Commercial Applications of Nanocomposite Sol-Gel Coatings

Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)


In contrast to commercial state-of-the-art coatings, the use of nanocomposite materials allows a very precise tailoring of the needed surface properties. Some examples (e.g. scratch-resistant or self-cleaning coatings) are described in this chapter. Beside exceptional material properties, also the material saving is nowadays a great requirement for innovative coatings. New concepts for corrosion protection coatings and catalytic coatings demonstrate possibilities for a more effective utilization of limited or replacement of expensive raw materials such as zinc or noble metals. In praxis, innovative coatings should be flexible adjustable concerning the application parameter. By combining the described reaction principles, silane- and nanotechnology have the ability to create nanocomposite matrices which reveals previously unobtainable attribute profiles which can also be used for new industrial applications.


Corrosion Protection Abrasion Resistance Hard Coating Diesel Particulate Filter Bonding Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lewis LN (1991) J Appl Polym Sci 42:1551CrossRefGoogle Scholar
  2. 2.
    Chung H (1984) Rack patent US 4486504 (04.12.1984)Google Scholar
  3. 3.
    Chung H (1984) Rack patent US 4478876 (23.10.1984)Google Scholar
  4. 4.
    Lewis LN (1995) Chem Mater 7(7):1369CrossRefGoogle Scholar
  5. 5.
    Vu C, Eranian A, Faurent C (1999) In: Proceedings of RadTech Europe Conference, Berlin, p 523Google Scholar
  6. 6.
    Gupta N, Sinha TJM, Varma IK (1997) Indian J Chem Techn 4:130Google Scholar
  7. 7.
    Tronche C, Jaria R, Chawla CP (1999) In: Proceedings of RadTech Europe Conference, Berlin, p 719Google Scholar
  8. 8.
    Swofford H (1989) Patent US 4822828 (18.04.1989)Google Scholar
  9. 9.
    Chung H (1984) Rack Patent US 4478876 (23.10.1984)Google Scholar
  10. 10.
    Rose K (1992) Mat Res Soc Symp Proc 271:731CrossRefGoogle Scholar
  11. 11.
    Laryea N, Sepeur S, Lehmann S, Fait O (2009) Welt der Farben 3:10Google Scholar
  12. 12.
    Sepeur S (2008) Nanotechnology Vincentz Network, HannoverGoogle Scholar
  13. 13.
    Kasemann R, Schmidt H, Wintrich E (1994) New type of a sol-gel derived inorganic–organic nanocomposite. In: Proceedings 1994 MRS spring meeting, symposium on better ceramics through chemistry VI. San Fransisco/USA, Mat Res Soc Symp Proc, pp 346Google Scholar
  14. 14.
    Deutsche Offenlegungsschrift DE 43 38 361 A1, 10.11.93Google Scholar
  15. 15.
    Kasemann R, Schmidt H (1993) In: Proceedings of First European Workshop on Hybrid Organic–Inorganic Materials, Château de Bierville/France, November 1993Google Scholar
  16. 16.
    Geiter E (1997) Dissertation, University of SaarlandGoogle Scholar
  17. 17.
    Winkler RP, Becker C, Rietz R, Krug H, Mennig M, Gerhard V, Mohr J (1994) Jahrestätigkeitsbericht Institut für Neue Materialien 122 Google Scholar
  18. 18.
    Laryea N, Sepeur S, Thurn C, Mönkemeyer M (2010) Farbe und Lack 116(7):23Google Scholar
  19. 19.
    Jones DA (1996) Principles and prevention of corrosion, 2nd edn. Prentice-Hall, New JerseyGoogle Scholar
  20. 20.
    Shreir LL, Jarman RA, Burstein GT (1994) Corrosion, 3rd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  21. 21.
    Buchheit R (1994) J Electrochem Soc 142:3994CrossRefGoogle Scholar
  22. 22.
    Grundmeier G, Schmidt W, Stratmann M (2000) Electrochim Acta 45:2515CrossRefGoogle Scholar
  23. 23.
    Haneda R, Aramaki K (1998) J Electrochem Soc 145:2786CrossRefGoogle Scholar
  24. 24.
    Lu W, Elsenbaumer RL, Chen T. Kulkarni VG (1998) Mat Res Soc Symp Proc 488:653Google Scholar
  25. 25.
    Guglielmi M (1994) J Sol-Gel Sci Tech 1:177CrossRefGoogle Scholar
  26. 26.
    Vasconcelos DCL, Carvalho JN, Mantel M, Vasconcelos WL, Non-Cryst J (2000) Solids 273:135Google Scholar
  27. 27.
    Simoes M, Assis OBG, Avaca LA (2000) ibid. 273:159Google Scholar
  28. 28.
    Atik M, Messaddeq SH, Luna FP, Aegerter MA (1996) J Mater Sci Lett 15:2051CrossRefGoogle Scholar
  29. 29.
    Neto P, Atik M, Avaca LA, Aegerter MA (1994) J Sol-Gel Sci Tech 2:529CrossRefGoogle Scholar
  30. 30.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San DiegoGoogle Scholar
  31. 31.
    Pierre AC (1998) Introduction to sol-gel processing. Kluwer, Boston, MAGoogle Scholar
  32. 32.
    Francis LF (1997) Mater Manuf Process 12:963CrossRefGoogle Scholar
  33. 33.
    Han XH, Cao GZ, Pratum T, Schwartz DT, Lutz B (2001) J Mater Sci 36:985CrossRefGoogle Scholar
  34. 34.
    Chan CM, Cao GZ, Fong H, Sarikaya M, Robinson T, Nelson L (2000) J Mater Res 15:148CrossRefGoogle Scholar
  35. 35.
    Wen J, Wilkes GL (1995) J Inorg Organomet P 5:343CrossRefGoogle Scholar
  36. 36.
    Park JS, Mackenzie JD (1995) J Am Ceram Soc 78:2669CrossRefGoogle Scholar
  37. 37.
    Messaddeq SH, Pulcinelli SH, Santilli CV, Guastaldi AC, Messaddeq Y, Non-Cryst J (1999) Solids 247:164Google Scholar
  38. 38.
    Atik M, Luna FP, Messaddeq SH, Aegerter MA (1997) J Sol-Gel Sci Tech 8:517Google Scholar
  39. 39.
    Schmidt DP, Shaw BA, Sikora E, Shaw WW, Laliberte LH (2006) Prog Org Coat 57(4):352CrossRefGoogle Scholar
  40. 40.
    Breyer C, Goedicke S, Sepeur S (2009) Patent WO 2009/219783A2Google Scholar
  41. 41.
    Groß F (2012) Besser Lackieren 18(2):6Google Scholar
  42. 42.
    Pilotek S, Schmidt HK (2003) J Sol-Gel Sci Technol 26(1–3):789CrossRefGoogle Scholar
  43. 43.
    Barthlott W (1990) Scanning electron microscopy in taxonomy and functional morphology. In: Claugher D (ed) Clarendon Press, Oxford, pp 69–94Google Scholar
  44. 44.
    Barthlott W (1993) Evolution and systematics of the Caryophyllales. In: Behnke HD, Mabry TJ (eds) Springer, Berlin, pp 75–86Google Scholar
  45. 45.
    Barthlott W, Neinhuis C (1997) Planta 202:1CrossRefGoogle Scholar
  46. 46.
    Neinhuis C, Barthlott W (1997) Ann Bot 79:667CrossRefGoogle Scholar
  47. 47.
    Nachtigall W, Wisser A (eds) (1996) Technische Biologie und Bionik 3. Berichtsband über den 3. Bionik-Kongreß. Mannheim 1996. BIONA-report 10, Akad. Wiss. Lit. Mainz; Fischer, Stuttgart etcGoogle Scholar
  48. 48.
    Nachtigall W, Blüchel KG (2000) Das große Buch der Bionik, Neue Technologien nach dem Vorbild der Natur. DVA-Verlag, StuttgartGoogle Scholar
  49. 49.
    Twigg MV (2006) Catal Today 117:407CrossRefGoogle Scholar
  50. 50.
    Liu J, Zhao Z, Xu C, Duan A, Zhu L, Wang X (2005) Appl Catal B 61:36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.NANO-X GmbHSaarbrückenGermany

Personalised recommendations