Carbon Oxides

Part of the Nanostructure Science and Technology book series (NST)


In the late twentieth century, the generation of oxide gases such as CO2, NOx, and SO2 through human activities became recognized as an extremely serious environmental problem. In 1997, at COP3, carbon dioxide (CO2) was also identified as a major greenhouse effect gas and the goal of reducing CO2 emissions was declared an international priority. The development of smart gas-sensing tools is an important step in effectively suppressing CO2 emissions into the atmosphere. Up to now, however, although many different CO2 sensors have been extensively studied, most have not been commercialized, with the exception of devices incorporating IR detection. Even these are expensive and bulky and require pretreatment of the sample gas, and so are difficult to install at the various sites where CO2 gas may be emitted. As a result, it is necessary to develop a compact CO2 gas sensor which can readily be positioned for on-site monitoring.

In this chapter, we describe the compact gas sensors which can detect the carbon oxides. Since such compact gas sensors can realize comfortable lives with high safety, they will contribute greatly to our daily lives.


Porous Silicon Solid Electrolyte Fringe Pattern Sensor Output Potentiometric Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gauthier M, Chamberland A (1977) Solid-state detectors for the potentiometric determination of gaseous oxides: I. measurement in air. J Electrochem Soc 124:1579–1583CrossRefGoogle Scholar
  2. 2.
    Côtè R, Bale CW, Gauthier M (1984) K2CO3 solid electrolyte as a CO2 probe: decomposition measurements of CaCO3. J Electrochem Soc 131:63–67CrossRefGoogle Scholar
  3. 3.
    Saito Y, Maruyama T, Matsumoto Y, Kobayashi K, Yano Y (1984) Applicability of sodium sulfate as a solid electrolyte for a sulfur oxides sensor. Solid State Ion 14:273–281CrossRefGoogle Scholar
  4. 4.
    Miura N, Yao S, Shimizu Y, Yamazoe N (1992) Carbon dioxide sensor using sodium ion conductor and binary carbonate auxiliary electrode. J Electrochem Soc 139:1384–1388CrossRefGoogle Scholar
  5. 5.
    Miura N, Yao S, Shimizu Y, Yamazoe N (1992) High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode. Sensor Actuat B 9:165–170CrossRefGoogle Scholar
  6. 6.
    Köhler J, Imanaka N, Adachi G (1998) Multivalent cationic conduction in solids. Chem Mater 10:3790–3812CrossRefGoogle Scholar
  7. 7.
    Imanaka N, Kamikawa M, Tamura S, Adachi G (1999) Carbon dioxide gas sensor based on trivalent Sc3+ ion conducting Sc2(WO4)3 solid electrolyte. Electrochem Solid-State Lett 2:602–604CrossRefGoogle Scholar
  8. 8.
    Imanaka N, Kamikawa M, Tamura S, Adachi G (2001) Carbon dioxide gas sensor with multivalent cation conducting solid electrolytes. Sensor Actuat B 77:301–306CrossRefGoogle Scholar
  9. 9.
    Imanaka N, Kobayashi Y, Fujiwara K, Asano T, Okazaki Y, Adachi G (1998) Trivalent rare earth ion conduction in the rare earth tungstates with the Sc2(WO4)3-type structure. Chem Mater 10:2006–2012CrossRefGoogle Scholar
  10. 10.
    Imanaka N, Kamikawa M, Adachi G (2001) A carbon dioxide gas sensing with the combination of divalent magnesium cation and divalent oxide anion conducting solid electrolytes with neodymium oxycarbonate based auxiliary electrode. Electroanalysis 13:1291–1294CrossRefGoogle Scholar
  11. 11.
    Imanaka N, Ogura A, Kamikawa M, Adachi G (2001) High performance CO2 gas sensing with the combination of multivalent ion conducting solid electrolytes with water-insoluble auxiliary electrode. Chem Lett 30:718–719CrossRefGoogle Scholar
  12. 12.
    Imanaka N, Kamikawa M, Adachi G (2002) A carbon dioxide gas sensing with the combination of multivalent cation and anion conductors with water insoluble oxycarbonate based auxiliary electrode. Anal Chem 74:4800–4804CrossRefGoogle Scholar
  13. 13.
    Imanaka N, Ogura A, Adachi G (2003) Practical smart CO2 gas sensor applicable for in-situ real time monitoring at every emitting site. Electrochemistry 71:14–18Google Scholar
  14. 14.
    Tamura S, Imanaka N, Kamikawa M, Adachi G (2000) A CO2 sensor based on a trivalent ion conducting Sc1/3Zr2(PO4)3 solid electrolyte. Adv Mater 12:898–901CrossRefGoogle Scholar
  15. 15.
    Imanaka N, Ogura A, Kamikawa M, Adachi G (2001) CO2 gas sensor with the combination of tetravalent zirconium cation and divalent oxide anion conducting solids with water-insoluble oxycarbonate electrode. Electrochem Commun 3:451–454CrossRefGoogle Scholar
  16. 16.
    Lee JS, Lee JH, Hong SH (2003) Solid-state amperometric CO2 sensor using a lithium-ion conductor. Sensor Actuat B 89:311–314CrossRefGoogle Scholar
  17. 17.
    Lee JS, Lee JH, Hong SH (2003) NASICON-based amperometric CO2 sensor using Na2CO3–BaCO3 auxiliary phase. Sensor Actuat B 96:663–668CrossRefGoogle Scholar
  18. 18.
    Lee JS, Lee JH, Hong SH (2003) Solid-state amperometric CO2 sensor using a sodium ion conductor. J Eur Ceram Soc 24:1431–1434CrossRefGoogle Scholar
  19. 19.
    Tamaki J, Akiyama M, Xu C, Miura N, Yamazoe N (1990) Conductivity change of SnO2 with CO2 adsorption. Chem Lett 19:1243–1246CrossRefGoogle Scholar
  20. 20.
    Yoshioka T, Mizuno N, Iwamoto M (1991) La2O3-loaded SnO2 element as a CO2 gas sensor. Chem Lett 20:1249–1252CrossRefGoogle Scholar
  21. 21.
    Mizuno N, Yoshioka T, Kato K, Iwamoto M (1993) CO2-sensing characteristics of SnO2 element modified by La2O3. Sensor Actuat B 13:473–475CrossRefGoogle Scholar
  22. 22.
    Sakama H, Saeki S, Ono A, Ichikawa N, Tanokura A, Uetsuka H, Onishi H (2004) CO2 sensing properties of La-loaded SnO2 thin films prepared by sputtering. Chem Lett 33:1080–1081CrossRefGoogle Scholar
  23. 23.
    Hanada M, Onaga K, Nishiguchi M, Onouchi T (1999) Development of CO2 gas sensor using La3+ and Y3+ doped SnO2 semiconductor. Chem Sensors 15(Suppl B):130–132Google Scholar
  24. 24.
    Mizuno N, Kato K, Yoshioka T, Iwamote M (1992) A remarkable sensitivity of CaO-loaded In2O3 element to CO2 gas in the presence of water vapor. Chem Lett 21:1683–1684CrossRefGoogle Scholar
  25. 25.
    Ishihara T, Kometani K, Hashida M, Takita Y (1990) Mixed oxide capacitor of BaTiO3–PbO as a new type CO2 gas sensor. Chem Lett 19:1163–1166CrossRefGoogle Scholar
  26. 26.
    Ishihara T, Kometani K, Mizuhara Y, Takita Y (1992) Mixed oxide capacitor of CuO-BaTiO3 as a new type CO2 gas sensor. J Am Ceram Soc 75:613–618CrossRefGoogle Scholar
  27. 27.
    Liao B, Wei Q, Wang K, Liu Y (2001) Study on CuO–BaTiO3 semiconductor CO2 sensor. Sensor Actuat B 80:208–214CrossRefGoogle Scholar
  28. 28.
    Wei Q, Luo WD, Liao B, Liu Y, Wang G (2000) Giant capacitance effect and physical model of nano crystalline CuO-BaTiO3 semiconductor as a CO2 gas sensor. J Appl Phys 88:4818–4824CrossRefGoogle Scholar
  29. 29.
    Leal O, Bolívar C, Ovalles C, García JJ, Sepidel Y (1995) Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg Chim Acta 240:183–189CrossRefGoogle Scholar
  30. 30.
    Rocchia M, Garrone E, Geobaldo F, Boarino L, Sailor MJ (2003) Sensing CO2 in a chemically modified porous silicon film. Phys Stat Sol (a) 197:365–369CrossRefGoogle Scholar
  31. 31.
    Mills A, Monaf L (1996) Thin plastic film colorimetric sensors for carbon dioxide: effect of plasticizer on response. Analyst 121:535–540CrossRefGoogle Scholar
  32. 32.
    Mills A, Chang Q, Mcmurray HM (1992) Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Anal Chem 64:1383–1389CrossRefGoogle Scholar
  33. 33.
    Mills A, Lepre A, Wild L (1997) Breath-by-breath measurement of carbon dioxide using a plastic film optical sensor. Sensor Actuat B 39:419–425CrossRefGoogle Scholar
  34. 34.
    Kawabata Y, Kamichika T, Imasaka T, Ishibashi N (1989) Fiber-optic sensor for carbon dioxide with a pH indicator dispersed in a poly(ethylene glycol) membrane. Anal Chim Acta 219:223–229CrossRefGoogle Scholar
  35. 35.
    Cooney CG, Towe BC, Eyster CR (2000) Optical pH, oxygen and carbon dioxide monitoring using a microdialysis approach. Sensor Actuat B 69:183–188CrossRefGoogle Scholar
  36. 36.
    Marazuela MD, Moleno-Bondi MC, Orellana G (1995) Enhanced performance of a fibre-optic luminescence CO2 sensor using carbonic anhydrase. Sensor Actuat B 29:126–131CrossRefGoogle Scholar
  37. 37.
    Zhujun Z, Seitz WR (1984) A carbon dioxide sensor based on fluorescence. Anal Chim Acta 160:305–309CrossRefGoogle Scholar
  38. 38.
    Wolfbeis OS, Weis LJ, Leiner MJP, Ziegler WE (1988) Fiber-optic fluorosensor for oxygen and carbon dioxide. Anal Chem 60:2028–2030CrossRefGoogle Scholar
  39. 39.
    Mills A, Chang Q (1993) Fluorescence plastic thin-film sensor for carbon dioxide. Analyst 118:839–843CrossRefGoogle Scholar
  40. 40.
    Nakamura N, Amao Y (2003) An optical sensor for CO2 using thymol blue and europium(III) complex composite film. Sensor Actuat B 92:98–101CrossRefGoogle Scholar
  41. 41.
    Nakamura N, Amao Y (2003) Optical CO2 sensor with the combination of colorimetric change of pH indicator and internal reference luminescent dye. Bull Chem Soc Jpn 76:1459–1462CrossRefGoogle Scholar
  42. 42.
    Amao Y, Nakamura N (2004) Optical CO2 sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference fluorescent porphyrin dye. Sensor Actuat B 100:347–351CrossRefGoogle Scholar
  43. 43.
    Hosoya A, Tamura S, Imanaka N (2013) Low-temperature-operative carbon monoxide gas sensor with novel CO oxidizing catalyst. Chem Lett 42:441–443CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Cui S, Chang J, Ocola LE, Chen J (2013) Highly sensitive room temperature carbon monoxide detection using SnO2 nanoparticle-decorated semiconducting single-walled carbon nanotubes. Nanotechnology 24:025503CrossRefGoogle Scholar
  45. 45.
    Cho NG, Woo HS, Lee JH, Kim ID (2011) Thin-walled NiO tubes functionalized with catalytic Pt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial template. Chem Commun 47:11300–11302CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Xu J, Xu P, Zhu Y, Yu W (2010) Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance. Nanotechnology 21:285501CrossRefGoogle Scholar
  47. 47.
    Zhang J, Liu X, Xu M, Guo X, Wu S, Zhang S, Wang S (2010) Pt clusters supported on WO3 for ethanol detection. Sensor Actuat B 147:185–190CrossRefGoogle Scholar
  48. 48.
    Lee YC, Huang H, Tan OK, Tse MS (2008) Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films. Sensor Actuat B 132:239–242CrossRefGoogle Scholar
  49. 49.
    Shimizu F, Yamazoe N, Seiyama T (1978) Detection of combustible gases with stabilized zirconia sensor. Chem Lett 7:299–300CrossRefGoogle Scholar
  50. 50.
    Okamoto H, Obayashi H, Kudo T (1980) Carbon monoxide gas sensor made of stabilized zirconia. Solid State Ion 1:319–326Google Scholar
  51. 51.
    Katsumoto M, Okamoto H, Kobayashi M (1985) Denki Kagaku 53:577–581Google Scholar
  52. 52.
    Li N, Tan TC, Zeng HC (1993) High-temperature carbon monoxide potentiometric sensor. J Electrochem Soc 140:1068–1073CrossRefGoogle Scholar
  53. 53.
    Zhang ZY, Narita H, Mizusaki J, Tagawa H (1995) Detection of carbon monoxide by using zirconia oxygen sensor. Solid State Ion 79:344–348CrossRefGoogle Scholar
  54. 54.
    Sorita R, Kawano T (1997) A highly selective CO sensor using LaMnO3 electrode-attached zirconia galvanic cell. Sensor Actuat B 40:29–32CrossRefGoogle Scholar
  55. 55.
    Miura N, Lu G, Yamazoe N (1997) Zirconia-based potentiometric sensor using a pair of oxide electrodes for selective detection of carbon monoxide. J Electrochem Soc 144:L198–L200CrossRefGoogle Scholar
  56. 56.
    Voge A, Baier G, Schüle V (1993) Non-Nernstian potentiometric zirconia sensors: screening of potential working electrode materials. Sensor Actuat B 15:147–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations