Omics Approaches to Macrophage Biology

  • Shakti Gupta
  • Ashok Reddy Dinasarapu
  • Merril J. Gersten
  • Mano Ram Maurya
  • Shankar Subramaniam
Chapter

Abstract

High-throughput (HTP) technologies enabling the simultaneous measurement of thousands of genes, proteins, and metabolites offer new opportunities for understanding the complex mechanisms underlying physiology, health, and disease. Mining these large “omics” datasets (transcriptomics, proteomics, and metabolomics) has required addressing issues such as high dimensionality of the data, experimental variability, noise, and low sensitivity of the methodologies. Numerous approaches have been developed to handle these issues and to utilize these datasets to generate meaningful biological insights. This chapter describes the types of omics measurements that have been performed on mammalian macrophage cells, methods, and tools for their analysis, and examples of insights gained in macrophage biology.

References

  1. Adourian A, Jennings E, Balasubramanian R, Hines WM, Damian D, Plasterer TN, Clish CB, Stroobant P, McBurney R, Verheij ER, Bobeldijk I, van der Greef J, Lindberg J, Kenne K, Andersson U, Hellmold H, Nilsson K, Salter H, Schuppe-Koistinen I (2008) Correlation network analysis for data integration and biomarker selection. Mol Biosyst 4(3):249–259PubMedGoogle Scholar
  2. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207PubMedGoogle Scholar
  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106PubMedCentralPubMedGoogle Scholar
  4. Anderson TW (1984) An introduction to multivariate statistical analysis, 2nd edn. Wiley, New YorkGoogle Scholar
  5. Andreyev AY, Shen Z, Guan Z, Ryan A, Fahy E, Subramaniam S, Raetz CR, Briggs S, Dennis EA (2010a) Application of proteomic marker ensembles to subcellular organelle identification. Mol Cell Proteomics 9(2):388–402PubMedCentralPubMedGoogle Scholar
  6. Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, McDonald JG, Milne S, Myers D, Park H, Ryan A, Thompson BM, Wang E, Zhao Y, Brown HA, Merrill AH, Raetz CR, Russell DW, Subramaniam S, Dennis EA (2010b) Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 51(9):2785–2797PubMedCentralPubMedGoogle Scholar
  7. Asadi B, Maurya MR, Tartakovsky DM, Subramaniam S (2012) Comparison of statistical and optimisation-based methods for data-driven network reconstruction of biochemical systems. IET Syst Biol 6(5):155–163PubMedGoogle Scholar
  8. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29PubMedCentralPubMedGoogle Scholar
  9. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2Google Scholar
  10. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the second international conference on intelligent systems for molecular biology. AAAI Press, Menlo ParkGoogle Scholar
  11. Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics 17(6):509–519PubMedGoogle Scholar
  12. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedGoogle Scholar
  13. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153PubMedCentralPubMedGoogle Scholar
  14. Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297(5583):1018–1023PubMedGoogle Scholar
  15. Bhargava V, Ko P, Willems E, Mercola M, Subramaniam S (2013) Quantitative transcriptomics using designed primer-based amplification. Sci Rep 3:1740PubMedCentralPubMedGoogle Scholar
  16. BIOCARTA http://www.biocarta.com. Cited 10 June 2013
  17. Blahnik KR, Dou L, O'Geen H, McPhillips T, Xu X, Cao AR, Iyengar S, Nicolet CM, Ludascher B, Korf I, Farnham PJ (2010) Sole-search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res 38(3):e13PubMedCentralPubMedGoogle Scholar
  18. Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T, Shui G, Lacaze P, Watterson S, Griffiths SJ, Spann NJ, Meljon A, Talbot S, Krishnan K, Covey DF, Wenk MR, Craigon M, Ruzsics Z, Haas J, Angulo A, Griffiths WJ, Glass CK, Wang Y, Ghazal P (2013) The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38(1):106–118PubMedCentralPubMedGoogle Scholar
  19. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193PubMedGoogle Scholar
  20. Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, Thorsson V (2006) The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7(5):R36PubMedCentralPubMedGoogle Scholar
  21. Bordbar A, Mo ML, Nakayasu ES, Schrimpe-Rutledge AC, Kim YM, Metz TO, Jones MB, Frank BC, Smith RD, Peterson SN, Hyduke DR, Adkins JN, Palsson BO (2012) Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol 8:558PubMedCentralPubMedGoogle Scholar
  22. Burgard AP, Nikolaev EV, Schilling CH, Maranas CD (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 14(2):301–312PubMedCentralPubMedGoogle Scholar
  23. Byrnes RW, Cotter D, Maer A, Li J, Nadeau D, Subramaniam S (2009) An editor for pathway drawing and data visualization in the biopathways workbench. BMC Syst Biol 3:99PubMedCentralPubMedGoogle Scholar
  24. Callender HL, Horn MA, DeCamp DL, Sternweis PC, Alex Brown H (2010) Modeling species-specific diacylglycerol dynamics in the RAW 264.7 macrophage. J Theor Biol 262(4):679–690PubMedCentralPubMedGoogle Scholar
  25. Cappuzzello C, Di Vito L, Melchionna R, Melillo G, Silvestri L, Cesareo E, Crea F, Liuzzo G, Facchiano A, Capogrossi MC, Napolitano M (2011) Increase of plasma IL-9 and decrease of plasma IL-5, IL-7, and IFN-gamma in patients with chronic heart failure. J Transl Med 9:28PubMedCentralPubMedGoogle Scholar
  26. Casanova H, Berman F, Bartol T, Gokcay E, Sejnowski T, Birnbaum A, Dongarra J, Miller M, Ellisman M, Faerman M, Obertelli G, Wolski R, Pomerantz S, Stiles J (2004) The virtual instrument: support for grid-enabled Mcell simulations. Int J High Perform Comput Appl 18(1):3–17PubMedCentralPubMedGoogle Scholar
  27. Chang YC, Chen TC, Lee CT, Yang CY, Wang HW, Wang CC, Hsieh SL (2008) Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 111(10):5054–5063PubMedGoogle Scholar
  28. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11(1):369–391PubMedCentralPubMedGoogle Scholar
  29. Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140PubMedCentralPubMedGoogle Scholar
  30. Churchill GA (2004) Using ANOVA to analyze microarray data. Biotechniques 37(2):173–5–177Google Scholar
  31. Climaco-Pinto R, Barros AS, Locquet N, Schmidtke L, Rutledge DN (2009) Improving the detection of significant factors using ANOVA-PCA by selective reduction of residual variability. Anal Chim Acta 653(2):131–142PubMedGoogle Scholar
  32. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2(10):2366–2382PubMedCentralPubMedGoogle Scholar
  33. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467PubMedGoogle Scholar
  34. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190PubMedCentralPubMedGoogle Scholar
  35. da Huang W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13PubMedCentralGoogle Scholar
  36. da Huang W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57Google Scholar
  37. de Haan JR, Wehrens R, Bauerschmidt S, Piek E, van Schaik RC, Buydens LM (2007) Interpretation of ANOVA models for microarray data using PCA. Bioinformatics 23(2):184–190PubMedGoogle Scholar
  38. Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB, Myers DS, Glass CK, Hardiman GT, Reichart D, Merrill AH, Sullards MC, Wang E, Murphy RC, Raetz CR, Garrett T, Guan Z, Ryan AC, Russell DW, McDonald JG, Thompson BM, Shaw WA, Sud M, Zhao Y, Gupta S, Maurya MR, Fahy E, Subramaniam S (2010) A mouse macrophage lipidome. J Biol Chem 285(51):39976–39985PubMedCentralPubMedGoogle Scholar
  39. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78PubMedCentralPubMedGoogle Scholar
  40. Dinasarapu AR, Gupta S, Maurya MR, Fahy E, Min J, Sud M, Gersten MJ, Glass CK, Subramaniam S (2013) A combined omics study on activated macrophages – enhanced role of STATs in apoptosis, immunity and lipid metabolism. Bioinformatics 29(21):2735–2743PubMedCentralPubMedGoogle Scholar
  41. Dinasarapu AR, Saunders B, Ozerlat I, Azam K, Subramaniam S (2011) Signaling gateway molecule pages – a data model perspective. Bioinformatics 27(12):1736–1738PubMedCentralPubMedGoogle Scholar
  42. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Muller T (2008) Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics 24(13):i223–i231PubMedCentralPubMedGoogle Scholar
  43. Draghici S, Kulaeva O, Hoff B, Petrov A, Shams S, Tainsky MA (2003) Noise sampling method: an ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays. Bioinformatics 19(11):1348–1359PubMedGoogle Scholar
  44. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104(6):1777–1782PubMedCentralPubMedGoogle Scholar
  45. Egghe L, Leydesdorff L (2009) The relation between Pearson’s correlation coefficient r and Salton’s cosine measure. J Am Soc Inform Sci Technol 60(5):1027–1036Google Scholar
  46. Eng JK, Mccormack AL, Yates JR (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989PubMedGoogle Scholar
  47. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1PubMedCentralPubMedGoogle Scholar
  48. Escoubet-Lozach L, Benner C, Kaikkonen MU, Lozach J, Heinz S, Spann NJ, Crotti A, Stender J, Ghisletti S, Reichart D, Cheng CS, Luna R, Ludka C, Sasik R, Garcia-Bassets I, Hoffmann A, Subramaniam S, Hardiman G, Rosenfeld MG, Glass CK (2011) Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. PLoS Genet 7(12):e1002401PubMedCentralPubMedGoogle Scholar
  49. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007) Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol Syst Biol 3:89PubMedCentralPubMedGoogle Scholar
  50. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46(5):839–861PubMedGoogle Scholar
  51. Famili I, Mahadevan R, Palsson BO (2005) k-Cone analysis: Determining all candidate values for kinetic parameters on a network scale. Biophys J 88(3):1616–1625PubMedCentralPubMedGoogle Scholar
  52. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121PubMedCentralPubMedGoogle Scholar
  53. Fields S, Sternglanz R (1994) The two-hybrid system: an assay for protein–protein interactions. Trends Genet 10(8):286–292PubMedGoogle Scholar
  54. Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253PubMedCentralPubMedGoogle Scholar
  55. Fortunato S (2010) Community detection in graphs. Phys Reports-Rev Section Phys Lett 486(3–5):75–174Google Scholar
  56. Fukushima A, Kusano M, Redestig H, Arita M, Saito K (2011) Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach. BMC Syst Biol 5:1PubMedCentralPubMedGoogle Scholar
  57. Gan G, Ma C, Wu J (2007) Society for Industrial and Applied Mathematics. In: Data clustering theory, algorithms, and applications, ASA-SIAM series on statistics and applied probability 20. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, p 1, electronic text (xxii, 466 p)Google Scholar
  58. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147PubMedGoogle Scholar
  59. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science 302(5651):1727–1736PubMedGoogle Scholar
  60. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99(12):7821–7826PubMedCentralPubMedGoogle Scholar
  61. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105PubMedCentralPubMedGoogle Scholar
  62. Gupta S, Maurya MR, Stephens DL, Dennis EA, Subramaniam S (2009) An integrated model of eicosanoid metabolism and signaling based on lipidomics flux analysis. Biophys J 96(11):4542–4551PubMedCentralPubMedGoogle Scholar
  63. Gupta S, Maurya MR, Subramaniam S (2010) Identification of crosstalk between phosphoprotein signaling pathways in RAW 264.7 macrophage cells. PLoS Comput Biol 6(1):e1000654PubMedCentralPubMedGoogle Scholar
  64. Gupta S, Maurya MR, Merrill AH Jr, Glass CK, Subramaniam S (2011) Integration of lipidomics and transcriptomics data towards a systems biology model of sphingolipid metabolism. BMC Syst Biol 5:26PubMedCentralPubMedGoogle Scholar
  65. Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Holoch D, Lim C, Tuschl T (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44(1):3–12PubMedCentralPubMedGoogle Scholar
  66. Haimi P, Uphoff A, Hermansson M, Somerharju P (2006) Software tools for analysis of mass spectrometric lipidome data. Anal Chem 78(24):8324–8331PubMedGoogle Scholar
  67. Halperin Y, Linhart C, Ulitsky I, Shamir R (2009) Allegro: analyzing expression and sequence in concert to discover regulatory programs. Nucleic Acids Res 37(5):1566–1579PubMedCentralPubMedGoogle Scholar
  68. Hartler J, Trotzmuller M, Chitraju C, Spener F, Kofeler HC, Thallinger GG (2011) Lipid data analyzer: unattended identification and quantitation of lipids in LC-MS data. Bioinformatics 27(4):572–577PubMedGoogle Scholar
  69. Herzog R, Schwudke D, Schuhmann K, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A (2011) A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol 12(1):R8PubMedCentralPubMedGoogle Scholar
  70. Heusinkveld M, van der Burg SH (2011) Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 9:216PubMedCentralPubMedGoogle Scholar
  71. Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park PJ (2011) ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics 12:134PubMedCentralPubMedGoogle Scholar
  72. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI–a COmplex PAthway SImulator. Bioinformatics 22(24):3067–3074PubMedGoogle Scholar
  73. Hsiao A, Worrall DS, Olefsky JM, Subramaniam S (2004) Variance-modeled posterior inference of microarray data: detecting gene-expression changes in 3T3-L1 adipocytes. Bioinformatics 20(17):3108–3127PubMedGoogle Scholar
  74. Hsiao A, Ideker T, Olefsky JM, Subramaniam S (2005) VAMPIRE microarray suite: a web-based platform for the interpretation of gene expression data. Nucleic Acids Res 33(Web Server issue):W627–W632PubMedCentralPubMedGoogle Scholar
  75. Hu J, Ge H, Newman M, Liu K (2012) OSA: a fast and accurate alignment tool for RNA-Seq. Bioinformatics 28(14):1933–1934PubMedGoogle Scholar
  76. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531PubMedGoogle Scholar
  77. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240PubMedGoogle Scholar
  78. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98(8):4569–4574PubMedCentralPubMedGoogle Scholar
  79. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323Google Scholar
  80. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB (2005) Systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310(5754):1646–1653PubMedGoogle Scholar
  81. Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26(11):1293–1300PubMedCentralPubMedGoogle Scholar
  82. Johansson A, Loset M, Mundal SB, Johnson MP, Freed KA, Fenstad MH, Moses EK, Austgulen R, Blangero J (2011) Partial correlation network analyses to detect altered gene interactions in human disease: using preeclampsia as a model. Hum Genet 129(1):25–34PubMedCentralPubMedGoogle Scholar
  83. Johnson RS, Taylor JA (2002) Searching sequence databases via de novo peptide sequencing by tandem mass spectrometry. Mol Biotechnol 22(3):301–315PubMedGoogle Scholar
  84. Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M, Liu XS (2006) Model-based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci U S A 103(33):12457–12462PubMedCentralPubMedGoogle Scholar
  85. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform 7:109Google Scholar
  86. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30PubMedCentralPubMedGoogle Scholar
  87. Karnaukhov AV, Karnaukhova EV, Williamson JR (2007) Numerical matrices method for nonlinear system identification and description of dynamics of biochemical reaction networks. Biophys J 92(10):3459–3473PubMedCentralPubMedGoogle Scholar
  88. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ, Weber RJ, Haussler D, Kent WJ (2003) The UCSC genome browser database. Nucleic Acids Res 31(1):51–54PubMedCentralPubMedGoogle Scholar
  89. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636PubMedGoogle Scholar
  90. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational–experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178PubMedCentralPubMedGoogle Scholar
  91. Kose F, Weckwerth W, Linke T, Fiehn O (2001) Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics 17(12):1198–1208PubMedGoogle Scholar
  92. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedGoogle Scholar
  93. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559Google Scholar
  94. Langfelder P, Zhang B, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5):719–720PubMedGoogle Scholar
  95. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25PubMedCentralPubMedGoogle Scholar
  96. Leavell MD, Leary JA (2006) Fatty acid analysis tool (FAAT): an FT-ICR MS lipid analysis algorithm. Anal Chem 78(15):5497–5503PubMedGoogle Scholar
  97. Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, Hinkin CH, Commins D, Morgello S, Grant I, Horvath S (2013) Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease. BMC Med Genomics 6:4PubMedCentralPubMedGoogle Scholar
  98. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760PubMedCentralPubMedGoogle Scholar
  99. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science 303(5657):540–543PubMedCentralPubMedGoogle Scholar
  100. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079PubMedCentralPubMedGoogle Scholar
  101. Li X, Cai H, Xu J, Ying S, Zhang Y (2010) A mouse protein interactome through combined literature mining with multiple sources of interaction evidence. Amino Acids 38(4):1237–1252PubMedGoogle Scholar
  102. Lin J, Gan CM, Zhang X, Jones S, Sjoblom T, Wood LD, Parsons DW, Papadopoulos N, Kinzler KW, Vogelstein B, Parmigiani G, Velculescu VE (2007) A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Res 17(9):1304–1318PubMedCentralPubMedGoogle Scholar
  103. Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43(2):110–117PubMedGoogle Scholar
  104. Ludwig HC, Ahkavan-Shigari R, Rausch S, Schallock K, Quentin C, Ziegler D, Bockermann V, Markakis E (2000) Oedema extension in cerebral metastasis and correlation with the expression of nitric oxide synthase isozymes (NOS I–III). Anticancer Res 20(1A):305–310PubMedGoogle Scholar
  105. Maurya MR, Subramaniam S (2007) A kinetic model for calcium dynamics in RAW 264.7 cells: 1. Mechanisms, parameters, and subpopulational variability. Biophys J 93(3):709–728PubMedCentralPubMedGoogle Scholar
  106. Maurya MR, Subramaniam S (2009) Computational challenges in systems biology. In: Liu ET, Lauffenburger DA (eds) Systems biomedicine: concepts and perspectives. Academic, San Diego, pp 177–223Google Scholar
  107. McNearney T, Baethge BA, Cao S, Alam R, Lisse JR, Westlund KN (2004) Excitatory amino acids, TNF-alpha, and chemokine levels in synovial fluids of patients with active arthropathies. Clin Exp Immunol 137(3):621–627PubMedCentralPubMedGoogle Scholar
  108. Miller AK, Marsh J, Reeve A, Garny A, Britten R, Halstead M, Cooper J, Nickerson DP, Nielsen PF (2010) An overview of the CellML API and its implementation. BMC Bioinform 11:178Google Scholar
  109. Miller JA, Nair RS, Zhang ZW, Zhao HW (1997) JSIM: A Java-based simulation and animation environment. Proc Annu Simul Symp 31–42Google Scholar
  110. Montefusco F, Cosentino C, Amato F (2010) CORE-Net: exploiting prior knowledge and preferential attachment to infer biological interaction networks. IET Syst Biol 4(5):296–310PubMedGoogle Scholar
  111. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628PubMedGoogle Scholar
  112. Narayanan T, Subramaniam S (2014) A newtonian framework for community detection in undirected biological networks. IEEE Trans Biomed Circuits Syst 8:65–73Google Scholar
  113. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94PubMedGoogle Scholar
  114. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 69(2 Pt 2):026113PubMedGoogle Scholar
  115. Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW (2010) Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol 184(2):702–712PubMedCentralPubMedGoogle Scholar
  116. Ong SM, Tan YC, Beretta O, Jiang D, Yeap WH, Tai JJ, Wong WC, Yang H, Schwarz H, Lim KH, Koh PK, Ling KL, Wong SC (2012) Macrophages in human colorectal cancer are pro-inflammatory and prime T cells towards an anti-tumour type-1 inflammatory response. Eur J Immunol 42(1):89–100PubMedGoogle Scholar
  117. Pavesi G, Mereghetti P, Mauri G, Pesole G (2004) Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 32(Web Server issue):W199–W203PubMedCentralPubMedGoogle Scholar
  118. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567PubMedGoogle Scholar
  119. Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270PubMedCentralPubMedGoogle Scholar
  120. Pradervand S, Maurya MR, Subramaniam S (2006) Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages. Genome Biol 7(2):R11PubMedCentralPubMedGoogle Scholar
  121. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501PubMedGoogle Scholar
  122. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842PubMedCentralPubMedGoogle Scholar
  123. Ramsey SA, Klemm SL, Zak DE, Kennedy KA, Thorsson V, Li B, Gilchrist M, Gold ES, Johnson CD, Litvak V, Navarro G, Roach JC, Rosenberger CM, Rust AG, Yudkovsky N, Aderem A, Shmulevich I (2008) Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput Biol 4(3):e1000021PubMedCentralPubMedGoogle Scholar
  124. Rau CD, Wisniewski N, Orozco LD, Bennett B, Weiss J, Lusis AJ (2013) Maximal information component analysis: a novel non-linear network analysis method. Front Genet 4:28PubMedCentralPubMedGoogle Scholar
  125. Reddy DA, Prasad BV, Mitra CK (2006) Comparative analysis of core promoter region: information content from mono and dinucleotide substitution matrices. Comput Biol Chem 30(1):58–62PubMedGoogle Scholar
  126. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140PubMedCentralPubMedGoogle Scholar
  127. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13(1):11–29PubMedCentralPubMedGoogle Scholar
  128. Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27(1):66–75PubMedCentralPubMedGoogle Scholar
  129. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437(7062):1173–1178PubMedGoogle Scholar
  130. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721):523–552PubMedGoogle Scholar
  131. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS 7(4):355–372PubMedGoogle Scholar
  132. Schafer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764PubMedGoogle Scholar
  133. Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM (1997) A general computational framework for modeling cellular structure and function. Biophys J 73(3):1135–1146PubMedCentralPubMedGoogle Scholar
  134. Schlecker E, Stojanovic A, Eisen C, Quack C, Falk CS, Umansky V, Cerwenka A (2012) Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J Immunol 189(12):5602–5611PubMedGoogle Scholar
  135. Schmieder A, Schledzewski K, Michel J, Tuckermann JP, Tome L, Sticht C, Gkaniatsou C, Nicolay JP, Demory A, Faulhaber J, Kzhyshkowska J, Geraud C, Goerdt S (2011) Synergistic activation by p38MAPK and glucocorticoid signaling mediates induction of M2-like tumor-associated macrophages expressing the novel CD20 homolog MS4A8A. Int J Cancer 129(1):122–132PubMedGoogle Scholar
  136. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18(20):6097–6100PubMedCentralPubMedGoogle Scholar
  137. Shi Q, Qin L, Wei W, Geng F, Fan R, Shin YS, Guo D, Hood L, Mischel PS, Heath JR (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci U S A 109(2):419–424PubMedCentralPubMedGoogle Scholar
  138. Shin H, Liu T, Manrai AK, Liu XS (2009) CEAS: cis-regulatory element annotation system. Bioinformatics 25(19):2605–2606PubMedGoogle Scholar
  139. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7(2):128–139PubMedGoogle Scholar
  140. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432PubMedCentralPubMedGoogle Scholar
  141. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3Google Scholar
  142. Song HS, Ramkrishna D, Pinchuk GE, Beliaev AS, Konopka AE, Fredrickson JK (2013) Dynamic modeling of aerobic growth of Shewanella oneidensis. Predicting triauxic growth, flux distributions, and energy requirement for growth. Metab Eng 15:25–33PubMedGoogle Scholar
  143. Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, Raetz CR, Wang EW, Kelly SL, Sullards MC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Li AC, Ley K, Tsimikas S, Fahy E, Subramaniam S, Quehenberger O, Russell DW, Glass CK (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151(1):138–152PubMedCentralPubMedGoogle Scholar
  144. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968PubMedGoogle Scholar
  145. Subramaniam S, Hsiao G (2012) Gene-expression measurement: variance-modeling considerations for robust data analysis. Nat Immunol 13(3):199–203PubMedGoogle Scholar
  146. Subramaniam S, Fahy E, Gupta S, Sud M, Byrnes RW, Cotter D, Dinasarapu AR, Maurya MR (2011) Bioinformatics and systems biology of the lipidome. Chem Rev 111(10):6452–6490PubMedCentralPubMedGoogle Scholar
  147. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550PubMedCentralPubMedGoogle Scholar
  148. Suzuki H, Fukunishi Y, Kagawa I, Saito R, Oda H, Endo T, Kondo S, Bono H, Okazaki Y, Hayashizaki Y (2001) Protein–protein interaction panel using mouse full-length cDNAs. Genome Res 11(10):1758–1765PubMedCentralPubMedGoogle Scholar
  149. Takahashi N, Uehara R, Kobayashi M, Yada Y, Koike Y, Kawamata R, Odaka J, Honma Y, Momoi MY (2010) Cytokine profiles of seventeen cytokines, growth factors and chemokines in cord blood and its relation to perinatal clinical findings. Cytokine 49(3):331–337PubMedGoogle Scholar
  150. Tang W, Gao Y, Li Y, Shi G (2012) Gene networks implicated in diabetic kidney disease. Eur Rev Med Pharmacol Sci 16(14):1967–1973PubMedGoogle Scholar
  151. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944PubMedGoogle Scholar
  152. The Alliance for Cellular Signaling (AfCS) http://www.signaling-gateway.org
  153. The Gene Ontology database http://amigo.geneontology.org
  154. The Systems Biology Markup Language http://sbml.org
  155. The Virtual Cell http://vcell.org/
  156. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc Ser B-Methodol 58(1):267–288Google Scholar
  157. Ting L, Cowley MJ, Hoon SL, Guilhaus M, Raftery MJ, Cavicchioli R (2009) Normalization and statistical analysis of quantitative proteomics data generated by metabolic labeling. Mol Cell Proteomics 8(10):2227–2242PubMedCentralPubMedGoogle Scholar
  158. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Regnier M, Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23(1):137–144PubMedGoogle Scholar
  159. Tsuchiya M, Piras V, Choi S, Akira S, Tomita M, Giuliani A, Selvarajoo K (2009) Emergent genome-wide control in wildtype and genetically mutated lipopolysaccarides-stimulated macrophages. PLoS One 4(3):e4905PubMedCentralPubMedGoogle Scholar
  160. Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197PubMedGoogle Scholar
  161. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627PubMedGoogle Scholar
  162. Ulitsky I, Shamir R (2007) Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 1:8PubMedCentralPubMedGoogle Scholar
  163. Ulitsky I, Shamir R (2008) Detecting pathways transcriptionally correlated with clinical parameters. Comput Syst Bioinform Conf 7:249–258Google Scholar
  164. Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25(9):1158–1164PubMedGoogle Scholar
  165. Ulitsky I, Krishnamurthy A, Karp RM, Shamir R (2010) DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS One 5(10):e13367PubMedCentralPubMedGoogle Scholar
  166. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res 33(Database issue):D433–D437Google Scholar
  167. Walther TC, Mann M (2010) Mass spectrometry-based proteomics in cell biology. J Cell Biol 190(4):491–500PubMedCentralPubMedGoogle Scholar
  168. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63PubMedCentralPubMedGoogle Scholar
  169. Winden KD, Karsten SL, Bragin A, Kudo LC, Gehman L, Ruidera J, Geschwind DH, Engel J Jr (2011) A systems level, functional genomics analysis of chronic epilepsy. PLoS One 6(6):e20763PubMedCentralPubMedGoogle Scholar
  170. Yang K, Ma W, Liang H, Ouyang Q, Tang C, Lai L (2007) Dynamic simulations on the arachidonic acid metabolic network. PLoS Comput Biol 3(3):e55PubMedCentralPubMedGoogle Scholar
  171. Yellaboina S, Dudekula DB, Ko M (2008) Prediction of evolutionarily conserved interologs in Mus musculus. BMC Genomics 9:465PubMedCentralPubMedGoogle Scholar
  172. Young JD, Henne KL, Morgan JA, Konopka AE, Ramkrishna D (2008) Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control. Biotechnol Bioeng 100(3):542–559PubMedGoogle Scholar
  173. Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R, Rosol TJ, Fernandez S, Huang K, Leone G, Ostrowski MC (2010) An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res 70(4):1323–1333PubMedCentralPubMedGoogle Scholar
  174. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137PubMedCentralPubMedGoogle Scholar
  175. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, Zhang W, Zhang Z, Lajoie GA, Ma B (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11(4):M111 010587PubMedCentralPubMedGoogle Scholar
  176. Zhu LJ, Gazin C, Lawson ND, Pages H, Lin SM, Lapointe DS, Green MR (2010) ChIPpeakAnno: a bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform 11:237Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shakti Gupta
    • 1
    • 2
  • Ashok Reddy Dinasarapu
    • 1
  • Merril J. Gersten
    • 1
  • Mano Ram Maurya
    • 1
    • 2
  • Shankar Subramaniam
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of BioengineeringUniversity of California San DiegoLa JollaUSA
  2. 2.San Diego Super Computer Center, University of California San DiegoLa JollaUSA
  3. 3.Department of Cellular and Molecular MedicineUniversity of California San DiegoLa JollaUSA
  4. 4.Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaUSA

Personalised recommendations