Skip to main content

Macrophages in Obesity and Insulin Resistance

  • Chapter
  • First Online:
Macrophages: Biology and Role in the Pathology of Diseases
  • 2493 Accesses

Abstract

Obesity-associated adipose tissue inflammation is a key factor contributing to chronic systemic inflammation and insulin resistance. The accumulation of macrophages with a pro-inflammatory phenotype within the adipose tissue has emerged as a crucial factor in the development and maintenance of metabolic inflammation. Thus, unravelling the phenotype and functions of adipose tissue macrophages as well as deciphering the underlying molecular mechanisms is necessary to improve our understanding of the relationship between adipose tissue inflammation, obesity and its metabolic consequences leading to type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams TD, Hunt SC (2009) Cancer and obesity: effect of bariatric surgery. World J Surg 33:2028–2033

    Article  PubMed  Google Scholar 

  • Altintas MM, Azad A, Nayer B et al (2011) Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. J Lipid Res 52:480–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aouadi M, Tencerova M, Vangala P et al (2013) Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice. Proc Natl Acad Sci U S A 110:8278–8283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Apovian CM, Bigornia S, Mott M et al (2008) Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 28:1654–1659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arkan MC, Hevener AL, Greten FR et al (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198

    Article  CAS  PubMed  Google Scholar 

  • Aron-Wisnewsky J, Tordjman J, Poitou C et al (2009) Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 94:4619–4623

    Article  CAS  PubMed  Google Scholar 

  • Bourlier V, Zakaroff-Girard A, Miranville A et al (2008) Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117:806–815

    Article  CAS  PubMed  Google Scholar 

  • Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591

    Article  CAS  PubMed  Google Scholar 

  • Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561

    Article  CAS  PubMed  Google Scholar 

  • Cinti S, Mitchell G, Barbatelli G et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355

    Article  CAS  PubMed  Google Scholar 

  • Curat CA, Wegner V, Sengenes C et al (2006) Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49: 744–747

    Article  CAS  PubMed  Google Scholar 

  • Emanuelli B, Peraldi P, Filloux C et al (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991

    Article  CAS  PubMed  Google Scholar 

  • Eto H, Ishimine H, Kinoshita K et al (2013) Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency. Stem Cells Dev 22:985–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feral CC, Neels JG, Kummer C et al (2008) Blockade of alpha4 integrin signaling ameliorates the metabolic consequences of high-fat diet-induced obesity. Diabetes 57:1842–1851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer-Posovszky P, Wang QA, Asterholm IW et al (2011) Targeted deletion of adipocytes by apoptosis leads to adipose tissue recruitment of alternatively activated M2 macrophages. Endocrinology 152:3074–3081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuentes L, Wouters K, Hannou SA et al (2011) Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)-like phenotype. Diabetologia 54:3150–3156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujisaka S, Usui I, Bukhari A et al (2009) Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58:2574–2582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujisaka S, Usui I, Kanatani Y et al (2011) Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice. Endocrinology 152(5): 1789–1799

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Hwang D, Bataille F et al (2002) Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 277:48115–48121

    Article  CAS  PubMed  Google Scholar 

  • Gillum MP, Kotas ME, Erion DM et al (2011) SirT1 regulates adipose tissue inflammation. Diabetes 60:3235–3245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han MS, Jung DY, Morel C et al (2013) JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339:218–222

    Article  CAS  PubMed  Google Scholar 

  • Hellmann J, Tang Y, Kosuri M et al (2011) Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J 25(7): 2399–2407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirosumi J, Tuncman G, Chang L et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  CAS  PubMed  Google Scholar 

  • Hummasti S, Hotamisligil GS (2010) Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 107:579–591

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Sun S, Xia S et al (2012a) Short term high fat diet challenge promotes alternative macrophage polarization in adipose tissue via natural killer T cells and interleukin-4. J Biol Chem 287:24378–24386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ji Y, Sun S, Xu A et al (2012b) Activation of natural killer T cells promotes M2 Macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity. J Biol Chem 287:13561–13571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang K, Reilly SM, Karabacak V et al (2008) Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 7:485–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawanishi N, Yano H, Yokogawa Y, Suzuki K (2010) Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev 16:105–118

    PubMed  Google Scholar 

  • Kitade H, Sawamoto K, Nagashimada M et al (2012) CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes 61:1680–1690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koliwad SK, Streeper RS, Monetti M et al (2010) DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation. J Clin Invest 120:756–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kosteli A, Sugaru E, Haemmerle G et al (2010) Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 120:3466–3479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovacikova M, Sengenes C, Kovacova Z et al (2011) Dietary intervention-induced weight loss decreases macrophage content in adipose tissue of obese women. Int J Obes (Lond) 35:91–98

    Article  CAS  Google Scholar 

  • Lee YS, Park MS, Choung JS et al (2012) Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 55:2456–2468

    Article  CAS  PubMed  Google Scholar 

  • Lesniewski LA, Hosch SE, Neels JG et al (2007) Bone marrow-specific Cap gene deletion protects against high-fat diet-induced insulin resistance. Nat Med 13:455–462

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Sharma N, Kapadia F et al (2011) Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest 121:2736–2749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lumeng C, Bodzin J, Saltiel A (2007a) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR (2007b) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:16–23

    Article  CAS  PubMed  Google Scholar 

  • Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR (2008) Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57:3239–3246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lumeng CN, Liu J, Geletka L et al (2011) Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J Immunol 187:6208–6216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda T, Noge I, Kagawa Y (2013) Infiltration of M1 macrophages into adipose tissue of ddY-H mice preceding spontaneous appearances of insulin resistance. Biol Pharm Bull 36:825–832

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  CAS  PubMed  Google Scholar 

  • Mayi TH, Daoudi M, Derudas B et al (2012) Human adipose tissue macrophages display activation of cancer-related pathways. J Biol Chem 287:21904–21913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murano I, Barbatelli G, Parisani V et al (2008) Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 49:1562–1568

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MT, Favelyukis S, Nguyen AK et al (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282:35279–35292

    Article  CAS  PubMed  Google Scholar 

  • Nio Y, Yamauchi T, Iwabu M et al (2012) Monocyte chemoattractant protein-1 (MCP-1) deficiency enhances alternatively activated M2 macrophages and ameliorates insulin resistance and fatty liver in lipoatrophic diabetic A-ZIP transgenic mice. Diabetologia 55:3350–3358

    Article  CAS  PubMed  Google Scholar 

  • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH et al (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A et al (2008) Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7:496–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh DY, Talukdar S, Bae EJ et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh DY, Morinaga H, Talukdar S et al (2012) Increased macrophage migration into adipose tissue in obese mice. Diabetes 61:346–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99:1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Orr JS, Puglisi MJ, Ellacott KL et al (2012) Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages. Diabetes 61:2718–2727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prieto-Hontoria PL, Perez-Matute P, Fernandez-Galilea M et al (1807) Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. Biochim Biophys Acta 2011:664–678

    Google Scholar 

  • Prieur X, Mok CY, Velagapudi VR et al (2011) Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 60:797–809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro H, Pecht T, Shaco-Levy R et al (2013) Adipose tissue foam cells are present in human obesity. J Clin Endocrinol Metab 98:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Shaul ME, Bennett G, Strissel KJ et al (2010) Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes 59:1171–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solinas G, Vilcu C, Neels JG et al (2007) JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 6:386–397

    Article  CAS  PubMed  Google Scholar 

  • Solinas G, Schiarea S, Liguori M et al (2010) Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol 185:642–652

    Article  CAS  PubMed  Google Scholar 

  • Spencer M, Yao-Borengasser A, Unal R et al (2010) Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab 299:E1016–E1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stienstra R, Duval C, Keshtkar S et al (2008) Peroxisome proliferator-activated receptor gamma activation promotes infiltration of alternatively activated macrophages into adipose tissue. J Biol Chem 283:22620–22627

    Article  CAS  PubMed  Google Scholar 

  • Titos E, Rius B, Gonzalez-Periz A et al (2011) Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol 187:5408–5418

    Article  CAS  PubMed  Google Scholar 

  • Tsukumo DM, Carvalho-Filho MA, Carvalheira JB et al (2007) Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56:1986–1998

    Article  CAS  PubMed  Google Scholar 

  • Vandanmagsar B, Youm YH, Ravussin A et al (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weisberg SP, Hunter D, Huber R et al (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu D, Molofsky AB, Liang HE et al (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yakeu G, Butcher L, Isa S et al (2010) Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes: roles of PPARgamma and Th2 cytokines. Atherosclerosis 212:668–673

    Article  CAS  PubMed  Google Scholar 

  • Zeyda M, Farmer D, Todoric J et al (2007) Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond) 31:1420–1428

    Article  CAS  Google Scholar 

  • Zeyda M, Gollinger K, Kriehuber E et al (2010) Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int J Obes (Lond) 34:1684–1694

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Staels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chinetti-Gbaguidi, G., Staels, B. (2014). Macrophages in Obesity and Insulin Resistance. In: Biswas, S., Mantovani, A. (eds) Macrophages: Biology and Role in the Pathology of Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1311-4_17

Download citation

Publish with us

Policies and ethics