Skip to main content

Splicing Code Modeling

  • Chapter
  • First Online:
Systems Biology of RNA Binding Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 825))

Abstract

How do cis and trans elements involved in pre-mRNA splicing come together to form a splicing “code”? This question has been a driver of much of the research involving RNA biogenesis. The variability of splicing outcome across developmental stages and between tissues coupled with association of splicing defects with numerous diseases highlights the importance of such a code. However, the sheer number of elements involved in splicing regulation and the context-specific manner of their operation have made the derivation of such a code challenging. Recently, machine learning-based methods have been developed to infer computational models for a splicing code. These methods use high-throughput experiments measuring mRNA expression at exonic resolution and binding locations of RNA-binding proteins (RBPs) to infer what the regulatory elements that control the inclusion of a given pre-mRNA segment are. The inferred regulatory models can then be applied to genomic sequences or experimental conditions that have not been measured to predict splicing outcome. Moreover, the models themselves can be interrogated to identify new regulatory mechanisms, which can be subsequently tested experimentally. In this chapter, we survey the current state of this technology, and illustrate how it can be applied by non-computational or RNA splicing experts to study regulation of specific exons by using the AVISPA web tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

The authors would like to thank Matthew Gazzara and Alex Amlie-Wolf for helpful comments and suggestions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoseph Barash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barash, Y., Vaquero-Garcia, J. (2014). Splicing Code Modeling. In: Yeo, G. (eds) Systems Biology of RNA Binding Proteins. Advances in Experimental Medicine and Biology, vol 825. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1221-6_13

Download citation

Publish with us

Policies and ethics