Abstract
The problem of stability of functional equations was originally raised by Ulam in 1940. During the last decades, several stability problems for various functional equations have been investigated by several authors. In this chapter, by defining a multi-Banach space, we introduce a multi-Banach module. Also, we define the notion of generalized module left higher derivations and approximate generalized module left higher derivations. Then, we discuss the superstability of an approximate generalized module left higher derivation on a multi-Banach module. In fact, we show that an approximate generalized module left higher derivation on a multi-Banach module is a generalized module left higher derivation. Finally, we get the similar result for a linear generalized module left higher derivation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aoki, T.: On the stability of the linear transformations in Banach spaces. J. Math. Soc. Jpn.2, 64–66 (1950)
Baak, C., Boo, D.-H., Rassias, Th.M.: Generalized additive mapping in Banach modules and isomorphisms between C* -algebras. J. Math. Anal. Appl.314(1), 150–161 (2006)
Bland, P.E.: Higher derivations on rings and modules. Int. J. Math. Math. Sci.15, 2373–2387 (2005)
Bourgin, D.G.: Classes of transformations and bordering transformations. Bull. Am. Math. Soc.57, 223–237 (1951)
Cao, H.-X., Lv, J.-R., Rassias, J.M.: Superstability for generalized module left derivations and generalized module derivations on a Banach module \((II)\). J. Inequal. Pure Appl. Math.10(2), Art. 8–5 (2009)
Czerwik, S.: Stability of Functional Equations of Ulam–Hyers–Rassias Type. Hadronic, Palm Harbor (2003)
Dales, H.G., Polyakov, M.E.: Multi-normed spaces and multi-Banach algebras. (preprint)
Hasse, H., Schmidt, F.K.: Noch eine Begrüdung der theorie der höheren differential quotienten in einem algebraischen funtionenkörper einer unbestimmeten. J. Reine Angew. Math.177, 215–237 (1937)
Hejazian, S., Shatery, T.L.: Automatic continuity of higher derivations on \(JB*\)-algebras. Bull. Iran. Math. Soc.33(1), 11–23 (2007)
Hejazian, S., Shatery, T.L.: Higher derivations on Banach algebras. J. Anal. Appl.6, 1–15 (2008)
Hejazian, S., Shateri, T.L.: [AQ1]A characterization of higher derivations, to appear in Italian. J. Pure Appl. Math. (2015)
Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U. S. A.27, 222–224 (1941)
Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
Jewell, N.P.: Continuity of module and higher derivations. Pac. J. Math.68, 91–98 (1977)
Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
Jung, S.-M., Popa, D., Rassias, M.Th: On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Optim. (to appear)
Kang, S.-Y., Chang, I.-S.: Approximation of generalized left derivations. J. Abst. Appl. Anal.2008, 1–8 (2008)
Lee, Y.-H., Jung, S.-M., Rassias, M.Th: On an n-dimensional mixed type additive and quadratic functional equation, Appl. Math. Comput. (to appear)
Park, C.-G.: Linear derivations on Banach algebras. Nonlinear Funct. Anal. Appl.9, 359–368 (2004)
Park, C.-G.: Lie *-homomorphisms between Lie C*-algebras and Lie *- derivations on Lie C*-algebras. J. Math. Anal. Appl.293, 419–434 (2004)
Park, C.-G., Rassias, Th.M.: Hyers-Ulam stability of a generalized Apollonius type quadratic mapping. J. Math. Anal. Appl.322(1), 371–381 (2006)
Rassias, Th.M.: On the stability of the linear mappings in Banach space. Proc. Am. Math. Soc.72, 297–300 (1978)
Rassias, Th.M.: Functional Equations, Inequalities and Applications. Kluwer, Dordrecht (2003)
Rassias, Th.M., Tabor, J.: Stability of Mappings of Hyers - Ulam Type. Hadronic Press, Florida (1994)
Shateri, T.L.: Superstability of generalized higher derivations. Abstr. Appl. Anal. (2011). doi:10.1155/2011/239849
Ulam, S.M.: A Collection of Mathematical Problems. Problems in Modern Mathematics. Wiley, New York (1964)
Uchino, Y., Satoh, T.: Function field modular forms and higher derivations. Math. Ann.311, 439–466 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Shateri, T., Afshari, Z. (2014). Superstability of Generalized Module Left Higher Derivations on a Multi-Banach Module. In: Rassias, T. (eds) Handbook of Functional Equations. Springer Optimization and Its Applications, vol 96. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1286-5_16
Download citation
DOI: https://doi.org/10.1007/978-1-4939-1286-5_16
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-1285-8
Online ISBN: 978-1-4939-1286-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)