Skip to main content

Lipoproteins: A Source of Cardiac Lipids

  • Chapter
  • First Online:
Cardiac Energy Metabolism in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 11))

Abstract

Lipids are the major substrate for cardiac ATP production and they are derived from adipose tissue or lipoprotein triglycerides. Lipoproteins are synthesized in the liver and they obtain their mature form following interaction with enzymes that are present in the circulation. Lipoprotein-derived fatty acids are released by lipoprotein lipase and are then taken up by cardiomyocytes either passively or via fatty acid receptors, such as CD36. Uptake of remnant lipoproteins via cardiomyocyte lipoprotein receptors is also possible. Besides fatty acids, other hydrophobic molecules such as cholesteryl esters, retinyl esters and vitamins are delivered by lipoproteins to the heart. While lipids are important for normal cardiac function, excessive lipid uptake, also known as lipotoxicity, may lead to cardiac abnormalities. This chapter focuses on the role of lipoproteins in providing fatty acids and other essential lipids to the heart in healthy conditions as well as in cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taegtmeyer H, Mcnulty P, Young ME (2002) Adaptation and maladaptation of the heart in diabetes: Part I: general concepts. Circulation 105:1727–1733

    CAS  PubMed  Google Scholar 

  2. Ballard FB, Danforth WH, Naegle S et al (1960) Myocardial metabolism of fatty acids. J Clin Invest 39:717–723

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Hamilton JA (1998) Fatty acid transport: difficult or easy? J Lipid Res 39:467–481

    CAS  PubMed  Google Scholar 

  4. Carley AN, Kleinfeld AM (2011) Fatty acid (FFA) transport in cardiomyocytes revealed by imaging unbound FFA is mediated by an FFA pump modulated by the CD36 protein. J Biol Chem 286:4589–4597

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Coburn CT, Knapp FF Jr, Febbraio M et al (2000) Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 275:32523–33259

    CAS  PubMed  Google Scholar 

  6. Gimeno RE, Ortegon AM, Patel S et al (2003) Characterization of a heart-specific fatty acid transport protein. J Biol Chem 278:16039–16044

    CAS  PubMed  Google Scholar 

  7. Kazantzis M, Stahl A (2012) Fatty acid transport proteins implications in physiology and disease. Biochim Biophys Acta 1821:852–857

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Bharadwaj KG, Hiyama Y, Hu Y et al (2010) Chylomicron- and VLDL-derived lipids enter the heart through different pathways: in vivo evidence for receptor- and non-.receptor-mediated fatty acid uptake. J Biol Chem 285:37976–37986

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Fielding CJ (1978) Metabolism of cholesterol-rich chylomicroms mechanism of binding and uptake of cholesteryl esters by the vascular bed of the perfused rat heart. J Clin Invest 62:141–151

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Mardy K, Belke DD, Severson DL (2001) Chylomicron metabolism by the isolated perfused mouse heart. Am J Physiol Endocrinol Metab 281:E357–E364

    CAS  PubMed  Google Scholar 

  11. Ginsberg HN, Fisher EA (2009) The ever-expanding role of degradation in the regulation of apolipoprotein B metabolism. J Lipid Res 50:S162–S166

    PubMed Central  PubMed  Google Scholar 

  12. Ota T, Gayet C, Ginsberg HN (2008) Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 118:316–332

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Tsai J, Zhang R, Qiu W et al (2009) Inflammatory NF-kappaB activation promotes hepatic apolipoprotein B100 secretion: evidence for a link between hepatic inflammation and lipoprotein production. Am J Physiol Gastrointest Liver Physiol 296:G1287–G1298

    CAS  PubMed  Google Scholar 

  14. Spady DK, Huettinger M, Bilheimer DW et al (1987) Role of receptor-independent low density lipoprotein transport in the maintenance of tissue cholesterol balance in the normal and WHHL rabbit. J Lipid Res 28:32–41

    CAS  PubMed  Google Scholar 

  15. Dietschy JM, Siperstein MD (1967) Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J Lipid Res 8:97–104

    CAS  PubMed  Google Scholar 

  16. Sakai N, Vaisman BL, Koch CA et al (1997) Targeted disruption of the mouse lecithin: cholesterol acyltransferase (LCAT) gene generation of a new animal model for human LCAT deficiency. J Biol Chem 272:7506–7510

    CAS  PubMed  Google Scholar 

  17. Lee JY, Timmins JM, Mulya A et al (2005) HDLs in apoA-I transgenic Abca1 knockout mice are remodeled normally in plasma but are hypercatabolized by the kidney. J Lipid Res 46:2233–2245

    CAS  PubMed  Google Scholar 

  18. Timmins JM, Lee JY, Boudyguina E et al (2005) Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 115:1333–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Thuren T (2000) Hepatic lipase and HDL metabolism. Curr Opin Lipidol 11:277–283

    CAS  PubMed  Google Scholar 

  20. Jaye M, Krawiec J (2004) Endothelial lipase and HDL metabolism. Curr Opin Lipidol 15:183–189

    CAS  PubMed  Google Scholar 

  21. Acton S, Rigotti A, Landschulz KT et al (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271:518–520

    CAS  PubMed  Google Scholar 

  22. Horowitz BS, Goldberg IJ, Merab J et al (1993) Increased plasma and renal clearance of an exchangeable pool of apolipoprotein A-I in subjects with low levels of high density lipoprotein cholesterol. J Clin Invest 91:1743–1752

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Nielsen LB, Veniant M, Boren J et al (1998) Genes for apolipoprotein B and microsomal triglyceride transfer protein are expressed in the heart: evidence that the heart has the capacity to synthesize and secrete lipoproteins. Circulation 98:13–16

    CAS  PubMed  Google Scholar 

  24. Bartels ED, Nielsen JM, Hellgren LI et al (2009) Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation. PLoS One 4:e5300

    PubMed Central  PubMed  Google Scholar 

  25. Nielsen LB, Bartels ED, Bollano E (2002) Overexpression of apolipoprotein B in the heart impedes cardiac triglyceride accumulation and development of cardiac dysfunction in diabetic mice. J Biol Chem 277:27014–27020

    CAS  PubMed  Google Scholar 

  26. Pitas RE, Innerarity TL, Mahley RW (1980) Cell surface receptor binding of phospholipid protein complexes containing different ratios of receptor-active and -inactive E apoprotein. J Biol Chem 255:5454–5460

    CAS  PubMed  Google Scholar 

  27. Herz J, Willnow TE (1995) Lipoprotein and receptor interactions in vivo. Curr Opin Lipidol 6:97–103

    CAS  PubMed  Google Scholar 

  28. Takahashi S, Suzuki J, Kohno M et al (1995) Enhancement of the binding of triglyceride-rich lipoproteins to the very low density lipoprotein receptor by apolipoprotein E and lipoprotein lipase. J Biol Chem 270:15747–15754

    CAS  PubMed  Google Scholar 

  29. Li X, Kypreos K, Zanni EE et al (2003) Domains of apoE required for binding to apoE receptor 2 and to phospholipids: implications for the functions of apoE in the brain. Biochemistry 42:10406–10417

    CAS  PubMed  Google Scholar 

  30. Chroni A, Nieland TJ, Kypreos KE et al (2005) SR-BI mediates cholesterol efflux via its interactions with lipid-bound ApoE structural mutations in SR-BI diminish cholesterol efflux. Biochemistry 44:13132–13143

    CAS  PubMed  Google Scholar 

  31. Li X, Kan HY, Lavrentiadou S et al (2002) Reconstituted discoidal ApoE-phospholipid particles are ligands for the scavenger receptor BI The amino-terminal 1–165 domain of ApoE suffices for receptor binding. J Biol Chem 277:21149–21157

    CAS  PubMed  Google Scholar 

  32. Krimbou L, Denis M, Haidar B et al (2004) Molecular interactions between apoE and ABCA1: impact on apoE lipidation. J Lipid Res 45:839–888

    CAS  PubMed  Google Scholar 

  33. Wu AL, Windmueller HG (1979) Relative contributions by liver and intestine to individual plasma apolipoproteins in the rat. J Biol Chem 254:7316–7322

    CAS  PubMed  Google Scholar 

  34. Newman TC, Dawson PA, Rudel LL et al (1985) Quantitation of apolipoprotein E mRNA in the liver and peripheral tissues of nonhuman primates. J Biol Chem 260:2452–2457

    CAS  PubMed  Google Scholar 

  35. Weisgraber KH (1990) Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. J Lipid Res 31:1503–1511

    CAS  PubMed  Google Scholar 

  36. Takahashi S, Kawarabayasi Y, Nakai T et al (1992) Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc Natl Acad Sci U S A 89:9252–9256

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Cal R, Castellano J, Revuelta-Lopez E et al (2012) Low-density lipoprotein receptor-related protein 1 mediates hypoxia-induced very low density lipoprotein-cholesteryl ester uptake and accumulation in cardiomyocytes. Cardiovasc Res 94:469–479

    CAS  PubMed  Google Scholar 

  38. Kounnas MZ, Haudenschild CC, Strickland DK et al (1994) Immunological localization of glycoprotein 330 low density lipoprotein receptor related protein and 39 kDa receptor associated protein in embryonic mouse tissues. In Vivo 8:343–351

    CAS  PubMed  Google Scholar 

  39. Acton SL, Scherer PE, Lodish HF et al (1994) Expression cloning of SR-BI a CD36-related class B scavenger receptor. J Biol Chem 269:21003–21009

    CAS  PubMed  Google Scholar 

  40. Jong MC, Hofker MH, Havekes LM (1999) Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1 ApoC2 and ApoC3. Arterioscler Thromb Vasc Biol 19:472–484

    CAS  PubMed  Google Scholar 

  41. Jackson RL, Tajima S, Yamamura T et al (1986) Comparison of apolipoprotein C-II-deficient triacylglycerol-rich lipoproteins and trioleoylglycerol/phosphatidylcholine-stabilized particles as substrates for lipoprotein lipase. Biochim Biophys Acta 875:211–219

    CAS  PubMed  Google Scholar 

  42. Ito Y, Azrolan N, O'connell A et al (1990) Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249:790–793

    CAS  PubMed  Google Scholar 

  43. Takahashi T, Hirano T, Okada K et al (2003) Apolipoprotein CIII deficiency prevents the development of hypertriglyceridemia in streptozotocin-induced diabetic mice. Metabolism 52:1354–1359

    CAS  PubMed  Google Scholar 

  44. Duncan JG, Bharadwaj KG, Fong JL et al (2010) Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation 121:426–435

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Ruby MA, Goldenson B, Orasanu G et al (2010) VLDL hydrolysis by LPL activates PPAR-alpha through generation of unbound fatty acids. J Lipid Res 51:2275–2281

    CAS  PubMed Central  PubMed  Google Scholar 

  46. O'brien KD, Ferguson M, Gordon D et al (1994) Lipoprotein lipase is produced by cardiac myocytes rather than interstitial cells in human myocardium. Arterioscler Thromb 14:1445–1451

    PubMed  Google Scholar 

  47. Beigneux AP, Davies BS, Gin P et al (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Davies BS, Beigneux AP, Barnes RH 2nd et al (2010) GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab 12:42–52

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Levak-Frank S, Hofmann W, Weinstock PH et al (1999) Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle but not in skeletal muscle and adipose tissue have normal plasma triglyceride and high-density lipoprotein-cholesterol levels. Proc Natl Acad Sci U S A 96:3165–3170

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Augustus A, Yagyu H, Haemmerle G et al (2004) Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J Biol Chem 279:25050–25057

    CAS  PubMed  Google Scholar 

  51. Davies BS, Goulbourne CN, Barnes RH 2nd et al (2012) Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells. J Lipid Res 53:2690–2697

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Klinger MM, Margolis RU, Margolis RK (1985) Isolation and characterization of the heparan sulfate proteoglycans of brain use of affinity chromatography on lipoprotein lipase-agarose. J Biol Chem 260:4082–9040

    CAS  PubMed  Google Scholar 

  53. Lookene A, Savonen R, Olivecrona G (1997) Interaction of lipoproteins with heparan sulfate proteoglycans and with lipoprotein lipase Studies by surface plasmon resonance technique. Biochemistry 36:5267–5275

    CAS  PubMed  Google Scholar 

  54. Kinnunen PK, Jackson RL, Smith LC et al (1977) Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proc Natl Acad Sci U S A 74:4848–4851

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Pennacchio LA, Olivier M, Hubacek JA et al (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294:169–173

    CAS  PubMed  Google Scholar 

  56. Grosskopf I, Baroukh N, Lee SJ et al (2005) Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants. Arterioscler Thromb Vasc Biol 25:2573–2579

    CAS  PubMed  Google Scholar 

  57. Ginsberg HN, Le NA, Goldberg IJ et al (1986) Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest 78:1287–1295

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Yao Z, Wang Y (2012) Apolipoprotein C-III and hepatic triglyceride-rich lipoprotein production. Curr Opin Lipidol 23:206–212

    CAS  PubMed  Google Scholar 

  59. Julve J, Escola-Gil JC, Rotllan N et al (2010) Human apolipoprotein A-II determines plasma triglycerides by regulating lipoprotein lipase activity and high-density lipoprotein proteome. Arterioscler Thromb Vasc Biol 30:232–238

    CAS  PubMed  Google Scholar 

  60. Shimizugawa T, Ono M, Shimamura M et al (2002) ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem 277:33742–33748

    CAS  PubMed  Google Scholar 

  61. Yoshida K, Shimizugawa T, Ono M et al (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43:1770–1772

    CAS  PubMed  Google Scholar 

  62. Quagliarini F, Wang Y, Kozlitina J et al (2012) Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci U S A 109:19751–19756

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Sukonina V, Lookene A, Olivecrona T et al (2006) Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci U S A 103:17450–17455

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Olivecrona G, Olivecrona T (2010) Triglyceride lipases and atherosclerosis. Curr Opin Lipidol 21:409–415

    CAS  PubMed  Google Scholar 

  65. Chatterjee C, Sparks DL (2011) Hepatic lipase high density lipoproteins and hypertriglyceridemia. Am J Pathol 178:1429–1433

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Jaye M, Lynch KJ, Krawiec J et al (1999) A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 21:424–428

    CAS  PubMed  Google Scholar 

  67. Nakajima H, Ishida T, Satomi-Kobayashi S et al (2013) Endothelial lipase modulates pressure overload-induced heart failure through alternative pathway for fatty acid uptake. Hypertension 61:1002–1007

    CAS  PubMed  Google Scholar 

  68. Albers JJ, Vuletic S, Cheung MC (2012) Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta 1821:345–357

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Yazdanyar A, Jiang XC (2012) Liver phospholipid transfer protein (PLTP) expression with a PLTP-null background promotes very low-density lipoprotein production in mice. Hepatology 56:576–584

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Charles MA, Kane JP (2012) New molecular insights into CETP structure and function: a review. J Lipid Res 53:1451–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Iwai-Kanai E, Hasegawa K, Sawamura T et al (2001) Activation of lectin-like oxidized low-density lipoprotein receptor-1 induces apoptosis in cultured neonatal rat cardiac myocytes. Circulation 104:2948–2954

    CAS  PubMed  Google Scholar 

  72. Baker DP, Van Lenten BJ, Fogelman AM et al (1984) LDL scavenger and beta-VLDL receptors on aortic endothelial cells. Arteriosclerosis 4:248–255

    CAS  PubMed  Google Scholar 

  73. Goudriaan J, Espirito Santo SM, Voshol PJ et al (2004) The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis. J Lipid Res 45:1475–1481

    CAS  PubMed  Google Scholar 

  74. Perman JC, Bostrom P, Lindbom M et al (2011) The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction. J Clin Invest 121:2625–2640

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Masuzaki H, Jingami H, Matsuoka N et al (1996) Regulation of very-low-density lipoprotein receptor in hypertrophic rat heart. Circ Res 78:8–14

    CAS  PubMed  Google Scholar 

  76. Wyne KL, Pathak K, Seabra MC et al (1996) Expression of the VLDL receptor in endothelial cells. Arterioscler Thromb Vasc Biol 16:407–415

    CAS  PubMed  Google Scholar 

  77. Obunike JC, Lutz EP, Li Z et al (2001) Transcytosis of lipoprotein lipase across cultured endothelial cells requires both heparan sulfate proteoglycans and the very low density lipoprotein receptor. J Biol Chem 276:8934–8941

    CAS  PubMed  Google Scholar 

  78. Yagyu H, Lutz EP, Kako Y et al (2002) Very low density lipoprotein (VLDL) receptor-deficient mice have reduced lipoprotein lipase activity. Possible causes of hypertriglyceridemia and reduced body mass with VLDL receptor deficiency. J Biol Chem 277:10037–10043

    CAS  PubMed  Google Scholar 

  79. Willnow TE, Sheng Z, Ishibashi S et al (1994) Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 264:1471–1474

    CAS  PubMed  Google Scholar 

  80. Beisiegel U, Weber W, Ihrke G et al (1989) The LDL-receptor-related protein LRP is an apolipoprotein E-binding protein. Nature 341:162–164

    CAS  PubMed  Google Scholar 

  81. Herz J, Qiu SQ, Oesterle A et al (1995) Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor. Proc Natl Acad Sci U S A 92:4611–4615

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Cal R, Juan-Babot O, Brossa V et al (2012) Low density lipoprotein receptor-related protein 1 expression correlates with cholesteryl ester accumulation in the myocardium of ischemic cardiomyopathy patients. J Transl Med 10:160

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Theilmeier G, Schmidt C, Herrmann J et al (2006) High-density lipoproteins and their constituent sphingosine-1-phosphate directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409

    CAS  PubMed  Google Scholar 

  84. Karliner JS (2013) Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta 1831:203–212

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Reboulleau A, Robert V, Vedie B et al (2012) Involvement of cholesterol efflux pathway in the control of cardiomyocytes cholesterol homeostasis. J Mol Cell Cardiol 53:196–205

    CAS  PubMed  Google Scholar 

  86. Traber MG, Diamond SR, Lane JC et al (1994) beta-Carotene transport in human lipoproteins. Comparisons with a-tocopherol. Lipids 29:665–669

    CAS  PubMed  Google Scholar 

  87. Skrede B, Blomhoff HK, Smeland EB et al (1991) Retinyl esters in chylomicron remnants inhibit growth of myeloid and lymphoid leukaemic cells. Eur J Clin Invest 21:574–549

    CAS  PubMed  Google Scholar 

  88. Haddad JG, Jennings AS, Aw TC (1988) Vitamin D uptake and metabolism by perfused rat liver: influences of carrier proteins. Endocrinology 123:498–504

    CAS  PubMed  Google Scholar 

  89. Behrens WA, Thompson JN, Madere R (1982) Distribution of alpha-tocopherol in human plasma lipoproteins. Am J Clin Nutr 35:691–696

    CAS  PubMed  Google Scholar 

  90. Lamon-Fava S, Sadowski JA, Davidson KW et al (1998) Plasma lipoproteins as carriers of phylloquinone (vitamin K1) in humans. Am J Clin Nutr 67:1226–1231

    CAS  PubMed  Google Scholar 

  91. Lemieux S, Fontani R, Uffelman KD et al (1998) Apolipoprotein B-48 and retinyl palmitate are not equivalent markers of postprandial intestinal lipoproteins. J Lipid Res 39:1964–1971

    CAS  PubMed  Google Scholar 

  92. Orth M, Hanisch M, Kroning G et al (1998) Fluorometric determination of total retinyl esters in triglyceride-rich lipoproteins. Clin Chem 44:1459–1465

    CAS  PubMed  Google Scholar 

  93. Blaner WS, Obunike JC, Kurlandsky SB et al (1994) Lipoprotein lipase hydrolysis of retinyl ester. Possible implications for retinoid uptake by cells. J Biol Chem 269:16559–16565

    CAS  PubMed  Google Scholar 

  94. Van Bennekum AM, Kako Y, Weinstock PH et al (1999) Lipoprotein lipase expression level influences tissue clearance of chylomicron retinyl ester. J Lipid Res 40:565–574

    PubMed  Google Scholar 

  95. Madrazo JA, Kelly DP (2008) The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 44:968–975

    CAS  PubMed  Google Scholar 

  96. Shneyvays V, Leshem D, Shmist Y et al (2005) Effects of menadione and its derivative on cultured cardiomyocytes with mitochondrial disorders. J Mol Cell Cardiol 39:149–158

    CAS  PubMed  Google Scholar 

  97. Qin F, Rounds NK, Mao W et al (2001) Antioxidant vitamins prevent cardiomyocyte apoptosis produced by norepinephrine infusion in ferrets. Cardiovasc Res 51:736–748

    CAS  PubMed  Google Scholar 

  98. Guan Z, Lui CY, Morkin E et al (2004) Oxidative stress and apoptosis in cardiomyocyte induced by high-dose alcohol. J Cardiovasc Pharmacol 44:696–702

    CAS  PubMed  Google Scholar 

  99. Shirpoor A, Salami S, Khadem-Ansari MH et al (2009) Cardioprotective effect of vitamin E: rescues of diabetes-induced cardiac malfunction oxidative stress and apoptosis in rat. J Diabetes Complications 23:310–316

    PubMed  Google Scholar 

  100. Toraason M, Wey H, Woolery M et al (1995) Arachidonic acid supplementation enhances hydrogen peroxide induced oxidative injury of neonatal rat cardiac myocytes. Cardiovasc Res 29:624–628

    CAS  PubMed  Google Scholar 

  101. Qin F, Shite J, Liang CS (2003) Antioxidants attenuate myocyte apoptosis and improve cardiac function in CHF: association with changes in MAPK pathways. Am J Physiol Heart Circ Physiol 285:H822–H832

    CAS  PubMed  Google Scholar 

  102. Zhao X, Feng T, Chen H et al (2008) Arsenic trioxide-induced apoptosis in H9c2 cardiomyocytes: implications in cardiotoxicity. Basic Clin Pharmacol Toxicol 102:419–425

    CAS  PubMed  Google Scholar 

  103. Davis WL, Matthews JL, Goodman DB (1989) Glyoxylate cycle in the rat liver: effect of vitamin D3 treatment. FASEB J 3:1651–1655

    CAS  PubMed  Google Scholar 

  104. Davis WL, Jones RG, Farmer GR et al (1989) The glyoxylate cycle in rat epiphyseal cartilage: the effect of vitamin-D3 on the activity of the enzymes isocitrate lyase and malate synthase. Bone 10:201–206

    CAS  PubMed  Google Scholar 

  105. Lopaschuk GD, Ussher JR, Folmes CD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    CAS  PubMed  Google Scholar 

  106. Heather LC, Howell NJ, Emmanuel Y et al (2011) Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis. PLoS One 6:e26326

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Steinbusch LK, Luiken JJ, Vlasblom R et al (2011) Absence of fatty acid transporter CD36 protects against Western-type diet-related cardiac dysfunction following pressure overload in mice. Am J Physiol Endocrinol Metab 301:E618–E627

    CAS  PubMed  Google Scholar 

  108. Barger PM, Brandt JM, Leone TC et al (2000) Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest 105:1723–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Yamamoto T, Takahashi S, Sakai J et al (1993) The very low density lipoprotein receptor A second lipoprotein receptor that may mediate uptake of fatty acids into muscle and fat cells. Trends Cardiovasc Med 3:144–148

    CAS  PubMed  Google Scholar 

  110. Cominacini L, Pasini AF, Garbin U et al (2000) Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 275:12633–12638

    CAS  PubMed  Google Scholar 

  111. Zorn-Pauly K, Schaffer P, Pelzmann B et al (2005) Oxidized LDL induces ventricular myocyte damage and abnormal electrical activity—role of lipid hydroperoxides. Cardiovasc Res 66:74–83

    CAS  PubMed  Google Scholar 

  112. Chandrakala AN, Sukul D, Selvarajan K et al (2012) Induction of brain natriuretic peptide and monocyte chemotactic protein-1 gene expression by oxidized low-density lipoprotein: relevance to ischemic heart failure. Am J Physiol Cell Physiol 302:C165–C177

    CAS  PubMed  Google Scholar 

  113. Kang BY, Khan JA, Ryu S et al (2010) Curcumin reduces angiotensin II-mediated cardiomyocyte growth via LOX-1 inhibition. J Cardiovasc Pharmacol 55:417–424

    PubMed  Google Scholar 

  114. Kang BY, Mehta JL (2009) Rosuvastatin attenuates Ang II-mediated cardiomyocyte hypertrophy via inhibition of LOX-1. J Cardiovasc Pharmacol Ther 14:283–291

    CAS  PubMed  Google Scholar 

  115. Crass MF 3rd, Pieper GM (1975) Lipid and glycogen metabolism in the hypoxic heart: effects of epinephrine. Am J Physiol 229:885–889

    CAS  PubMed  Google Scholar 

  116. Bilheimer DW, Buja LM, Parkey RW et al (1978) Fatty acid accumulation and abnormal lipid deposition in peripheral and border zones of experimental myocardial infarcts. J Nucl Med 19:276–283

    CAS  PubMed  Google Scholar 

  117. Sundelin JP, Lidberg U, Nik AM et al (2013) Hypoxia-induced regulation of the very low density lipoprotein receptor. Biochem Biophys Res Commun 437:274–279

    CAS  PubMed  Google Scholar 

  118. Heather LC, Pates KM, Atherton HJ et al (2013) Differential translocation of the fatty acid transporter FAT/CD36 and the glucose transporter GLUT4 coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ Heart Fail 6:1058–1066

    CAS  PubMed  Google Scholar 

  119. Li D, Williams V, Liu L et al (2003) Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfunction. J Am Coll Cardiol 41:1048–1055

    CAS  PubMed  Google Scholar 

  120. Kataoka K, Hasegawa K, Sawamura T et al (2003) LOX-1 pathway affects the extent of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 300:656–660

    CAS  PubMed  Google Scholar 

  121. Lu J, Wang X, Wang W et al (2012) LOX-1 abrogation reduces cardiac hypertrophy and collagen accumulation following chronic ischemia in the mouse. Gene Ther 19:522–531

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Tao R, Hoover HE, Honbo N et al (2010) High-density lipoprotein determines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated sphingosine 1-phosphate. Am J Physiol Heart Circ Physiol 298:H1022–H1028

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Frias MA, Lang U, Gerber-Wicht C et al (2010) Native and reconstituted HDL protect cardiomyocytes from doxorubicin-induced apoptosis. Cardiovasc Res 85:118–126

    CAS  PubMed  Google Scholar 

  124. Morel S, Frias MA, Rosker C et al (2012) The natural cardioprotective particle HDL modulates connexin43 gap junction channels. Cardiovasc Res 93:41–49

    CAS  PubMed  Google Scholar 

  125. Frias MA, James RW, Gerber-Wicht C et al (2009) Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovasc Res 82:313–323

    CAS  PubMed  Google Scholar 

  126. Somers SJ, Frias M, Lacerda L et al (2012) Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection. Cardiovasc Drugs Ther 26:227–237

    CAS  PubMed  Google Scholar 

  127. Chokshi A, Drosatos K, Cheema FH et al (2012) Ventricular assist device implantation corrects myocardial lipotoxicity reverses insulin resistance and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 125:2844–2853

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    PubMed  Google Scholar 

  129. Wende AR, Abel ED (2010) Lipotoxicity in the heart. Biochim Biophys Acta 1801:311–319

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Niu YG, Evans RD (2008) Metabolism of very-low-density lipoprotein and chylomicrons by streptozotocin-induced diabetic rat heart: effects of diabetes and lipoprotein preference. Am J Physiol Endocrinol Metab 295:E1106–E1116

    CAS  PubMed  Google Scholar 

  131. Sambandam N, Abrahani MA, Craig S et al (2000) Metabolism of VLDL is increased in streptozotocin-induced diabetic rat hearts. Am J Physiol Heart Circ Physiol 278:H1874–H1882

    CAS  PubMed  Google Scholar 

  132. Kim MS, Wang F, Puthanveetil P et al (2008) Protein kinase D is a key regulator of cardiomyocyte lipoprotein lipase secretion after diabetes. Circ Res 103:252–260

    CAS  PubMed  Google Scholar 

  133. Rodrigues B, Cam MC, Jian K et al (1997) Differential effects of streptozotocin-induced diabetes on cardiac lipoprotein lipase activity. Diabetes 46:1346–1353

    CAS  PubMed  Google Scholar 

  134. Angin Y, Steinbusch LK, Simons PJ et al (2012) CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes. Biochem J 448:43–53

    CAS  PubMed  Google Scholar 

  135. Carley AN, Atkinson LL, Bonen A et al (2007) Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice. Arch Physiol Biochem 113:65–75

    CAS  PubMed  Google Scholar 

  136. Iwasaki T, Takahashi S, Takahashi M et al (2005) Deficiency of the very low-density lipoprotein (VLDL) receptors in streptozotocin-induced diabetic rats: insulin dependency of the VLDL receptor. Endocrinology 146:3286–3294

    CAS  PubMed  Google Scholar 

  137. Van De Weijer T, Schrauwen-Hinderling VB, Schrauwen P (2011) Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 92:10–18

    PubMed  Google Scholar 

  138. Drosatos K, Khan RS, Trent CM et al (2013) Peroxisome proliferator-activated receptor-gamma activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail 6:550–562

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Gouni I, Oka K, Etienne J et al (1993) Endotoxin-induced hypertriglyceridemia is mediated by suppression of lipoprotein lipase at a post-transcriptional level. J Lipid Res 34:139–146

    CAS  PubMed  Google Scholar 

  140. Kaufmann RL, Matson CF, Beisel WR (1976) Hypertriglyceridemia produced by endotoxin: role of impaired triglyceride disposal mechanisms. J Infect Dis 133:548–555

    CAS  PubMed  Google Scholar 

  141. Nogueira AC, Kawabata V, Biselli P et al (2008) Changes in plasma free fatty acid levels in septic patients are associated with cardiac damage and reduction in heart rate variability. Shock 29:342–348

    CAS  PubMed  Google Scholar 

  142. Schilling J, Lai L, Sambandam N et al (2011) Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor {gamma} coactivator-1 signaling. Circ Heart Fail 4:474–482

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Drosatos K, Drosatos-Tampakaki Z, Khan R et al (2011) Inhibition of C-JUN-N-terminal kinase increases cardiac PPAR{alpha} expression and fatty acid oxidation and prevents LPS-induced heart dysfunction. J Biol Chem 286:36331–36339

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Bagby GJ, Spitzer JA (1980) Lipoprotein lipase activity in rat heart and adipose tissue during endotoxic shock. Am J Physiol 238:H325–H330

    CAS  PubMed  Google Scholar 

  145. Scholl RA, Lang CH, Bagby GJ (1984) Hypertriglyceridemia and its relation to tissue lipoprotein lipase activity in endotoxemic Escherichia coli bacteremic and polymicrobial septic rats. J Surg Res 37:394–401

    CAS  PubMed  Google Scholar 

  146. Bagby GJ, Corll CB, Martinez RR (1987) Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity. Am J Physiol 253:E59–E64

    CAS  PubMed  Google Scholar 

  147. Feingold K, Kim MS, Shigenaga J et al (2004) Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. Am J Physiol Endocrinol Metab 286:E201–E207

    CAS  PubMed  Google Scholar 

  148. Lu B, Moser A, Shigenaga JK et al (2010) The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem Biophys Res Commun 391:1737–1741

    CAS  PubMed  Google Scholar 

  149. Jia L, Takahashi M, Morimoto H et al (2006) Changes in cardiac lipid metabolism during sepsis: the essential role of very low-density lipoprotein receptors. Cardiovasc Res 69:545–555

    CAS  PubMed  Google Scholar 

  150. Read TE, Harris HW, Grunfeld C et al (1993) The protective effect of serum lipoproteins against bacterial lipopolysaccharide. Eur Heart J 14 (Suppl K):125–129

    Google Scholar 

  151. Ghoshal S, Witta J, Zhong J et al (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 50:90–97

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira J. Goldberg M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drosatos, K., Goldberg, I.J. (2014). Lipoproteins: A Source of Cardiac Lipids. In: Lopaschuk, G., Dhalla, N. (eds) Cardiac Energy Metabolism in Health and Disease. Advances in Biochemistry in Health and Disease, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1227-8_2

Download citation

Publish with us

Policies and ethics