Skip to main content

Digital Mammography and Digital Breast Tomosynthesis

  • Chapter
  • First Online:
Breast Cancer Screening and Diagnosis
  • 3277 Accesses

Abstract

Although two-dimensional (2D) digital mammography (DM) is the gold standard in detection of breast cancer, its limitations are well known. One major component that hampers detection is the overlapping effect of fibroglandular tissue. In recent years, digital breast tomosynthesis (DBT) has emerged as a promising method for 3D visualization of the breast and is by many experts anticipated to replace or to be used together with regular mammography (DM). Clinical reader trials and screening trials have been reported with evidence of substantially improved clinical performance using DBT. Benefits have been seen in women of various ages and breast density types, but especially in dense breasts. Several imaging protocols have been evaluated: tomosynthesis as a stand-alone imaging modality performed in one or in two projection views and used as an adjunct to DM or synthetically reconstructed 2D images (obtained from the DBT data). Different tomosynthesis approaches have been developed: alternative system designs, acquisition angles, reconstruction methods, and image display settings. Results on tomosynthesis with complementary technologies, that is, optical procedures, nuclear medicine methods, X-ray contrast media, and others, have been encouraging and might further increase the performance of mammography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Detective quantum efficiency (DQE) describes how effectively an x-ray imaging system can produce an image with a high signal-to-noise ratio (SNR) relative to an ideal detector.

  2. 2.

    Contrast sensitivity refers to the ability of the visual system to distinguish between an object and its background.

  3. 3.

    Pan = to move an image arbitrarily in a magnified view setting.

  4. 4.

    Zoom in = magnification of an image to see more details.

  5. 5.

    Overall performance = when changes in both sensitivity and specificity are considered. An increase in sensitivity (increased detection of cancer) may be associated with a decrease in specificity and does not necessarily indicate that a medical imaging device offers improved depiction of cancer.

  6. 6.

    Detective quantum efficiency (DQE) describes how effectively an X-ray imaging system can produce an image with a high signal-to-noise ratio (SNR) relative to an ideal detector.

  7. 7.

    Random-access memory (RAM) is a type of computer data storage. Additional RAM offers increased computer speed, performance, and numbers of applications that can be run momentarily and ability to handle larger files.

References

  1. Sasieni PD, Shelton J, Ormiston-Smith N, Thomson CS, Silcocks PB. What is the lifetime risk of developing cancer?: the effect of adjusting for multiple primaries. Br J Cancer. 2011;105:460–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G. Breast cancer. Lancet. 2005;365:1727–41.

    PubMed  Google Scholar 

  3. Tavtigian SV, et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet. 1996;12:333–7.

    PubMed  CAS  Google Scholar 

  4. ICRP (International Commission on Radiological Protection) Publication 103. Recommendation of the International Commission on Radiological Protection. Ann ICRP.

    Google Scholar 

  5. Boyd NF, et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst. 1995;87:670–5.

    PubMed  CAS  Google Scholar 

  6. Lash TL, Aschengrau A. Alcohol drinking and risk of breast cancer. Breast J. 2000;6:396–9.

    PubMed  Google Scholar 

  7. Donville S, Brien R. Exercising to reduce breast cancer risk. Nurs Manag. 2000;36–7.

    Google Scholar 

  8. Leborgne R. Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas. Am J Roentgenol Radium Ther. 1951;65:1–11.

    PubMed  CAS  Google Scholar 

  9. Tabar L, et al. Reduction in mortality from breast cancer after mass screening with mammography. Randomised trial from the Breast Cancer Screening Working Group of the Swedish National Board of Health and Welfare. Lancet. 1985;1:829–32.

    PubMed  CAS  Google Scholar 

  10. Andersson I, et al. Mammographic screening and mortality from breast cancer: the Malmo mammographic screening trial. BMJ. 1988;297:943–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Frisell J, et al. Randomized study of mammography screening–preliminary report on mortality in the Stockholm trial. Breast Cancer Res Treat. 1991;18:49–56.

    PubMed  CAS  Google Scholar 

  12. Bjurstam N, et al. The Gothenburg breast cancer screening trial: preliminary results on breast cancer mortality for women aged 39-49. J Natl Cancer Inst Monogr. 1997;53–5.

    Google Scholar 

  13. Shapiro S, Strax P, Venet L. Periodic breast cancer screening in reducing mortality from breast cancer. JAMA. 1971;215:1777–85.

    PubMed  CAS  Google Scholar 

  14. Roberts MM, et al. Edinburgh trial of screening for breast cancer: mortality at seven years. Lancet. 1990;335:241–6.

    PubMed  CAS  Google Scholar 

  15. Miller AB, Baines CJ, To T, Wall C. Canadian National Breast Screening Study: 1. Breast cancer detection and death rates among women aged 40 to 49 years. CMAJ. 1992;147:1459–76.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Miller AB, Baines CJ, To T, Wall C. Canadian National Breast Screening Study: 2. Breast cancer detection and death rates among women aged 50 to 59 years. CMAJ. 1992;147:1477–88.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Pisano ED, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005;353:1773–83. doi:10.1056/NEJMoa052911.

    PubMed  CAS  Google Scholar 

  18. Holland R, Mravunac M, Hendriks JH, Bekker BV. So-called interval cancers of the breast. Pathologic and radiologic analysis of sixty-four cases. Cancer. 1982;49:2527–33.

    PubMed  CAS  Google Scholar 

  19. Skaane P. Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review. Acta Radiol. 2009;50:3–14.

    PubMed  CAS  Google Scholar 

  20. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002;225:165–75.

    PubMed  Google Scholar 

  21. Kalender WA, et al. High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations. Eur Radiol. 2012;22:1–8.

    PubMed  Google Scholar 

  22. Boone JM, et al. Computed tomography for imaging the breast. J Mammary Gland Biol Neoplasia. 2006;11:103–11.

    PubMed  Google Scholar 

  23. Lindfors KK, et al. Dedicated breast CT: initial clinical experience. Radiology. 2008;246:725–33.

    PubMed  PubMed Central  Google Scholar 

  24. FDA U.S. Food and Drug Administration. Medical devices. Selenia Dimensions 3D System (P080003).

    Google Scholar 

  25. Pisano ED, Yaffe MJ. Digital mammography. Radiology. 2005;234:353–62.

    PubMed  Google Scholar 

  26. Saunders Jr RS, Samei E. The effect of breast compression on mass conspicuity in digital mammography. Med Phys. 2008;35:4464–73.

    PubMed  Google Scholar 

  27. Miller D, Livingstone V, Herbison P. Interventions for relieving the pain and discomfort of screening mammography. Cochrane Database Syst Rev. 2008;(1):CD002942.

    Google Scholar 

  28. Poulos A, McLean D, Rickard M, Heard R. Breast compression in mammography: how much is enough? Australas Radiol. 2003;47:121–6.

    PubMed  Google Scholar 

  29. Venta LA, et al. Rates and causes of disagreement in interpretation of full-field digital mammography and film-screen mammography in a diagnostic setting. AJR Am J Roentgenol. 2001;176:1241–8.

    PubMed  CAS  Google Scholar 

  30. Pisano ED, et al. Interpretation of digital mammograms: comparison of speed and accuracy of soft-copy versus printed-film display. Radiology. 2002;223:483–8.

    PubMed  Google Scholar 

  31. Obenauer S, et al. Soft copy versus hard copy reading in digital mammography. J Digit Imaging. 2003;16:341–4.

    PubMed  PubMed Central  Google Scholar 

  32. Skaane P, et al. Breast lesion detection and classification: comparison of screen-film mammography and full-field digital mammography with soft-copy reading–observer performance study. Radiology. 2005;237:37–44.

    PubMed  Google Scholar 

  33. Pisano ED, et al. American College of Radiology Imaging Network digital mammographic imaging screening trial: objectives and methodology. Radiology. 2005;236:404–12.

    PubMed  Google Scholar 

  34. Bartella L, Perry N, Young KC, Lawinski CP, Evans D. Assessment of full field digital mammography (FFDM) detected microcalcification is not hindered by low spatial resolution. Breast Cancer Res. 2002;4 Suppl 1:21.

    PubMed Central  Google Scholar 

  35. Chan HP, et al. Digital mammography: observer performance study of the effects of pixel size on the characterization of malignant and benign microcalcifications. Acad Radiol. 2001;8:454–66.

    PubMed  CAS  Google Scholar 

  36. Fischer U, et al. Comparative study in patients with microcalcifications: full-field digital mammography vs screen-film mammography. Eur Radiol. 2002;12:2679–83.

    PubMed  CAS  Google Scholar 

  37. Obenauer S, et al. Screen film vs full-field digital mammography: image quality, detectability and characterization of lesions. Eur Radiol. 2002;12:1697–702.

    PubMed  CAS  Google Scholar 

  38. Kim HH, et al. Comparison of calcification specificity in digital mammography using soft-copy display versus screen-film mammography. AJR Am J Roentgenol. 2006;187:47–50.

    PubMed  Google Scholar 

  39. Suryanarayanan S, Karellas A, Vedantham S, Sechopoulos I, D'Orsi CJ. Detection of simulated microcalcifications in a phantom with digital mammography: effect of pixel size. Radiology. 2007;244:130–7.

    PubMed  PubMed Central  Google Scholar 

  40. Krug KB, et al. Image quality of digital direct flat-panel mammography versus an analog screen-film technique using a phantom model. AJR Am J Roentgenol. 2007;188:399–407.

    PubMed  Google Scholar 

  41. Skaane P. Screening of breast cancer. In: Kahán Z, Tot T, editors. Breast cancer, a heterogeneous disease entity the very early stages. Dordrecht/New York: Springer; 2011. p. 23–44.

    Google Scholar 

  42. Rowlands JA, Hunter DM, Araj N. X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography. Med Phys. 1991;18:421–31.

    PubMed  CAS  Google Scholar 

  43. Mahesh M. AAPM/RSNA physics tutorial for residents: digital mammography: an overview. Radiographics. 2004;24:1747–60.

    PubMed  Google Scholar 

  44. Vuylsteke P, Schoeters E, Mortsel B. Computerized tomography for industrial applications and image processing in radiology. In: DGZfP proceedings BB 67-CD. Berlin; 1999. p. 87–101 .

    Google Scholar 

  45. Ziedses des Plantes BG. Eine neue methode zur di erenzierung in der roentgenographie. Acta Radiol. 1932;13:182–92.

    Google Scholar 

  46. Goodsitt MM. Introduction: In: Reiser I, Glick S, editors. Tomosynthesis imaging. London: Taylor & Francis; 2014.

    Google Scholar 

  47. Garrison JB, Grant DG, Guier WH, Johns RJ. Three dimensional roentgenography. Am J Roentgenol Radium Ther Nucl Med. 1969;105:903–8.

    PubMed  CAS  Google Scholar 

  48. Grant DG. Tomosynthesis: a three-dimensional radiographic imaging technique. IEEE Trans Biomed Eng. 1972;19:20–8.

    PubMed  CAS  Google Scholar 

  49. Dobbins 3rd JT, Godfrey DJ. Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol. 2003;48:R65–106.

    PubMed  Google Scholar 

  50. Lewin JM, Niklason L. Advanced applications of digital mammography: tomosynthesis and contrast-enhanced digital mammography. Semin Roentgenol. 2007;42:243–52.

    PubMed  Google Scholar 

  51. Sechopoulos I. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications. Med Phys. 2013;40:014302.

    PubMed  PubMed Central  Google Scholar 

  52. Matos Monteiro J, Santos Ribeiro A, Lacerda L. Review on digital breast tomosynthesis patents. Recent Patents Biomed Eng. 2012;5:175–82.

    Google Scholar 

  53. Bissonette M, et al. Digital breast tomosynthesis using an amorphous selenium flat panel detector. Proc SPIE. 2005;5745:529–40.

    Google Scholar 

  54. Park JM, Franken Jr EA, Garg M, Fajardo LL, Niklason LT. Breast tomosynthesis: present considerations and future applications. Radiographics. 2007;27 Suppl 1:S231–40.

    PubMed  Google Scholar 

  55. Qian X, et al. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array. Med Phys. 2012;39:2090–9.

    PubMed  PubMed Central  Google Scholar 

  56. Dobbins 3rd JT. Tomosynthesis imaging: at a translational crossroads. Med Phys. 2009;36:1956–67.

    PubMed  PubMed Central  Google Scholar 

  57. Park JC, et al. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy. Technol Cancer Res Treat. 2011;10:295–306.

    PubMed  Google Scholar 

  58. Sidky EY. Introduction: In: Reiser I, Glick S, editors. Tomosynthesis imaging. London: Taylor & Francis; 2014.

    Google Scholar 

  59. Wu T, Moore RH, Rafferty EA, Kopans DB. A comparison of reconstruction algorithms for breast tomosynthesis. Med Phys. 2004;31:2636–47.

    PubMed  Google Scholar 

  60. Sidky EY, et al. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms. Med Phys. 2009;36:4920–32.

    PubMed  PubMed Central  Google Scholar 

  61. Zhang Y, et al. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis. Med Phys. 2006;33:3781–95.

    PubMed  PubMed Central  Google Scholar 

  62. Wu T, Moore RH, Kopans DB. Voting strategy for artifact reduction in digital breast tomosynthesis. Med Phys. 2006;33(7):2461–71.

    PubMed  Google Scholar 

  63. Diekmann F, et al. Thick slices from tomosynthesis data sets: phantom study for the evaluation of different algorithms. J Digit Imaging. 2009;22:519–26.

    PubMed  PubMed Central  Google Scholar 

  64. Gur D, et al. Dose reduction in digital breast tomosynthesis (DBT) screening using synthetically reconstructed projection images: an observer performance study. Acad Radiol. 2012;19:166–71.

    PubMed  PubMed Central  Google Scholar 

  65. Skaane P, et al. In: RSNA 2013, VSBR31-07 Breast Series: Emerging technologies in breast imaging. Radiological Society of North America, Chicago, IL.

    Google Scholar 

  66. Gilbert FJ, Tucker L, Nagarajan S, Willsher P, Astley S, Young KC, Duffy S. Comparison of FFDM with DBT in a UK retrospective reading study. Vienna: European Congress of Radiology; 2014.

    Google Scholar 

  67. Poplack SP, Tosteson TD, Kogel CA, Nagy HM. Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR Am J Roentgenol. 2007;189:616–23.

    PubMed  Google Scholar 

  68. Svahn T, et al. The diagnostic accuracy of dual-view digital mammography, single-view breast tomosynthesis and a dual-view combination of breast tomosynthesis and digital mammography in a free-response observer performance study. Radiat Prot Dosimetry. 2010;139:113–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Gennaro G, et al. Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur Radiol. 2010;20:1545–53.

    PubMed  Google Scholar 

  70. Michell M, et al. Two-view 2D digital mammography versus one-view digital breast tomosynthesis. Breast Cancer Res. 2010;12(Suppl 3).

    Google Scholar 

  71. Svane G, et al. Clinical experience of photon counting breast tomosynthesis: comparison with traditional mammography. Acta Radiol. 2011;52:134–42.

    PubMed  Google Scholar 

  72. Svahn TM, et al. Breast tomosynthesis and digital mammography: a comparison of diagnostic accuracy. Br J Radiol. 2012;85:e1074–82.

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Wallis MG, Moa E, Zanca F, Leifland K, Danielsson M. Two-view and single-view tomosynthesis versus full-field digital mammography: high-resolution X-ray imaging observer study. Radiology. 2012;262:788–96.

    PubMed  Google Scholar 

  74. Zanca F, et al. Diagnostic accuracy of digital mammography versus tomosynthesis: effect of radiologists' experience. In: Proceedings of SPIE 8318, Medical Imaging 2012: Image Perception, Observer Performance, and Technology Assessment, 83180W (23 Feb 2012). San Deigo, CA; 2012.

    Google Scholar 

  75. Waldherr C, et al. Value of one-view breast tomosynthesis versus two-view mammography in diagnostic workup of women with clinical signs and symptoms and in women recalled from screening. AJR Am J Roentgenol. 2013;200:226–31.

    PubMed  Google Scholar 

  76. Thibault F, et al. Digital breast tomosynthesis versus mammography and breast ultrasound: a multireader performance study. Eur Radiol. 2013;23(9):2441–9.

    PubMed  Google Scholar 

  77. Good WF, et al. Digital breast tomosynthesis: a pilot observer study. AJR Am J Roentgenol. 2008;190:865–9.

    PubMed  Google Scholar 

  78. Gur D, et al. Digital breast tomosynthesis: observer performance study. AJR Am J Roentgenol. 2009;193:586–91.

    PubMed  Google Scholar 

  79. Teertstra HJ, et al. Breast tomosynthesis in clinical practice: initial results. Eur Radiol. 2010;20:16–24.

    PubMed  Google Scholar 

  80. Smith AP, Rafferty EA, Niklason LT. Clinical performance of breast tomosynthesis as a function of radiologist experience level. Lect Notes Comput Sci. 2008;5116:61–6.

    Google Scholar 

  81. Michell MJ, et al. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis. Clin Radiol. 2012;67:976–81.

    PubMed  CAS  Google Scholar 

  82. Rafferty EA, et al. Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. Radiology. 2013;266:104–13.

    PubMed  Google Scholar 

  83. Gennaro G, et al. Performance comparison of single-view digital breast tomosynthesis plus single-view digital mammography with two-view digital mammography. Eur Radiol. 2013;23:664–72.

    PubMed  Google Scholar 

  84. Thompson JD, Manning DJ, Hogg P. The value of observer performance studies in dose optimization: a focus on free-response receiver operating characteristic methods. J Nucl Med Technol. 2013;41:57–64.

    PubMed  Google Scholar 

  85. Chakraborty DP. New developments in observer performance methodology in medical imaging. Semin Nucl Med. 2011;41:401–18.

    PubMed  PubMed Central  Google Scholar 

  86. Chakraborty DP, Berbaum KS. Observer studies involving detection and localization: modeling, analysis, and validation. Med Phys. 2004;31:2313–30.

    PubMed  Google Scholar 

  87. Svahn TM, Tingberg A. Observer experiments with tomosynthesis. In: Reiser I, Glick S, editors. Tomosynthesis imaging. Boca Raton: Taylor & Francis; 2014.

    Google Scholar 

  88. Smith-Bindman R, et al. Comparison of screening mammography in the United States and the United Kingdom. JAMA. 2003;290:2129–37.

    PubMed  CAS  Google Scholar 

  89. Houssami N, Skaane P. Overview of the evidence on digital breast tomosynthesis in breast cancer detection. Breast. 2013;22:101–8.

    PubMed  Google Scholar 

  90. Metz CE. Some practical issues of experimental design and data analysis in radiological ROC studies. Invest Radiol. 1989;24:234–45.

    PubMed  CAS  Google Scholar 

  91. Beam CA, Layde PM, Sullivan DC. Variability in the interpretation of screening mammograms by US radiologists. Findings from a national sample. Arch Intern Med. 1996;156:209–13.

    PubMed  CAS  Google Scholar 

  92. Feinstein AR. A bibliography of publications on observer variability. J Chronic Dis. 1985;38:619–32.

    PubMed  CAS  Google Scholar 

  93. Elmore JG, Feinstein AR. A bibliography of publications on observer variability (final installment). J Clin Epidemiol. 1992;45:567–80.

    PubMed  CAS  Google Scholar 

  94. The Breast Imaging-Reporting and Data System (BIRADS). Reston: American College of Radiology. Reston, VA; 1992.

    Google Scholar 

  95. Reiser I, et al. Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: a preliminary study. Med Phys. 2008;35:1486–93.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Chen Y, Lo JY, Dobbins 3rd JT. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications. Med Phys. 2007;34:3885–92.

    PubMed  Google Scholar 

  97. Wald NJ, et al. UKCCCR multicentre randomised controlled trial of one and two view mammography in breast cancer screening. BMJ. 1995;311:1189–93.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Rafferty E, Kopans D, Wu T, Moore R. Breast tomosynthesis: will a single view do? Chicago: Radiological society of North America; 2004. http://rsna2004.rsna.rsna.org/rsna2004/V2004/search/search.cvn?ACTION=SEARCH&starttab=4. Accessed 1 Aug 2009.

  99. Rafferty EA, Niklason L, Jameson-Meehan L. Breast tomosynthesis: one view or two? Presented at the Radiological Society of North America (RSNA), Session SSG01-04 Breast Imaging: digital tomosynthesis. Chicago, IL; 2006.

    Google Scholar 

  100. Rafferty EA, et al. Diagnostic accuracy and recall rates for digital mammography and digital mammography combined with one-view and two-view tomosynthesis: results of an enriched reader study. AJR Am J Roentgenol. 2014;202:273–81.

    PubMed  Google Scholar 

  101. Spangler ML, et al. Detection and classification of calcifications on digital breast tomosynthesis and 2D digital mammography: a comparison. AJR Am J Roentgenol. 2011;196:320–4.

    PubMed  Google Scholar 

  102. Kopans D, Gavenonis S, Halpern E, Moore R. Calcifications in the breast and digital breast tomosynthesis. Breast J. 2011;17:638–44.

    PubMed  Google Scholar 

  103. Andrejeva L, et al. Stage 1 breast cancer diagnosed by tomosynthesis in dense breasts. Appl Radiol. 2012;41(12):27–9.

    Google Scholar 

  104. Uematsu T. The emerging role of breast tomosynthesis. Breast Cancer. 2013;20:204–12.

    PubMed  Google Scholar 

  105. Skaane P, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267:47–56.

    PubMed  Google Scholar 

  106. Skaane P, et al. Prospective trial comparing full-field digital mammography (FFDM) versus combined FFDM and tomosynthesis in a population-based screening programme using independent double reading with arbitration. Eur Radiol. 2013;23(8):2061–71.

    PubMed  PubMed Central  Google Scholar 

  107. Philpotts L. Breastimaging: screening/emergingtechnologies (Initial experience with digital breast tomosynthesis in screening mammography). AJR Am J Roentgenol. 2012;198(Suppl).

    Google Scholar 

  108. Haas BM, et al. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology. 2013;269(3):694–700.

    PubMed  Google Scholar 

  109. Ciatto S, et al. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol. 2013;14:583–9.

    PubMed  Google Scholar 

  110. Rose SL, et al. Implementation of breast tomosynthesis in a routine screening practice: an observational study. AJR Am J Roentgenol. 2013;200:1401–8.

    PubMed  Google Scholar 

  111. Zackrisson S, Lång K, Timberg P, Andersson I. Performance of one-view breast tomosynthesis versus two-view mammography in breast cancer screening: first results from the Malmö breast tomosynthesis screening trial. In: European College of Radiology. Vienna; 2014.

    Google Scholar 

  112. Williams MB, Judy PG, Gunn S, Majewski S. Dual-modality breast tomosynthesis. Radiology. 2010;255:191–8.

    PubMed  PubMed Central  Google Scholar 

  113. Fang Q, et al. Combined optical and X-ray tomosynthesis breast imaging. Radiology. 2011;258:89–97.

    PubMed  PubMed Central  Google Scholar 

  114. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. -N Engl J Med. 1991;324:1–8.

    PubMed  CAS  Google Scholar 

  115. Schnall MD, et al. Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology. 2006;238:42–53.

    PubMed  Google Scholar 

  116. Carton AK, et al. Dual-energy contrast-enhanced digital breast tomosynthesis–a feasibility study. Br J Radiol. 2010;83:344–50.

    PubMed  PubMed Central  Google Scholar 

  117. Viala J, et al. Stereotactic vacuum-assisted biopsies on a digital breast 3D-tomosynthesis system. Breast J. 2013;19:4–9.

    PubMed  Google Scholar 

  118. Padilla F, et al. Breast mass characterization using 3-dimensional automated ultrasound as an adjunct to digital breast tomosynthesis: a pilot study. J Ultrasound Med. 2013;32:93–104.

    PubMed  PubMed Central  Google Scholar 

  119. Skaane P, Kshirsagar A, Stapleton S, Young K, Castellino RA. Effect of computer-aided detection on independent double reading of paired screen-film and full-field digital screening mammograms. AJR Am J Roentgenol. 2007;188:377–84.

    PubMed  Google Scholar 

  120. Gilbert FJ, et al. Single reading with computer-aided detection for screening mammography. N Engl J Med. 2008;359:1675–84.

    PubMed  CAS  Google Scholar 

  121. Singh S, Tourassi GD, Baker JA, Samei E, Lo JY. Automated breast mass detection in 3D reconstructed tomosynthesis volumes: a featureless approach. Med Phys. 2008;35:3626–36.

    PubMed  PubMed Central  Google Scholar 

  122. Mazurowski MA, Lo JY, Harrawood BP, Tourassi GD. Mutual information-based template matching scheme for detection of breast masses: from mammography to digital breast tomosynthesis. J Biomed Inform. 2011;44:815–23.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author is grateful for valuable comments and helpful insights from Prof. Sören Mattsson and Dr. Dev Chakraborty. The author also acknowledges the help from Dr. Federica Zanca and Dr. Christian Waldherr, who contributed with datasets, analyses, and other relevant information. The author was supported by the Franke and Margareta Bergqvist Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Martin Svahn PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Svahn, T.M. (2015). Digital Mammography and Digital Breast Tomosynthesis. In: Shetty, M. (eds) Breast Cancer Screening and Diagnosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1267-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1267-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1266-7

  • Online ISBN: 978-1-4939-1267-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics