Self-Control in Social Decision Making: A Neurobiological Perspective

  • Daria KnochEmail author
  • Kyle Nash


Self-control is defined as the process in which thoughts, emotions, or prepotent responses are inhibited to efficiently enact a more focal goal. Self-control not only allows for more adaptive individual decision making but also promotes adaptive social decision making. In this chapter, we examine a burgeoning area of interdisciplinary research: the neuroscience of self-control in social decision making. We examine research on self-control in complex social contexts examined from a social neuroscience perspective. We review correlational evidence from neuroimaging studies and causal evidence from neuromodulation studies (i.e., brain stimulation). We specifically highlight research that shows that self-control involves the lateral prefrontal cortex (PFC) across a number of social domains and behaviors. Research has also begun to directly integrate nonsocial with social forms of self-control, showing that the basic neurobiological processes involved in stopping a motor response appear to be involved in social contexts that require self-control. Further, neural traits, such as baseline activation in the lateral PFC, can explain sources of individual differences in self-control capacity. We explore whether techniques that change brain functioning could target neural mechanisms related to self-control capacity to potentially enhance self-control in social behavior. Finally, we discuss several research questions ripe for examination. We broadly suggest that future research can now turn to exploring how neural traits and situational affordances interact to impact self-control in social decision making in order to continue to elucidate the processes that allow people to maintain and realize stable goals in a dynamic and often uncertain social environment.


Decision making Neuroscience Self-control Prefrontal cortex 


  1. Aron, A. R., & Poldrack, R. A. (2005). The cognitive neuroscience of response inhibition: Relevance for genetic research in attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 1285–1292. doi:10.1016/j.biopsych.2004.10.026.PubMedCrossRefGoogle Scholar
  2. Ashton, M. C., & Lee, K. (2007). Empirical, theoretical, and practical advantages of the HEXACO model of personality structure. Personality and Social Psychology Review, 11, 150–166. doi:10.1177/1088868306294907.PubMedCrossRefGoogle Scholar
  3. Bargh, J. A., & Chartrand, T. L. (1999). The unbearable automaticity of being. American Psychologist, 54, 462–479. doi:10.1037/0003-066X.54.7.462.CrossRefGoogle Scholar
  4. Bargh, J. A., Gollwitzer, P. M., Lee-Chai, A., Barndollar, K., & Trötschel, R. (2001). The automated will: Nonconscious activation and pursuit of behavioral goals. Journal of Personality and Social Psychology, 81, 1014–1027. doi:10.1037//0022-3514.81.6.1014.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Baumgartner, T., Knoch, D., Hotz, P., Eisenegger, C., & Fehr, E. (2011). Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice. Nature Neuroscience, 14, 1468-1474. doi:10.1038/nn.2933.PubMedCrossRefGoogle Scholar
  6. Beck, R. C., & Triplett, M. F. (2009). Test-retest reliability of a group-administered paper-pencil measure of delay discounting. Experimental and Clinical Psychopharmacology, 17, 345–355. doi:10.1037/a0017078.PubMedCrossRefGoogle Scholar
  7. Benenson, J. F., Pascoe, J., & Radmore, N. (2007). Children’s altruistic behavior in the dictator game. Evolution and Human Behavior, 28, 168–175. doi:10.1016/j.evolhumbehav.2006.10.003.CrossRefGoogle Scholar
  8. Berkman, E. T., Burklund, L., & Lieberman, M. D. (2009). Inhibitory spillover: Intentional motor inhibition produces incidental limbic inhibition via right inferior frontal cortex. NeuroImage, 47, 705. doi:10.1016/j.neuroimage.2009.04.084.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Berkman, E. T., Falk, E. B., & Lieberman, M. D. (2011). In the trenches of real-world self-control: Neural correlates of breaking the link between craving and smoking. Psychological Science, 22, 498–506. doi:10.1177/0956797611400918.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Boettiger, C. A., Mitchell, J. M., Tavares, V. C., Robertson, M., Joslyn, G., D’esposito, M., & Fields, H. L. (2007). Immediate reward bias in humans: Fronto-parietal networks and a role for the catechol-O-methyltransferase 158(Val/Val) genotype. Journal of Neuroscience, 27, 14383–14391. doi:10.1523/JNEUROSCI.2551- UROSCI.2.PubMedCrossRefGoogle Scholar
  11. Boyd, R., Gintis, H., Bowles, S., & Richerson, P. J. (2003). The evolution of altruistic punishment. Proceedings of the National Academy of Sciences United States of America, 100, 3531–3535. doi:10.1073/pnas.0630443100.CrossRefGoogle Scholar
  12. Brass, M., & Haggard, P. (2007). To do or not to do: The neural signature of self-control. Journal of Neuroscience, 27, 9141–9145. doi:10.1523/JNEUROSCI.0924- 07.2007.PubMedCrossRefGoogle Scholar
  13. Casey, B. J., Somerville, L. H., Gotlib, I. H., Ayduk, O., Franklin, N. T., Askren, M. K., Jonides, J., et al. (2011). Behavioral and neural correlates of delay of gratification 40 years later. Proceedings of the National Academy of Sciences United States of America, 108, 14988–15003. doi:10.1073/pnas.1108561108.CrossRefGoogle Scholar
  14. Chib, V. S., Rangel, A., Shimojo, S., & O’Doherty, J. P. (2009). Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. Journal of Neuroscience, 29,12315–12320. doi:10.1523/JNEUROSCI.2575- 09.2009.PubMedCrossRefGoogle Scholar
  15. Clark, L., Manes, F., Antoun, N., Sahakian, B. J., & Robbins, T. W. (2003). The contributions of lesion laterality and lesion volume to decision-making impairment following frontal lobe damage. Neuropsychologia, 41, 1474–1483. doi:10.1016/S0028-3932(03)00081- 2.PubMedCrossRefGoogle Scholar
  16. Cohen, J. R., & Lieberman, M. D. (2010). The common neural basis of exerting self-control in multiple domains. In R. R. Hassin, K. N. Ochsner, & Y. Trope (Eds.), Self control in society, mind, and brain. Oxford series in social cognition and social neuroscience (pp. 141–160). New York: Oxford University Press. doi:10.1093/acprof:oso/9780195391381003.0008.CrossRefGoogle Scholar
  17. Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 351, 1413–1420. doi:10.1098/rstb.1996.0125.CrossRefGoogle Scholar
  18. Declerck, C. H., Boone, C., & Emonds, G. (2013). When do people cooperate? The neuroeconomics of prosocial decision making. Brain and Cognition, 81, 95–117. doi:10.1016/j.bandc.2012.09.009.PubMedCrossRefGoogle Scholar
  19. Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12, 45–75. doi:10.1016/0273-2297(92)90003-K.CrossRefGoogle Scholar
  20. Dunki, R. M., Schmid, G. B., & Stassen, H. H. (2000). Intraindividual specificity and stability of human EEG: Comparing a linear vs a nonlinear approach. Methods of Information in Medicine-Methodik der Information in der Medizin, 39(1), 78.Google Scholar
  21. Fallgatter, A. J., & Strik, W. K. (1999). The NoGo-anteriorization as a neurophysiological standard-index for cognitive response control. International Journal of Psychophysiology, 32, 233–238. doi:10.1016/S0167-8760(99)00018- 5.PubMedCrossRefGoogle Scholar
  22. Fallgatter, A. J., Bartsch, A. J., & Herrmann, M. J. (2002). Electrophysiological measurements of anterior cingulate function. Journal of Neural Transmission, 109, 977–988. doi:10.1007/s007020200080.PubMedCrossRefGoogle Scholar
  23. Fehr, E., & Gächter, S. (2002). Altruistic punishment in humans. Nature, 415, 137–140. doi:10.1038/415137a.PubMedCrossRefGoogle Scholar
  24. Fehr, E., Bernhard, H., & Rockenbach, B. (2008). Egalitarianism in young children. Nature, 454, 1079–1083. doi:10.1038/nature07155.PubMedCrossRefGoogle Scholar
  25. Friedman, T. L. (2006). The world is flat: A brief history of the twenty-first century updated and expanded. New York: Farrar, Straus and Giroux.Google Scholar
  26. Frith, C. D., & Singer, T. (2008). The role of social cognition in decision making. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 3875–3886. doi:10.1098/rstb.2008.0156.CrossRefGoogle Scholar
  27. Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134, 31–60. doi:10.1037/0033-2909.134.1.31.PubMedCrossRefGoogle Scholar
  28. Ghaziri, J., Tucholka, A., Larue, V., Blanchette-Sylvestre, M., Reyburn, G., Gilbert, G., et al. (2013). Neurofeedback training induces changes in white and gray matter. Clinical EEG and Neuroscience. Advance online publication. doi:10.1177/1550059413476031.Google Scholar
  29. Gianotti, L. R., Figner, B., Ebstein, R. P., & Knoch, D. (2012). Why some people discount more than others: Baseline activation in the dorsal PFC mediates the link between COMT genotype and impatient choice. Frontiers in Neuroscience, 6, 1–12. doi:10.3389/fnins.2012.00054.CrossRefGoogle Scholar
  30. Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636–645. doi:10.1176/appi.ajp. 160.4.636.PubMedCrossRefGoogle Scholar
  31. Green, A. E., Munafò, M. R., DeYoung, C. G., Fossella, J. A., Fan, J., & Gray, J. R. (2008). Using genetic data in cognitive neuroscience: From growing pains to genuine insights. Nature Reviews Neuroscience, 9, 710–720. doi:10.1038/nrn2461.PubMedCrossRefGoogle Scholar
  32. Heatherton, T. F. (2011). Neuroscience of self and self-regulation. Annual Review of Psychology, 62, 363–390. doi:10.1146/annurev.psych.121208.131616.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Heatherton, T. F., & Wagner, D. D. (2011). Cognitive neuroscience of self-regulation failure. Trends in Cognitive Sciences, 15, 132–139. doi:10.1016/j.tics.2010.12.005.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Houben, K., & Jansen, A. (2011). Training inhibitory control: Recipe for resisting sweet temptations. Appetite, 56, 345–349. doi:10.1016/j.appet.2010.12.017.PubMedCrossRefGoogle Scholar
  35. Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12, 231–242. doi:10.1038/nrn3000.PubMedCrossRefGoogle Scholar
  36. Karayanidis, F., Robaey, P., Bourassa, M., De Koning, D., Geoffroy, G., & Pelletier, G. (2000). ERP differences in visual attention processing between attention-deficit hyperactivity disorder and control boys in the absence of performance differences. Psychophysiology, 37, 319–333. doi:10.1111/1469-8986.3730319.PubMedCrossRefGoogle Scholar
  37. Kemner, C., Verbaten, M. N., Koelega, H. S., Buitelaar, J. K., van der Gaag, R. J., Camfferman, G., & van Engeland, H. (1996). Event-related brain potentials in children with attention-deficit and hyperactivity disorder: Effects of stimulus deviancy and task relevance in the visual and auditory modality. Biological Psychiatry, 40, 522–534. doi:10.1016/0006-3223(95)00429- 7.PubMedCrossRefGoogle Scholar
  38. Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324. doi:10.1016/j.tics.2010.05.002.PubMedCrossRefGoogle Scholar
  39. Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., & Fehr, E. (2006). Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science, 314, 829–832. doi:10.1126/science.1129156.PubMedCrossRefGoogle Scholar
  40. Knoch, D., Nitsche, M. A., Fischbacher, U., Eisenegger, C., Pascual-Leone, A., & Fehr, E. (2008). Studying the neurobiology of social interaction with transcranial direct current stimulation-the example of punishing unfairness. Cerebral Cortex, 18, 1987–1990. doi:10.1093/cercor/bhm237.PubMedCrossRefGoogle Scholar
  41. Knoch, D., Schneider, F., Schunk, D., Hohmann, M., & Fehr, E. (2009). Disrupting the prefrontal cortex diminishes the human ability to build a good reputation. Proceedings of the National Academy of Sciences United States of America, 106, 20895–20899. doi:10.1073/pnas.0911619106.Google Scholar
  42. Knoch, D., Gianotti, L. R. R., Baumgartner, T., & Fehr, E. (2010). A neural marker of costly punishment behavior. Psychological Science, 21, 337–342. doi:10.1177/0956797609360750.PubMedCrossRefGoogle Scholar
  43. Kuhn, S., Haggard, P., & Brass, M. (2009). Intentional inhibition: How the “veto-area” exerts control. Human Brain Mapping, 30, 2834–2843. doi:10.1002/hbm.20711.PubMedCrossRefGoogle Scholar
  44. Kuhnen, C. M., & Chiao, J. Y. (2009). Genetic determinants of financial risk taking. PLoS One, 4, e4362. doi:10.1371/journal.pone.0004362..PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kurzban, R., & Leary, M. R. (2001). Evolutionary origins of stigmatization: The functions of social exclusion. Psychological Bulletin, 127, 187–208. doi:10.1037//0033-2909.127.2.187.PubMedCrossRefGoogle Scholar
  46. Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway, M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. NeuroReport, 16, 1893–1897. doi:10.1097/01.wnr.0000186598.66243.19.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Lewin, K. (1946). Behavior as a function of total situation. In D. Cartwright (Ed.), Field theory in social science: Selected theoretical papers (pp. 238–304). New York: Harper & Row. doi:10.1037/10756-016.Google Scholar
  48. Lopez, R. B., Vohs, K., Wagner, D. D., & Heatherton, T. F. (2014). Self-regulatory strength: Neural mechanisms and implications for training. In G.H.E. Gendolla, S. Koole, & M. Tops (Eds.), Handbook of Biobehavioral Foundations of Self-Regulation. New York: Springer.Google Scholar
  49. Meyer-Lindenberg, A., & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience, 7, 818–827. doi:10.1038/nrn1993.PubMedCrossRefGoogle Scholar
  50. Mischel, W., Ayduk, O., Berman, M. G., Casey, B. J., Gotlib, I. H., Jonides, J., et al. (2011). ‘Willpower’ over the life span: Decomposing self-regulation. Social Cognitive and Affective Neuroscience, 6, 252–256. doi:10.1093/scan/nsq081.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Muraven, M., & Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychological Bulletin, 126, 247–259. doi:10.1037//0033-2909.126.2.247.PubMedCrossRefGoogle Scholar
  52. Näpflin, M., Wildi, M., & Sarnthein, J. (2007). Test-retest reliability of resting EEG spectra validates a statistical signature of persons. Clinical Neurophysiology, 118, 2519–2524. doi:10.1016/j.clinph.2007.07.022.PubMedCrossRefGoogle Scholar
  53. Nash, K., & Knoch, D. (in press). Individual differences in decision-making: A neural trait approach to study sources of behavioral heterogeneity. In M. Reuter & C. Montag (Eds.), Neuroeconomics. Berlin: Springer. Manuscript submitted for publication.Google Scholar
  54. Nash, K., Schiller, B., Gianotti, L. R. R., Baumgartner, T., & Knoch, D. (2013). Integrating executive function and social decision-making: Response inhibition predicts self-control in a social context. PLoS One. Manuscript submitted for publication.Google Scholar
  55. Paloyelis, Y., Asherson, P., Mehta, M. A., Faraone, S. V., & Kuntsi, J. (2010). DAT1 and COMT effects on delay discounting and trait impulsivity in male adolescents with attention deficit/hyperactivity disorder and healthy controls. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35, 2414–2426. doi:10.1038/npp. 2010.124.CrossRefGoogle Scholar
  56. Reimers, S., Maylor, E. A., Stewart, N., & Chater, N. (2009). Associations between a one-shot delay discounting measure and age, income, education and real-world impulsive behavior. Personality and Individual Differences, 47, 973–978. doi:10.1016/j.paid.2009.07.026.CrossRefGoogle Scholar
  57. Rigdon, M., Ishii, K., Watabe, M., & Kitayama, S. (2009). Minimal social cues in the dictator game. Journal of Economic Psychology, 30, 358–367. doi:10.1016/j.joep. 2009.02.002.CrossRefGoogle Scholar
  58. Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of social decision-making. Annual Review of Psychology, 62, 23–48. doi:10.1146/annurev.psych.121208.131647.PubMedCrossRefGoogle Scholar
  59. Rilling, J. K., Glenn, A. L., Jairam, M. R., Pagnoni, G., Goldsmith, D. R., Elfenbein, H. A., & Lilienfeld, S. O. (2007). Neural correlates of social cooperation and non-cooperation as a function of psychopathy. Biological Psychiatry, 61, 1260–1271. doi:10.1016/j.biopsych.2006.07.021.PubMedCrossRefGoogle Scholar
  60. Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16, 81–91. doi:10.1016/j.tics.2011.11.009.PubMedCrossRefGoogle Scholar
  61. Robertson, E. M., Theoret, H., & Pascual-Leone, A. (2003). Studies in cognition: The problems solved and created by transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 15, 948–960. doi:10.1162/089892903770007344.PubMedCrossRefGoogle Scholar
  62. Rorden, C., & Karnath, H. O. (2004). Using human brain lesions to infer function: A relic from a past era in the fMRI age? Nature Reviews Neuroscience, 5, 812–819. doi:10.1038/nrn1521.CrossRefGoogle Scholar
  63. Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science, 300, 1755–1758. doi:10.1126/science.1082976.PubMedCrossRefGoogle Scholar
  64. Shallice, T. I. M., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain: A Journal of Neurology, 114, 727–741. doi:10.1093/brain/114.2.727.CrossRefGoogle Scholar
  65. Sharp, D. J., Scott, S. K., Mehta, M. A., & Wise, R. J. (2006). The neural correlates of declining performance with age: Evidence for age-related changes in cognitive control. Cerebral Cortex, 16, 1739–1749. doi:10.1093/cercor/bhj109.PubMedCrossRefGoogle Scholar
  66. Spitzer, M., Fischbacher, U., Herrnberger, B., Grön, G., & Fehr, E. (2007). The neural signature of social norm compliance. Neuron, 56, 185–196. doi:10.1016/j.neuron.2007.09.011.PubMedCrossRefGoogle Scholar
  67. Steinbeis, N., Bernhardt, B. C., & Singer, T. (2012). Impulse control and underlying functions of the left dorsolateral PFC mediate age-related and age-independent individual differences in strategic social behavior. Neuron, 73, 1040–1051. doi:10.1016/j.neuron.2011.12.027.PubMedCrossRefGoogle Scholar
  68. Steinberg, L. (2009). Adolescent development and juvenile justice. Annual Review of Clinical Psychology, 5, 459–485. doi:10.1146/annurev.clinpsy.032408.153603.PubMedCrossRefGoogle Scholar
  69. Stuss, D. T., & Benson, D. F. (1986). The frontal lobes. New York: Raven.Google Scholar
  70. Suzuki, S., Niki, K., Fujisaki, S., & Akiyama, E. (2011). Neural basis of conditional cooperation. Social Cognitive and Affective Neuroscience, 6, 338–347. doi:10.1093/scan/nsq042.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Tabibnia, G., Satpute, A. B., & Lieberman, M. D. (2008). The sunny side of fairness preference for fairness activates reward circuitry (and disregarding unfairness activates self-control circuitry). Psychological Science, 19, 339–347. doi:10.1111/j.1467-9280.2008.02091.x.PubMedCrossRefGoogle Scholar
  72. Tabibnia, G., Monterosso, J. R., Baicy, K., Aron, A. R., Poldrack, R. A., Chakrapani, S., et al. (2011). Different forms of self-control share a neurocognitive substrate. Journal of Neuroscience, 31, 4805–4810. doi:10.1523/JNEUROSCI.2859 − 10.2011.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., & Kawashima, R. (2010). Training of working memory impacts structural connectivity. Journal of Neuroscience, 30, 3297–3303. doi:10.1523/JNEUROSCI.4611- 09.2010.PubMedCrossRefGoogle Scholar
  74. Tassy, S., Oullier, O., Duclos, Y., Coulon, O., Mancini, J., Deruelle, C., & Wicker, B. (2012). Disrupting the right prefrontal cortex alters moral judgement. Social Cognitive and Affective Neuroscience, 7, 282–288. doi:10.1093/scan/nsr008.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Thaler, R. H., & Shefrin, H. M. (1981). An economic theory of self-control. Journal of Political Economy, 89, 392–406. doi:10.1086/260971.CrossRefGoogle Scholar
  76. Tranel, D., Bechara, A., & Denburg, N. L. (2002). Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 38, 589–612. doi:10.1016/S0010-9452(08)70024-8.PubMedCrossRefGoogle Scholar
  77. van ’t Wout, M., Kahn, R. S., Sanfey, A. G., & Aleman, A. (2005). Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making. NeuroReport, 16, 1849–1852. doi:10.1097/01.wnr.0000183907.08149.14.PubMedCrossRefGoogle Scholar
  78. van den Bos, W., van Dijk, E., Westenberg, M., Rombouts, S. A., & Crone, E. A. (2011). Changing brains, changing perspectives: The neurocognitive development of reciprocity. Psychological Science, 22, 60–70. doi:10.1177/0956797610391102.PubMedCrossRefGoogle Scholar
  79. Van Lange, P. A., De Bruin, E., Otten, W., & Joireman, J. A. (1997). Development of prosocial, individualistic, and competitive orientations: Theory and preliminary evidence. Journal of Personality and Social Psychology, 73, 733–746. doi:10.1037/0022-3514.73.4.733.PubMedCrossRefGoogle Scholar
  80. Vohs, K. D., Mead, N. L., & Goode, M. R. (2006). The psychological consequences of money. Science, 314, 1154–1156. doi:10.1126/science.1132491.PubMedCrossRefGoogle Scholar
  81. von Hippel, W. (2007). Aging, executive functioning, and social control. Current Directions in Psychological Science, 16, 240–244. doi:10.1111/j.1467-8721.2007.00512.x.CrossRefGoogle Scholar
  82. Zaki, J., & Mitchell, J. (2013). Intuitive prosociality. Current Directions in Psychological Science, 22, 466–470. doi: 10.1177/0963721413492764.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Psychology, Division of Social Psychology and Social NeuroscienceUniversity of BernBernSwitzerland

Personalised recommendations