaine action. Neuropsychopharmacology 31(3):555–562PubMedCrossRefGoogle Scholar
  97. Ziedonis DM, Kosten TR (1991a) Depression as a prognostic factor for pharmacological treatment of cocaine dependence. Psychopharmacol Bull 27(3):337–343PubMedGoogle Scholar
  98. Ziedonis DM, Kosten TR (1991b) Pharmacotherapy improves treatment outcome in depressed cocaine addicts. J Psychoactive Drugs 23(4):417–425PubMedCrossRefGoogle Scholar
  99. Zuena AR, Mairesse J, Casolini P, Cinque C, Alemà GS, Morley-Fletcher S, Maccari S (2008) Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PloS ONE 3(5):e2170PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marie-Line Reynaert
    • 1
  • Jordan Marrocco
    • 2
  • Eleonora Gatta
    • 1
  • Jérôme Mairesse
    • 1
  • Gilles Van Camp
    • 1
  • Francesca Fagioli
    • 3
    • 4
  • Stefania Maccari
    • 1
    Email author
  • Ferdinando Nicoletti
    • 1
  • Sara Morley-Fletcher
    • 1
  1. 1.International Associated Laboratory (LIA) “Prenatal Stress and Neurodegenerative Diseases”, UMR8576 University Lille 1/CNRS, Villeneuve d’AscqFrance and Sapienza University of Rome/IRCCS NeuromedPozzilliItaly
  2. 2.IRCCS Centro Neurolesi “Bonino-Pulejo”MessinaItaly
  3. 3.Department of PsychiatrySapienza University of RomeRomaItaly
  4. 4.AziendaSanitaria LocaleRM.E. Unità Operativa Complessa AdolescentRomeItaly

Personalised recommendations