Clinical Pearls: Non-dialytic Management of Kidney Complications in the Postoperative Period

Chapter

Abstract

Acute kidney injury (AKI) is a common complication in the postoperative period whose risk increases with the complexity and type of surgery and preoperative chronic kidney disease (CKD). As expected, renal dysfunction in a critically ill patient during the postoperative period is associated with a range of perturbations including volume regulation, electrolyte, and acid/base disorders. The majority of AKI patients do not require renal replacement therapy and need a stepwise approach in recognizing and managing these complications in the perioperative period. The following chapter discusses the key principles in maximizing renal perfusion during the postoperative period and managing complications of decreased renal function including volume manegement, electrolyte disorders, and acid/base derangements.

Keywords

Phosphorus Starch Magnesium Albumin Sodium Chloride 

References

  1. 1.
    Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.PubMedCrossRefGoogle Scholar
  2. 2.
    Jones AE. Lactate clearance for assessing response to resuscitation in severe sepsis. Acad Emerg Med. 2013;20(8):844–7. Epub Jul 23 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheatham ML, White MW, Sagraves SG, Johnson JL, Block EF. Abdominal perfusion pressure: a superior parameter in the assessment of intra-abdominal hypertension. J Trauma Oct. 2000;49(4):621–6; discussion 626–7.CrossRefGoogle Scholar
  5. 5.
    Monnet X, Julien F, Ait-Hamou N, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Wheeler AP, Bernard GR, Thompson BT, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354(21):2213–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Mohmand H, Goldfarb S. Renal dysfunction associated with intra-abdominal hypertension and the abdominal compartment syndrome. J Am Soc Nephrol. 2011;22(4):615–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Prowle JR, Chua HR, Bagshaw SM, Bellomo R. Clinical review: volume of fluid resuscitation and the incidence of acute kidney injury – a systematic review. Crit Care. 2012;16(4):230.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Simmons RS, Berdine GG, Seidenfeld JJ, et al. Fluid balance and the adult respiratory distress syndrome. Am Rev Respir Dis. 1987;135(4):924–9.PubMedGoogle Scholar
  12. 12.
    Sakr Y, Vincent JL, Reinhart K, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128(5):3098–108.PubMedCrossRefGoogle Scholar
  13. 13.
    Murphy CV, Schramm GE, Doherty JA, et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136(1):102–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Toraman F, Evrenkaya S, Yuce M, et al. Highly positive intraoperative fluid balance during cardiac surgery is associated with adverse outcome. Perfusion. 2004;19(2):85–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Brandstrup B, Tonnesen H, Beier-Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Bouchard J, Soroko SB, Chertow GM, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4): 422–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107(6):1309–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Bellomo R, Cass A, Cole L, et al. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial. Crit Care Med. 2012;40(6):1753–60.PubMedGoogle Scholar
  21. 21.
    Vaara ST, Korhonen AM, Kaukonen KM, et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16(5):R197.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Heung M, Wolfgram DF, Kommareddi M, Hu Y, Song PX, Ojo AO. Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol Dial Transplant. 2012;27(3):956–61.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.PubMedCrossRefGoogle Scholar
  24. 24.
    Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96.PubMedCrossRefGoogle Scholar
  28. 28.
    Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2011;39(2):386–91.PubMedCrossRefGoogle Scholar
  29. 29.
    Sort P, Navasa M, Arroyo V, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341(6):403–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Sauneuf B, Champigneulle B, Soummer A, et al. Increased survival of cirrhotic patients with septic shock. Crit Care. 2013;17(2):R78.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14(4):226.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to plasma-lyte. Ann Surg. 2012;255(5):821–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3): 726–35.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci (Lond). 2003;104(1):17–24.CrossRefGoogle Scholar
  36. 36.
    Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Wong JM. Propofol infusion syndrome. Am J Ther. 2010;17(5):487–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Zar T, Graeber C, Perazella MA. Recognition, treatment, and prevention of propylene glycol toxicity. Semin Dial. 2007;20(3):217–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med. 2006;119(7 Suppl 1):S30–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Funk GC, Lindner G, Druml W, et al. Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med. 2010;36(2):304–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Sakr Y, Rother S, Ferreira AM, et al. Fluctuations in serum sodium level are associated with an increased risk of death in surgical ICU patients. Crit Care Med. 2013;41(1):133–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Gennari FJ. Hypokalemia. N Engl J Med. 1998;339(7):451–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Harel Z, Harel S, Shah PS, Wald R, Perl J, Bell CM. Gastrointestinal adverse events with sodium polystyrene sulfonate (Kayexalate) use: a systematic review. Am J Med. 2013;126(3): 264.e9–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineEmory UniversityAtlantaUSA
  2. 2.Division of Nephrology, Department of MedicineEmory UniversityAtlantaUSA

Personalised recommendations