Involvement of Nitric Oxide, Neurotrophins and HPA Axis in Neurobehavioural Alterations Induced by Prenatal Stress

  • Damian G. Maur
  • Cecilia G. Pascuan
  • Ana M. Genaro
  • Maria A. Zorrilla-Zubilete
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 10)

Abstract

Several studies suggest that negative emotions during pregnancy generate adverse effects on the cognitive, behavioural and emotional development of the descendants. The psychoneuroendocrine pathways involve the transplacentary passage of maternal glucocorticoids in order to influence directly on fetal growth and brain development.

Nitric oxide is a gaseous neurotransmitter that plays an important role in the control of neural activity by diffusing into neurons and participates in learning and memory processes. It has been demonstrated that nitric oxide is involved in the regulation of corticosterone secretion. Thus, it has been found that the neuronal isoform of nitric oxide synthase (nNOS) is an endogenous inhibitor of glucocorticoid receptor (GR) in the hippocampus and that nNOS in the hippocampus may participate in the modulation of hypothalamic–pituitary–adrenal axis activity via GR.

Neurotrophins are a family of secreted growth factors consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and NT4. Although initially described in the nervous system, they regulate processes such as cell survival, proliferation and differentiation in several other compartments. It has been demonstrated that the NO–citrulline cycle acts together with BDNF in maintaining the progress of neural differentiation.

In the present chapter, we explore the interrelation between nitric oxide, glucocorticoids and neurotrophins in brain areas that are key structures in learning and memory processes. The participation of this interrelation in the behavioural and cognitive alterations induced in the offspring by maternal stress is also addressed.

Keywords

Maternal stress Nitric oxide Neurotrophins Central nervous system Behaviour 

References

  1. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisted. J Neurosci Res 85:525–535PubMedCentralPubMedCrossRefGoogle Scholar
  2. Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10:345–352PubMedCrossRefGoogle Scholar
  3. Araki T, Tanji H, Fujihara K et al (1999) Increases in [3H]FK-506 and [3H]L-NG-nitroarginine binding in the rat brain after nigrostriatal dopaminergic denervation. Metab Brain Dis 14:21–31PubMedCrossRefGoogle Scholar
  4. Bibel M, Barde Y-A (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937PubMedCrossRefGoogle Scholar
  5. Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22(3):123−131Google Scholar
  6. Blum R, Konnerth A (2005) Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) 20:70–78CrossRefGoogle Scholar
  7. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Ann Rev Biochem 63:175–195PubMedCrossRefGoogle Scholar
  8. Capoccia S, Berry A, Bellisario V, Vacirca D, Ortona E, Alleva E, Cirulli F Quality and timing of stressors differentially impact on brain plasticity and neuroendocrine-immune function in mice. Neural Plast. 2013; 2013:971817. doi: 10.1155/2013/971817PubMedCentralPubMedGoogle Scholar
  9. Chrousos GP, Torpy DJ, Gold PW (1998) Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 129:229–240PubMedCrossRefGoogle Scholar
  10. Colasanti M, Suzuki H (2000 Jul) The dual personality of NO. Trends Pharmacol Sci 21(7):249–252PubMedCrossRefGoogle Scholar
  11. Correia CT, Coutinho AM, Sequeira AF, Sousa IG, Venda LLO, Almeida JP, Abreu RL, Lobo C, Miguel TS, Conroy J, Cochrane L, Gallagher L, Gill M, Ennis S, Oliveira GG, Vicente AM (2010) Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autism. Genes Brain Behav 9:841–848PubMedCrossRefGoogle Scholar
  12. Cratty MS, Ward HE, Johnson EA, Azzaro AJ, Birkle DL (1995) Prenatal stress increases corticotropin releasing factor(CRF) content and release in rat amygdala minces. Brain Res 675:297–302PubMedCrossRefGoogle Scholar
  13. Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159PubMedGoogle Scholar
  14. De Bellis MD (2005) The psychobiology of neglect. Child Maltreat 10:150–172PubMedCrossRefGoogle Scholar
  15. de Lima MN, Presti-Torres J, Vedana G, Alcalde LA, Stertz L, Fries GR, Roesler R, Andersen ML, Quevedo J, Kapczinski F, Schröder N (2011) Early life stress decreases hippocampal BDNF content and exacerbates recognition memory deficits induced by repeated D-amphetamine exposure. Behav Brain Res 224(1):100–106PubMedCrossRefGoogle Scholar
  16. Demyttenaiere K, Nijs P, Evers-Kiebooms F, Konincky PR (1989) The effect of a specific emotion stressor on prolactin, cortisol, and testosterone concentrations in women varies with their trait anxiety. Fertil Steril 52:942–948Google Scholar
  17. Dennis KE, Levitt P (2005) Regional expression of brain derived neurotrophic factor (BDNF) is correlated with dynamic patterns of promoter methylation in the developing mouse forebrain. Mol Brain Res 140:1–9PubMedCrossRefGoogle Scholar
  18. Dhobale M, Mehendale S, Pisal V, D’Souza V, Joshi S (2012)Association of brain-derived neurotrophic factor and tyrosine kinase B receptor in pregnancy. Neuroscience 216:31–37PubMedCrossRefGoogle Scholar
  19. Di Monte DAR, Anderson A et al (1997) Inhibition of monoamine oxidase contributes to the protective effect of 7-nitroindazole against MPTP neurotoxicity. J Neurochem 69:1771–1773PubMedCrossRefGoogle Scholar
  20. Edwards TM, Rickard NS (2007) New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neurosci Biobehav Rev 31(3):413–425. (Epub 2006 Dec 26)PubMedCrossRefGoogle Scholar
  21. Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16:23–41PubMedGoogle Scholar
  22. Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–605PubMedCrossRefGoogle Scholar
  23. Fride E, Dan Y, Gavish M, Weinstock M (1985) Prenatal stress impairs maternal behavior in a conflict situation and reduces hippocampal benzodiazepine receptors. Life Sci 36(22):2103–2109PubMedCrossRefGoogle Scholar
  24. Fumagalli F, Molteni R, Racagni G, Riva MA (2007) Stress during development: impact on neuroplasticity and relevance to psychopathology. Prog Neurobiol 81:197–217PubMedCrossRefGoogle Scholar
  25. Hopper RA, Garthwaite J (2006) Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J Neurosci 26:11513–11521PubMedCrossRefGoogle Scholar
  26. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev. Neurosci 24:677–736Google Scholar
  27. Jeanneteau FD, Lambert WM, Ismaili N, Bath KG, Lee FS, Garabedian MJ, Chao MV (2012) BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci U S A 109:1305–1310PubMedCentralPubMedCrossRefGoogle Scholar
  28. Kaffman A, Meaney MJ (2007) Neurodevelopmental sequelae of postnatal maternal care in rodents. Clinical and research implications of molecular insights. J Child Psychol Psychiatry 48:224–244PubMedCrossRefGoogle Scholar
  29. Kang H, Schuman EM (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267(5204):1658–1662PubMedCrossRefGoogle Scholar
  30. Kawamura K, Kawamura N, Kumazawa Y, Kumagai J, Fujimoto T, Tanaka T (2011 Mar) Brain-derived neurotrophic factor/tyrosine kinase B signaling regulates human trophoblast growth in an in vivo animal model of ectopic pregnancy. Endocrinology 152(3):1090–1100. doi: 10.1210/en.2010-1124. (Epub 2011 Jan 14)PubMedCrossRefGoogle Scholar
  31. Kawamura K, Kawamura N, Sato W, Fukuda J, Kumagai J, Tanaka T (2009 Aug) Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival. Endocrinology 150(8):3774–3782. doi: 10.1210/en.2009-0213. (Epub 2009 Apr 16)PubMedCrossRefGoogle Scholar
  32. Kinnunen AK, Koenig JI, Bilbe G (2003 Aug) Repeated variable prenatal stress alters pre- and postsynaptic gene expression in the rat frontal pole. J Neurochem 86(3):736–748PubMedCrossRefGoogle Scholar
  33. Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci 24:211–215PubMedCrossRefGoogle Scholar
  34. Kodomari I, Wada E, Nakamura S, Wada K (2009 Feb) Maternal supply of BDNF to mouse fetal brain through the placenta. Neurochem Int 54(2):95–98PubMedCrossRefGoogle Scholar
  35. Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156(2):251–261PubMedCrossRefGoogle Scholar
  36. Korsching S (1993) The neurotrophic factor concept: a reexamination. J Neurosci 13(7):2739–2748PubMedGoogle Scholar
  37. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995 Sep 12) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 92(19):8856–8860PubMedCentralPubMedCrossRefGoogle Scholar
  38. Lee BE, Ha M, Park H, Hong YC, Kim Y, Kim YJ, Ha EH (2011) Psychosocial work stress during pregnancy and birthweight. Paediatr Perinat Epidemiol 25(3):246–254PubMedCrossRefGoogle Scholar
  39. Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI (2007) Prenatal stress generates deficits in rat social behavior: reversal by oxytocin. Brain Res 2 1156:152–167CrossRefGoogle Scholar
  40. Lee S, Blanton CA, Rivier C (2003 Jun) Prenatal ethanol exposure alters the responsiveness of the rat hypothalamic-pituitary-adrenal axis to nitric oxide. Alcohol Clin Exp Res 27(6):962–969PubMedCrossRefGoogle Scholar
  41. Lipton SA (1999) Neuronal protection and destruction by NO. Cell Death Differ 6:943–951PubMedCrossRefGoogle Scholar
  42. Liu J, Mori A (1999) Stress, aging, and brain oxidative damage. Neurochem Res 24:1479–1497PubMedCrossRefGoogle Scholar
  43. Liu Q-R, Lu L, Zhu X-G, Gong J-P, Shaham Y, Uhl GR (2006) Rodent BDNF genes, novel promoters, novel splice variants and regulation by cocaine. Brain Res 1067:1–12PubMedCrossRefGoogle Scholar
  44. Lonart G, Johanson KM (1992) Inhibitory effects of nitric oxide on the uptake of [3H]dopamine and [3H] glutamate by striatal synaptosomes. J Neurochem 63:2108–2117CrossRefGoogle Scholar
  45. Lopez-Figueroa MO, Itoi K, Watson SJ (1998) Regulation of nitric oxide synthase messenger RNA expression in the rat hippocampus by glucocorticoids. Neuroscience 87:439–446PubMedCrossRefGoogle Scholar
  46. Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 27(1–2):119–127PubMedCrossRefGoogle Scholar
  47. Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78:927–930PubMedCrossRefGoogle Scholar
  48. Maur D, Romero C, Palumbo M, Genaro A, Zorrilla Zubilete M (2007) Alterations in behavioral learning due to prenatal stress in rats. Biocell 31:100Google Scholar
  49. Maur DG, Romero CB, Burdet B, Palumbo ML, Zorrilla-Zubilete MA (2012 Dec) Prenatal stress induces alterations in cerebellar nitric oxide that are correlated with deficits in spatial memory in rat’s offspring. Neurochem Int 61(8):1294–1301PubMedCrossRefGoogle Scholar
  50. Mayeur S, Lukaszewski MA, Breton C, Storme L, Junien C, Vieau D, Lesage J (2011) BDNF in feto-placental development. Med Sci (Paris) 27(3):251–252CrossRefGoogle Scholar
  51. McEwen BS (1998) Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 1;840:33–44CrossRefGoogle Scholar
  52. McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122. (Review)PubMedCrossRefGoogle Scholar
  53. McEwen BS (2007 Jul) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904. (Review)PubMedCrossRefGoogle Scholar
  54. McKay SE, Purcell AL, Carew TJ (1999) Regulation of synaptic function by neurotrophic factors in vertebrates and invertebrates: implications for development and learning. Learn Mem 6(3):193–215PubMedGoogle Scholar
  55. Miller SD, Mueller E, Gifford GW, Kinsley CH (1999 Jun 29) Prenatal stress-induced modifications of neuronal nitric oxide synthase in amygdala and medial preoptic area. Ann N Y Acad Sci 877:760–763PubMedCrossRefGoogle Scholar
  56. Miranda KM, Espey MG, Wink DA (2000) A discussion of the chemistry of oxidative and nitrosative stress in cytotoxicity. J Inorg Biochem 79:237–240PubMedCrossRefGoogle Scholar
  57. Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T (2000) Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 20(18):7116–7121PubMedGoogle Scholar
  58. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. New Engl J Med 329:2002–2012PubMedCrossRefGoogle Scholar
  59. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  60. Mueller BR, Bale TL (2006) Impact of prenatal stress on long term body weight is dependent on timing and maternal sensitivity. Physiol Behav 88:605–614PubMedCrossRefGoogle Scholar
  61. Muramatsu Y, Kurosaki R, Watanabe H et al (2003) Cerebral alterations in a MPTP-mouse model of Parkinson’s disease-an immunocytochemical study. J Neural Transm 110:1129–1144PubMedCrossRefGoogle Scholar
  62. Murmu MS et al (2006) Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci 24:1477–1487PubMedCrossRefGoogle Scholar
  63. Nair A, Vadodaria KC, Banerjee SB, Benekareddy M, Dias BG, Duman RS, Vaidya VA (2007) Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neurophsychopharmacol 32:1504–1519CrossRefGoogle Scholar
  64. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918PubMedCrossRefGoogle Scholar
  65. Noble KG, Tottenham N, Casey BJ (2005) Neuroscience perspectives on disparities in school readiness and cognitive achievement. Future Child 15:71–89PubMedCrossRefGoogle Scholar
  66. Numakawa T, Kumamaru E, Adachi N, Yagasaki Y, Izumi A, Kunugi H (2010) Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-gamma signaling for glutamate release via a glutamate transporter. Proc Natl Acad Sci U S A 106(2):647–652CrossRefGoogle Scholar
  67. Palumbo ML, Fosser NS, Rios H, Zorrilla Zubilete MA, Guelman LR, Cremaschi GA, Genaro AM (2007) Loss of hippocampal neuronal nitric oxide synthase contributes to the stress-related deficit in learning and memory. J Neurochem 102(1):261–274PubMedCrossRefGoogle Scholar
  68. Patin V, Lordi B, Vincent A, Caston J (2005) Effects of prenatal stress on anxiety and social interactions in adult rats. Brain Res Dev Brain Res 160(2):265–274PubMedCrossRefGoogle Scholar
  69. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6):1137–1145PubMedCrossRefGoogle Scholar
  70. Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9(6):1081–1088PubMedCrossRefGoogle Scholar
  71. Petraglia F, Florio P, Nappi C, Genazzani AR (1996) Peptide signaling in human placenta and membranes: autocrine, paracrine, and endocrine mechanisms. Endocr Rev 17:156–186PubMedGoogle Scholar
  72. Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538PubMedCrossRefGoogle Scholar
  73. Pittenger C, Duman RS (2007) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109PubMedCrossRefGoogle Scholar
  74. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics 90(3):397–406PubMedCentralPubMedCrossRefGoogle Scholar
  75. Rehn AE, Rees SM (2005) Investigating the neurodevelopmental hypothesis of schizophrenia. Clin Exp Pharmacol Physiol 32(9):687–696. (Review)PubMedCrossRefGoogle Scholar
  76. Roth TL, Lubin FD, Funk AJ, Sweat D (2009) Lasting epigenetic influence of early-life adversity on the BDNF Gene. Biol Pshychiatry 65:760–769CrossRefGoogle Scholar
  77. Ruiz R, Avant C (2005) Effects of maternal prenatal stress on infant outcomes. ANS Adv Nurs Sci 28:345–355PubMedCrossRefGoogle Scholar
  78. Sathanoori M, Dias BG, Nair AR, Banjerjee SB, Tole S, Vaidya VA (2004) Differential regulation of multiple brain-derived neurotrophic factor transcripts in the postnatal and adult rat in hippocampus during development, and in response to kitinate administration. Brain Res Mol Brain Res 130:170–177PubMedCrossRefGoogle Scholar
  79. Schinder AF, Poo M (2000) The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23:639–645PubMedCrossRefGoogle Scholar
  80. Schmidt HD, Shelton RC, Duman RS (2011) Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 36(12):2375–2394PubMedCentralPubMedCrossRefGoogle Scholar
  81. Schulz JB, Matthews RT, Muqit MMK (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP induced neurotoxicity in mice. J Neurochem 64:936–939PubMedCrossRefGoogle Scholar
  82. Steckler T (2001) The molecular neurobiology of stress evidence from genetic and epigenetic models. Behav Pharmacol 12:381–427PubMedCrossRefGoogle Scholar
  83. Stern JE (2004 Feb–Apr) Nitric oxide and homeostatic control: an intercellular signalling molecule contributing to autonomic and neuroendocrine integration? Prog Biophys Mol Biol 84(2–3):197–215PubMedCrossRefGoogle Scholar
  84. Sug-Tang A, Bocking AD, Brooks AN, Hooper S, White SE, Jacobs RA, Fraher LJ, Challis JR (1992) Effects of restricting uteroplacental blood flow on concentrations of corticotrophin-releasing hormone, adrenocorticotrophin, cortisol, and prostaglandin E2 in the sheep fetus during late pregnancy. Can J Physiol Pharmacol 70:1396–1402PubMedCrossRefGoogle Scholar
  85. Sullivan BM, Wong S, Schuman EM (1997) Modification of hippocampal synaptic proteins by nitric oxide-stimulated ADP ribosylation. Learn Mem 3:414–424PubMedCrossRefGoogle Scholar
  86. Tapia-Arancibia L, Rage F, Givalois L, Arancibia S (2004) Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrin 25:77–107CrossRefGoogle Scholar
  87. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995PubMedCrossRefGoogle Scholar
  88. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM (2003) The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev 87:873–904Google Scholar
  89. Vallee M et al (1997) Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 17:2626–2636PubMedGoogle Scholar
  90. Vallee M et al (1999) Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur J Neurosci 11:2906–2916PubMedCrossRefGoogle Scholar
  91. Van den Hove DL, Steinbusch H, Scheepens A, Van deBW, Kooiman L, Boosten B, Prickaerts J, Blanco C (2005) Prenatal stress and neonatal rat brain development. Dev Neurosci 27(5):313–320PubMedCrossRefGoogle Scholar
  92. Van den Hove DL, Kenis G, Brass A, Opstelten R, Rutten BP, Bruschettini M, Blanco CE, Lesch KP, Steinbusch HW, Prickaerts J (2012) Vulnerability versus resilience to prenatal stress in male and female rats; implications from gene expression profiles in the hippocampus and frontal cortex. Eur Neuropsychopharmacol. doi:10.1016/j.euroneuro.2012.09.011Google Scholar
  93. Van Reeth O, Koehl M, Weibel L, Le Moal M, Maccari S (1998) Effects of prenatal stress on circadian synchronization in adult rats. J Sleep Res 7(Suppl. 2):287Google Scholar
  94. Wadhwa PD, Dunkel-Schetter C, Chicz-DeMet A, Porto M, Sandman CA (1996) Prenatal psychosocial factors and the neuroendocrine axis in human pregnancy. Psychosomat Med 58:432–446CrossRefGoogle Scholar
  95. Weinstock M (2001) Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol 65(5):427–451PubMedCrossRefGoogle Scholar
  96. Whitnall MH (1993 May) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40(5):573–629. (Review)PubMedCrossRefGoogle Scholar
  97. Wink DA, Vodovotz Y, Grisham MB et al (1999) Antioxidant effects of nitric oxide. Methods Enzymol 301:413–424PubMedCrossRefGoogle Scholar
  98. Wong EY, Herbert J (2006) Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience 137(1):83–92. (Epub 2005 Nov 10)PubMedCentralPubMedCrossRefGoogle Scholar
  99. Wu A, Ying Z, Gomez-Pinilla F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21(10):1457–1467PubMedCrossRefGoogle Scholar
  100. Wu J, Song TB, Li YJ, He KS, Ge L, Wang LR (2007) Prenatal restraint stress impairs learning and memory and hippocampal PKCbeta1 expression and translocation in offspring rats. Brain Res 13(1141):205–213CrossRefGoogle Scholar
  101. Zorrilla-Zubilete MA, Maur DG, Palumbo ML, Genaro AM (2010) Role of nitric oxide signaling pathways in brain injuries. Curr Chem Biol 4:250–261. (Bentham Science Publishers Ltd.)Google Scholar
  102. Zuena AR, Mairesse J, Casolini P, Cinque C, Alemà GS, Morley-Fletcher S, Chiodi V, Spagnoli LG, Gradini R, Catalani A, Nicoletti F, Maccari S (2008) Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS One 3(5):e2170PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Damian G. Maur
    • 1
    • 2
  • Cecilia G. Pascuan
    • 1
    • 2
  • Ana M. Genaro
    • 1
    • 2
  • Maria A. Zorrilla-Zubilete
    • 1
    • 2
  1. 1.Department of Pharmacology, School of MedicineUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Center of Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA)Buenos AiresArgentina

Personalised recommendations