Motus Moderari: A Neuroscience-Informed Model for Self-Regulation of Emotion and Motivation

  • Jordan L. Livingston
  • Lauren E. Kahn
  • Elliot T. BerkmanEmail author


This chapter takes a fresh look at emotion regulation and its associated neural systems by adopting a functionalist perspective on emotion and motivation. The common Latin root for both words is motus: to move. Considering emotion and motivation together because of their shared role in impelling behavior allows us to expand our theoretical perspective on “emotion regulation” to include attempts to control or modify motivational states (e.g., craving) as well as emotional ones. Researchers working in affective and clinical science have begun to establish the neural systems associated with the regulation of emotional and motivational states, respectively, but these literatures have remained largely unconnected. Here, we review human studies on emotion/motivation regulation that use neuroimaging, particularly functional magnetic resonance imaging (fMRI), and highlight distinct and overlapping patterns during the regulation of emotion versus motivation. These two literatures reveal a broad pattern of prefrontal cortical regulation of subcortical systems but with some critical variations depending on the specific target of the regulation (e.g., positive vs. negative emotions), task type (e.g., implicit vs. explicit), and the degree of agency implied (e.g., whether or not escape is an option). We conclude by introducing an integrated framework for understanding the similarities and differences between different forms of emotion or motivation regulation. The goals of this framework are to accommodate existing results and meaningful differences between them and to provide a clear roadmap for future work to address gaps in the literature on emotion/motivation regulation.


Emotion regulation Craving regulation Motivation Self-regulation fMRI 


  1. Aron, A. R. (2008). Progress in executive-function resea- rch. Current Directions in Psychological Science, 17(2), 124–129. doi:10.1111/j.1467-8721.2008. 00561.x. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trend in Cognitive Sciences, 8(4), 170–177.CrossRefGoogle Scholar
  2. Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303–312. doi:10.1093/scan/nsm029.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baumeister, R. F. (1986). Identity: Cultural change and struggle for self. New York: Oxford University Press.Google Scholar
  4. Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497. doi:10.1037/0033-2909.117.3.497.PubMedCrossRefGoogle Scholar
  5. Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is stronger than good. Review of General Psychology, 5(4), 323–370. doi:10.1037/1089-2680.5.4.323.CrossRefGoogle Scholar
  6. Baumeister, R. F., Vohs, K. D., Nathan DeWall, C., & Zhang, L. (2007). How emotion shapes behavior: Feedback, anticipation, and reflection, rather than direct causation. Personality and Social Psychology Review, 11(2), 167–203. doi:10.1177/1088868307301033.PubMedCrossRefGoogle Scholar
  7. Beauregard, M., Levesque, J., & Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. The Journal of Neuroscience, 21(18), RC165. doi:2001-11499-001.PubMedGoogle Scholar
  8. Berkman, E. T., & Lieberman, M. D. (2010). Approaching the bad and avoiding the good: Lateral prefrontal cortical asymmetry distinguishes between action and valence. Journal of Cognitive Neuroscience, 22(9), 1970–1979. doi:10.1162/jocn.2009.21317f.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berkman, E. T., Cunningham, W. A., & Lieberman, M. D. (2014). Research methods in social and affective neuroscience. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in personality and social psychology (2nd ed., pp. 1–96). New York: Cambridge University Press.Google Scholar
  10. Bilder, R. M., Sabb, F. W., Parker, D. S., Kalar, D., Chu, W. W., Fox, J., et al. (2009). Cognitive ontologies for neuropsychiatric phenomics research. Cognitive Neuropsychiatry, 14(4–5), 419–450. doi:10.1080/13546800902787180.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539–546. doi:10.1016/j.tics.2004.10.003.PubMedCrossRefGoogle Scholar
  12. Brody, A. L., Mandelkern, M. A., Olmstead, R. E., Jou, J., Tiongson, E., Allen, V., et al. (2007). Neural substrates of resisting craving during cigarette cue exposure. Biological Psychiatry, 62(6), 642–651. doi:10.1016/j.biopsych.2006.10.026.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buhle, J., Silvers, J., Wager, T., Lopez, R., Kober, H., Weber, J., et al. (2013). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex. doi:10.1093/cercor/bht154Google Scholar
  14. Carver, C., & Scheier, M. (1980). On the self-regulation of behavior. New York: Cambridge University Press.Google Scholar
  15. Chib, V. S., Rangel, A., Shimojo, S., & O’Doherty, J. P. (2009). Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. The Journal of Neuroscience, 29(39), 12315–12320. doi:10.1523/jneurosci.2575-urosci.PubMedCrossRefGoogle Scholar
  16. Coan, J. A., & Allen, J. J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67(1–2), 7–49. doi:10.1016/j.biopsycho.2004.03.002.PubMedCrossRefGoogle Scholar
  17. Coccaro, E. F., Sripada, C. S., Yanowitch, R. N., & Phan, K. L. (2011). Corticolimbic function in impulsive aggressive behavior. Biological Psychiatry, 69(12), 1153–1159. doi:10.1016/j.biopsych.2011.02.032.PubMedCrossRefGoogle Scholar
  18. Cohen, J. R., Berkman, E. T., & Lieberman, M. D. (2013). Intentional and incidental self-control in ventrolateral PFC. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 417–440). New York: Oxford University Press.CrossRefGoogle Scholar
  19. Cosmides, L., & Tooby, J. (2000). Evolutionary psychology and the emotions. In M. Lewis & J. M. Haviland-Jones (Eds.), Handbook of emotions (2nd ed., pp. 91–115). New York: Guilford.Google Scholar
  20. Cunningham, W. A. (2010). In defense of brain mapping in social and affective neuroscience. Social Cognition, 28(6), 717–722. doi:10.1521/soco.2010.28.6.717.CrossRefGoogle Scholar
  21. Davis, T., & Poldrack, R. A. (2013). Measuring neural representations with fMRI: Practices and pitfalls. Annals of the New York Academy of Sciences, 1296, 108–134. doi:10.1111/nyas.12156.PubMedCrossRefGoogle Scholar
  22. Delgado, M. R., Gillis, M. M., & Phelps, E. A. (2008a). Regulating the expectation of reward via cognitive strategies. Nature Neuroscience, 11(8), 880–881. doi:10.1038/nn.2141.CrossRefGoogle Scholar
  23. Delgado, M. R., Nearing, K. I., LeDoux, J. E., & Phelps, E. A. (2008b). Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron, 59(5), 829–838. doi:10.1016/j.neuron.2008.06.029.CrossRefGoogle Scholar
  24. Denny, B. T., Ochsner, K. N., Weber, J., & Wager, T. D. (2014). Anticipatory brain activity predicts the success or failure of subsequent emotion regulation. Social Cognitive and Affective Neuroscience. doi:10.1093/scan/nss148Google Scholar
  25. Diekhof, E. K., Geier, K., Falkai, P., & Gruber, O. (2011). Fear is only as deep as the mind allows. NeuroImage, 58(1), 275–285. doi:10.1016/j.neuroimage.2011.05.073.PubMedCrossRefGoogle Scholar
  26. Diener, E. (2010). Neuroimaging: Voodoo, new phrenology, or scientific breakthrough? Introduction to special section on fMRI. Perspectives on Psychological Science, 5(6), 714–715. doi:10.1177/1745691610388773.CrossRefGoogle Scholar
  27. Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93. doi:10.1016/j.tics.2010.11.004.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fredrickson, B. (1998). What good are positive emotions? Review of General Psychology, 2(3), 300–319. doi:10.1037/1089-2680.2.3.300.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Frijda, N. H. (1986). The emotions. Cambridge: Cambridge University Press.Google Scholar
  30. Giuliani, N. R., McRae, K., & Gross, J. J. (2008). The up- and down-regulation of amusement: Experiential, behavioral, and autonomic consequences. Emotion, 8(5), 714–719. doi:10.1037/a0013236.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Giuliani, N., Mann, T., Tomiyama, A. J., & Berkman, E. T. (2014). Neural systems underlying the reappraisal of personally-craved foods. Journal of Cognitive Neuroscience.Google Scholar
  32. Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–586. doi:10.1016/j.biopsych.2007.05.031.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, R., & Salazar, M. (1996). Frontal lobe injuries, violence, and aggression: A report of the Vietnam head injury study. Neurology, 46(5), 1231. doi:10.1212/WNL.46.5.1231.PubMedCrossRefGoogle Scholar
  34. Grecucci, A., Giorgetta, C., van’t Wout, M., Bonini, N., & Sanfey, A. G. (2013). Reappraising the ultimatum: An fMRI Study of emotion regulation and decision making. Cerebral Cortex, 23(2), 399–410. doi:10.1093/cercor/bhs028.PubMedCrossRefGoogle Scholar
  35. Gray, J. A. (1970). The psychophysiological basis of introversion-extraversion. Behavior Research and Therapy, 8(3), 249–266. Google Scholar
  36. Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2(3), 271–299. doi:10.1037/1089-2680.2.3.271.CrossRefGoogle Scholar
  37. Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39(3), 281–291. doi:10.1017.S0048577201393198.PubMedCrossRefGoogle Scholar
  38. Gross, J. J., & Thompson, R. A. (2009). Emotion regulation: Conceptual foundations. In J. J. Gross (Ed.), Handbook of emotion regulation (pp. 3–24). New York: Guilford.Google Scholar
  39. Gruber, J., Eidelman, P., & Harvey, A. G. (2008). Transdiagnostic emotion regulation processes in bipolar disorder and insomnia. Behaviour Research and Therapy, 46(9), 1096–1100. doi:10.1016/j.brat.2008.05.004.PubMedCrossRefGoogle Scholar
  40. Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646–648. doi:10.1126/science.1168450.PubMedCrossRefGoogle Scholar
  41. Hare, T. A., Schultz, W., Camerer, C. F., O’Doherty, J. P., & Rangel, A. (2011). Transformation of stimulus value signals into motor commands during simple choice. Proceedings of the National Academy of Sciences of the United States of America, 108(44), 18120–18125. doi:10.1073/pnas.1109322108.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hartley, C. A., & Phelps, E. A. (2009). Changing fear: The neurocircuitry of emotion regulation. Neuropsychopharmacology, 35(1), 136–146. doi:10.1038/npp. 2009.121.PubMedCentralCrossRefGoogle Scholar
  43. Heatherton, T. F. (2011). Neuroscience of self and self-regulation. Annual Review of Psychology, 62, 363–390. doi:10.1146/annurev.psych.121208.131616.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Heatherton, T. F., & Wagner, D. D. (2011). Cognitive neuroscience of self-regulation failure. Trends in Cognitive Sciences, 15(3), 132–139. doi:10.1016/j.tics.2010.12.005.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Heilman, R. M., Crişan, L. G., Houser, D., Miclea, M., & Miu, A. C. (2010). Emotion regulation and decision making under risk and uncertainty. Emotion, 10(2), 257–265. doi:10.1037/a0018489.PubMedCrossRefGoogle Scholar
  46. Herrington, J. D., Mohanty, A., Koven, N. S., Fisher, J. E., Stewart, J. L., Banich, M. T., et al. (2005). Emotion-modulated performance and activity in left dorsolateral prefrontal cortex. Emotion, 5(2), 200–207. doi:10.1037/1528-3542.5.2.200.PubMedCrossRefGoogle Scholar
  47. Hollmann, M., Hellrung, L., Pleger, B., Schlögl, H., Kabisch, S., Stumvoll, M., et al. (2012). Neural correlates of the volitional regulation of the desire for food. International Journal of Obesity, 36(5), 648–655. doi:10.1038/ijo.2011.125.PubMedCrossRefGoogle Scholar
  48. Hutcherson, C. A., Plassmann, H., Gross, J. J., & Rangel, A. (2012). Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. The Journal of Neuroscience, 32(39), 13543–13554. doi:10.1523/JNEUROSCI.6387-11.2012.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Izard, C., & Ackerman, B. (2000). Motivational, organizational, and regulatory functions of discrete emotions. In M. Lewis & J. M. Haviland-Jones (Eds.), Handbook of emotions (2nd ed., pp. 253–264). New York: Guilford.Google Scholar
  50. James, W. (1890). Principles of psychology. New York: Dover.CrossRefGoogle Scholar
  51. Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. Journal of Neuroscience, 27(33), 8877–8884. doi:10.1523/JNEUROSCI.2063-07.2007.PubMedCrossRefGoogle Scholar
  52. Kabat-Zinn, J. (1994). Wherever you go, there you are: Mindfulness meditation in everyday life. New York: Hyperion.Google Scholar
  53. Kanske, P., Heissler, J., Schonfelder, S., Bongers, A., & Wessa, M. (2011). How to regulate emotion? Neural networks for reappraisal and distraction. Cerebral Cortex, 21(6), 1379–1388. doi:10.1093/cercor/bhq216.PubMedCrossRefGoogle Scholar
  54. Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14(5), 785–794. doi:10.1162/08989290260138672.PubMedCrossRefGoogle Scholar
  55. Kim, S. H., & Hamann, S. (2007). Neural correlates of positive and negative emotion regulation. Journal of Cognitive Neuroscience, 19(5), 776–798. doi:10.1162/jocn.2007.19.5.776.PubMedCrossRefGoogle Scholar
  56. Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience, 21(16), RC159.PubMedGoogle Scholar
  57. Kober, H., Mende-Siedlecki, P., Kross, E. F., Weber, J., Mischel, W., Hart, C. L., et al. (2010). Prefrontal-striatal pathway underlies cognitive regulation of craving. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14811–14816. doi:10.1073/pnas.1007779107.Google Scholar
  58. Kuhn, S., Haggard, P., & Brass, M. (2014). Differences between endogenous and exogenous emotion inhibition in the human brain. Brain Structure and Function. doi:10.1007/s00429-013-0556-0.Google Scholar
  59. Legrand, D., & Ruby, P. (2009). What is self-specific? Theoretical investigation and critical review of neuroimaging results. Psychological Review, 116(1), 252–282. doi:10.1037/a0014172.PubMedCrossRefGoogle Scholar
  60. Lutz, J., Herwig, U., Opialla, S., Hittmeyer, A., Jancke, L., Rufer, M., et al. (2014). Mindfulness and emotion regulation: An fMRI study. Social Cognitive and Affective Neuroscience. doi:10.1093/scan/nst043.Google Scholar
  61. Martin, L. N., & Delgado, M. R. (2011). The influence of emotion regulation on decision-making under risk. Journal of Cognitive Neuroscience, 23(9), 2569–2581. doi:10.1162/jocn.2011.21618.PubMedPubMedCentralCrossRefGoogle Scholar
  62. McClure, S. M., Daw, N. D., & Montague, P. R. (2003). A computational substrate for incentive salience. Trends in Neurosciences, 26(8), 423–428. doi:10.1016/S0166-2236(03)00177-2.PubMedCrossRefGoogle Scholar
  63. McRae, K., Hughes, B., Chopra, S., Gabrieli, J. D. E., Gross, J. J., & Ochsner, K. N. (2010). The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience, 22(2), 248–262. doi:10.1162/jocn.2009.21243.PubMedPubMedCentralCrossRefGoogle Scholar
  64. McRae, K., Ciesielski, B., & Gross, J. J. (2012). Unpacking cognitive reappraisal: Goals, tactics, and outcomes. Emotion (Washington, D. C.), 12(2), 250–255. doi:10.1037/a0026351.PubMedCrossRefGoogle Scholar
  65. Mitchell, J. (2009). Social psychology as a natural kind. Trends in Cognitive Sciences, 13(6), 246–251. doi:10.1016/j.tics.2009.03.008.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8–14. doi:10.1177/0963721411429458.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Northoff, G., & Bermpohl, F. (2004). Cortical midline structures and the self. Trends in Cognitive Sciences, 8(3), 102–107. doi:10.1016/j.tics.2004.01.004.PubMedCrossRefGoogle Scholar
  68. Ochsner, K. N., & Gross, J. J. (2008). Cognitive emotion regulation: Insights from social cognitive and affective neuroscience. Current Directions in Psychological Science, 17(2), 153–158. doi:10.1111/j.1467-8721.2008.00566.x.CrossRefGoogle Scholar
  69. Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251(1), E1–E248. doi:10.1111/j.1749-6632.2012.06751.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Pietrini, P., Guazzelli, M., Basso, G., Jaffe, K., & Grafman, J. (2000). Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. The American Journal of Psychiatry, 157(11), 1772–1781. doi:10.1176/appi.ajp.157.11.1772.PubMedCrossRefGoogle Scholar
  71. Poldrack, R. A. (2010). Mapping mental function to brain structure: How can cognitive neuroimaging succeed? Perspectives on Psychological Science, 5(6), 753–761. doi:10.1177/1745691610388777.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Rangel, A., & Hare, T. (2010). Neural computations associated with goal-directed choice. Current Opinion in Neurobiology, 20(2), 262–270. doi:10.1016/j.conb.2010.03.001.PubMedCrossRefGoogle Scholar
  73. Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Sciences, 16(3), 147–156. doi:10.1016/j.tics.2012.01.005.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Schiller, D., & Delgado, M. R. (2010). Overlapping neural systems mediating extinction, reversal and regulation of fear. Trends in Cognitive Sciences, 14(6), 268–276. doi:10.1016/j.tics.2010.04.002.PubMedCrossRefGoogle Scholar
  75. Schoenbaum, G., Takahashi, Y., Liu, T. L., & McDannald, M. A. (2011). Does the orbitofrontal cortex signal value? Annals of the New York Academy of Sciences, 1239(1), 87–99. doi:10.1111/j.1749-6632.2011.06210.x.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Shimamura, A. P. (2010). Bridging psychological and biological science: The good, bad, and ugly. Perspectives on Psychological Science, 5(6), 772–775. doi:10.1177/1745691610388781.CrossRefGoogle Scholar
  77. Shimamura, A. P., Marian, D. E., & Haskins, A. L. (2013). Neural correlates of emotional regulation while viewing films. Brain Imaging and Behavior, 7(1), 77–84. doi:10.1007/s11682-012-9195-y.CrossRefGoogle Scholar
  78. Siep, N., Roefs, A., Roebroeck, A., Havermans, R., Bonte, M., & Jansen, A. (2012). Fighting food temptations: The modulating effects of short-term cognitive reappraisal, suppression and up-regulation on mesocorticolimbic activity related to appetitive motivation. NeuroImage, 60(1), 213–220. doi:10.1016/j.neuroimage.2011.12.067.PubMedCrossRefGoogle Scholar
  79. Sokol-Hessner, P., Camerer, C. F., & Phelps, E. A. (2012). Emotion regulation reduces loss aversion and decreases amygdala responses to losses. Social Cognitive and Affective Neuroscience, 8(3), 341–350. doi:10.1093/scan/nss002.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Staudinger, M. R., Erk, S., & Walter, H. (2011). Dorsolateral prefrontal cortex modulates striatal reward encoding during reappraisal of reward anticipation. Cerebral Cortex, 21(11), 2578–2588. doi:10.1093/cercor/bhr041.PubMedCrossRefGoogle Scholar
  81. Sutton, S., & Davidson, R. (1997). Prefrontal brain asymmetry: A biological substrate of the behavioral approach and inhibition systems. Psychological Science, 8(3), 204–210. doi:10.1111/j.1467-9280.1997.tb00413.x.CrossRefGoogle Scholar
  82. Tamir, M. (2009). What do people want to feel and why? Pleasure and utility in emotion regulation. Current Directions in Psychological Science, 18(2), 101–105. doi:10.1111/j.1467-8721.2009.01617.x.CrossRefGoogle Scholar
  83. Urry, H. L., van Reekum, C. M., Johnstone, T., Kalin, N. H., Thurow, M. E., Schaefer, H. S., et al. (2006). Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. Journal of Neuroscience, 26(16), 4415–4425. doi:10.1523/JNEUROSCI.3215-05.2006.PubMedCrossRefGoogle Scholar
  84. Volkow, N. D., Wang, G.-J., Fowler, J. S., & Telang, F. (2008). Overlapping neuronal circuits in addiction and obesity: Evidence of systems pathology. Philosophical Transactions of the Royal Society of London Series B, 363(1507), 3191–3200. doi:10.1098/rstb.2008.0107.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Vrticka, P. (2013). Neural substrates of social emotion regulation: A fMRI study on imitation and expressive suppression to dynamic facial signals. Frontiers in Psychology, 4(95), 1–10. doi:10.3389/fpsyg.2013.00095.Google Scholar
  86. Wagner, D. D., & Heatherton, T. F. (2013). Self-regulatory depletion increases emotional reactivity in the amygdala. Social Cognitive and Affective Neuroscience, 8(4), 410–417. doi:10.1093/scan/nss082.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ward, A., & Mann, T. (2000). Don’t mind if I do: Disinhibited eating under cognitive load. Journal of Personality and Social Psychology, 78(4), 753–763. doi:10.1037/0022-3514.78.4.753.PubMedCrossRefGoogle Scholar
  88. Westbrook, C., Creswell, J. D., Tabibnia, G., Julson, E., Kober, H., & Tindle, H. A. (2013). Mindful attention reduces neural and self-reported cue-induced craving in smokers. Social Cognitive and Affective Neuroscience. doi:10.1093/scan/nsr076.Google Scholar
  89. Wicklund, R. A., & Gollwitzer, P. M. (1982). Symbolic self-completion. Hillsdale: Erlbaum.Google Scholar
  90. Zeidan, F., Grant, J. A., Brown, C. A., McHaffie, J. G., & Coghill, R. C. (2012). Mindfulness meditation-related pain relief: Evidence for mechanisms in the regulation of pain. Neuroscience Letters, 520, 165–173. doi:10.1016/j.neulet.2012.03.082.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jordan L. Livingston
    • 1
  • Lauren E. Kahn
    • 1
  • Elliot T. Berkman
    • 1
    • 2
    Email author
  1. 1.Department of PsychologyUniversity of OregonEugeneUSA
  2. 2.Prevention Sciences InstituteUniversity of OregonEugeneUSA

Personalised recommendations