Skip to main content

Weighted Inequalities

  • Chapter
  • First Online:
  • 165k Accesses

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 249))

Abstract

Weighted inequalities arise naturally in Fourier analysis, but their use is best justified by the variety of applications in which they appear. For example, the theory of weights plays an important role in the study of boundary value problems for Laplace’s equation on Lipschitz domains. Other applications of weighted inequalities include extrapolation theory, vector-valued inequalities, and estimates for certain classes of nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    the dependence on p is relevant only when p < ∞

References

  1. Alvarez, J., Pérez, C., Estimates with A weights for various singular integral operators, Boll. Un. Mat. Ital. A (7) 8 (1994), no. 1, 123–133.

    Google Scholar 

  2. Astala, K., Iwaniec, T., Saksman, E., Beltrami operators in the plane, Duke Math. J. 107 (2001), no. 1, 27–56.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bagby, R., Kurtz, D. S., Covering lemmas and the sharp function, Proc. Amer. Math. Soc. 93 (1985), no. 2, 291–296.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bagby, R., Kurtz, D. S., A rearranged good- \(\lambda\) inequality, Trans. Amer. Math. Soc. 293 (1986), no. 1, 71–81.

    MATH  MathSciNet  Google Scholar 

  5. Besicovitch, A., A general form of the covering principle and relative differentiation of additive functions, Proc. of Cambridge Philos. Soc. 41 (1945), 103–110.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bojarski, B., Remarks on Markov’s inequalities and some properties of polynomials (Russian summary), Bull. Polish Acad. Sci. Math. 33 (1985), no. 7-8, 355–365.

    MATH  MathSciNet  Google Scholar 

  7. Buckley, S. M., Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), no. 1, 253–272.

    Article  MATH  MathSciNet  Google Scholar 

  8. Carro, M. J., Torres, R. H., Soria, J., Rubio de Francia’s extrapolation theory: estimates for the distribution function, J. Lond. Math. Soc. (2) 85 (2012), no. 2, 430–454.

    Google Scholar 

  9. Christ, M., Fefferman, R., A note on weighted norm inequalities for the Hardy–Littlewood maximal operator, Proc. Amer. Math. Soc. 87 (1983), no. 3, 447–448.

    Article  MATH  MathSciNet  Google Scholar 

  10. Coifman, R. R., Distribution function inequalities for singular integrals, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 2838–2839.

    Article  MATH  MathSciNet  Google Scholar 

  11. Coifman, R. R., Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250.

    MATH  MathSciNet  Google Scholar 

  12. Coifman, R. R., Jones, P., Rubio de Francia, J. L., Constructive decomposition of BMO functions and factorization of A p weights, Proc. Amer. Math. Soc. 87 (1983), no. 4, 675–676.

    Google Scholar 

  13. Coifman, R. R., Rochberg, R., Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249–254.

    Article  MATH  MathSciNet  Google Scholar 

  14. Córdoba, A., Fefferman, C., A weighted norm inequality for singular integrals, Studia Math. 57 (1976), no. 1, 97–101.

    MATH  MathSciNet  Google Scholar 

  15. Cruz-Uribe, D., New proofs of two-weight norm inequalities for the maximal operator, Georgian Math. J. 7 (2000), no. 1, 33–42.

    MATH  MathSciNet  Google Scholar 

  16. Cruz-Uribe, D., Martell, J. M., Pérez, C., Extrapolation results for A weights and applications, J. Funct. Anal. 213 (2004), no. 2, 412–439.

    Article  MATH  MathSciNet  Google Scholar 

  17. Cruz-Uribe, D., Martell, J. M., Pérez, C., Sharp weighted estimates for approximating dyadic operators, Electron. Res. Announc. Math. Sci. 17 (2010), 12–19.

    MATH  MathSciNet  Google Scholar 

  18. Cruz-Uribe, D., Martell, J. M., Pérez, C., Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, 215, Birkhäuser/Springer Basel AG, Basel, 2011.

    Google Scholar 

  19. Cruz-Uribe, D., Martell, J. M., Pérez, C., Sharp weighted estimates for classical operators, Adv. Math. 229 (2012), no. 1, 408–441.

    Article  MATH  MathSciNet  Google Scholar 

  20. Cruz-Uribe, D., Neugebauer, C. J., The structure of the reverse Hölder classes, Trans. Amer. Math. Soc. 347 (1995), no. 8, 2941–2960.

    MATH  MathSciNet  Google Scholar 

  21. de Guzmán, M., Differentiation of Integrals in \(\mathbb{R}^{n}\), Lecture Notes in Math. 481, Springer-Verlag, Berlin-New York, 1975.

    Google Scholar 

  22. Dragičević, O., Grafakos, L., C. Pereyra, and S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 (2005), no. 1, 73–91.

    Google Scholar 

  23. Duoandikoetxea, J., Fourier Analysis, Grad. Studies in Math. 29, American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  24. Duoandikoetxea, J., Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 (2011), no. 6, 1886–1901.

    Article  MATH  MathSciNet  Google Scholar 

  25. Fan, K., Minimax theorems, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 42–47.

    Article  MATH  MathSciNet  Google Scholar 

  26. Fefferman, C., Stein, E. M., Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115.

    Article  MATH  MathSciNet  Google Scholar 

  27. García-Cuerva, J., An extrapolation theorem in the theory of A p weights, Proc. Amer. Math. Soc. 87 (1983), no. 3, 422–426.

    MATH  MathSciNet  Google Scholar 

  28. García-Cuerva, J., Rubio de Francia, J.-L., Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116, Notas de Matemática (104), North-Holland Publishing Co., Amsterdam, 1985.

    Google Scholar 

  29. Garnett, J., Jones, P., The distance in BMO to \(L^{\infty }\), Ann. of Math. 108 (1978), no. 2, 373–393.

    Article  MathSciNet  Google Scholar 

  30. Gehring, F. W., The L p -integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), no. 1, 265–277.

    Article  MATH  MathSciNet  Google Scholar 

  31. Grafakos, L., Modern Fourier Analysis, 3rd edition, Graduate Texts in Math. 250, Springer, New York, 2014.

    Google Scholar 

  32. Grafakos, L., Martell, J. M., Extrapolation of weighted norm inequalities for multivariable operators and applications J. Geom. Anal. 14 (2004), no. 1, 19–46.

    Article  MATH  MathSciNet  Google Scholar 

  33. Hardy, G. H., Littlewood, J. E., Some more theorems concerning Fourier series and Fourier power series, Duke Math. J. 2 (1936), no. 2, 354–381.

    Article  MathSciNet  Google Scholar 

  34. Helson, H., Szegő, G., A problem in prediction theory, Ann. Mat. Pura Appl. (4) 51 (1960), 107–138.

    Google Scholar 

  35. Hrusčev, S. V., A description of weights satisfying the A condition of Muckenhoupt, Proc. Amer. Math. Soc. 90 (1984), no. 2, 253–257.

    MATH  MathSciNet  Google Scholar 

  36. Hunt, R., Kurtz, D., Neugebauer, C. J., A note on the equivalence of A p and Sawyer’s condition for equal weights, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, IL, 1981), pp. 156–158, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983.

    Google Scholar 

  37. Hunt, R., Muckenhoupt, B., Wheeden, R., Weighted norm inequalities for the conjugate function and the Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251.

    Article  MATH  MathSciNet  Google Scholar 

  38. Hytönen, T. P., The sharp weighted bound for general Calderón-Zygmund operators, Ann. of Math. (2nd Ser.) 175 (2012), no.3, 1473–1506.

    Google Scholar 

  39. Hytönen, T. P., Lacey, M. T., Pérez, C., Sharp weighted bounds for the q-variation of singular integrals, Bull. Lond. Math. Soc. 45 (2013), no. 3, 529–540.

    Article  MATH  MathSciNet  Google Scholar 

  40. Hytönen, T. P., Pérez, C., Sharp weighted bounds involving A , Anal. PDE 6 (2013), no. 4, 777–818.

    Article  MATH  MathSciNet  Google Scholar 

  41. Jones, P., Factorization of A p weights, Ann. of Math. (2nd Ser.) 111 (1980), no. 3, 511–530.

    Google Scholar 

  42. Korenovskyy, A. A., Lerner, A. K., Stokolos, A. M., A note on the Gurov–Reshetnyak condition, Math. Res. Lett. 9 (2002), no. 5–6, 579–583.

    Article  MATH  MathSciNet  Google Scholar 

  43. Kurtz, D., Operator estimates using the sharp function, Pacific J. Math. 139 (1989), no. 2, 267–277.

    Article  MATH  MathSciNet  Google Scholar 

  44. Lacey, M. T., Petermichl, S., Reguera, M. C., Sharp A 2 inequality for Haar shift operators, Math. Ann. 348 (2010), no. 1, 127–141.

    Article  MATH  MathSciNet  Google Scholar 

  45. Lerner, A. K., On pointwise estimates for maximal and singular integral operators, Studia Math. 138 (2000), no. 3, 285–291.

    MATH  MathSciNet  Google Scholar 

  46. Lerner, A. K., An elementary approach to several results on the Hardy–Littlewood maximal operator, Proc. Amer. Math. Soc., 136 (2008), no. 8, 2829–2833.

    Article  MATH  MathSciNet  Google Scholar 

  47. Lerner, A. K., A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. London Math. Soc. 42 (2010), no. 5, 843–856.

    Article  MATH  MathSciNet  Google Scholar 

  48. Lerner, A. K., On an estimate of Calderón-Zygmund operators by dyadic positive operators, J. Anal. Math. 121 (2013), 141–161.

    Article  MATH  MathSciNet  Google Scholar 

  49. Lerner, A. K., A simple proof of the A 2 conjecture, Int. Math. Res. Not. IMRN 14 (2013), 3159–3170.

    MathSciNet  Google Scholar 

  50. Lerner, A. K., Mixed A p -A r inequalities for classical singular integrals and Littlewood-Paley operators, J. Geom. Anal. 23 (2013), no. 3, 1343–1354.

    Article  MATH  MathSciNet  Google Scholar 

  51. Lerner, A. K., Ombrosi, S., Pérez, C., A 1 bounds for Calderón–Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. 16 (2009), no. 1, 149–156.

    Article  MATH  MathSciNet  Google Scholar 

  52. Mattila, P., Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  53. Maurey, B., Théorèmes de factorization pour les opérateurs linéaires à valeurs dans les espace L p, Astérisque, No. 11, Société Mathématique de France, Paris, 1974.

    Google Scholar 

  54. Morse, A. P., Perfect blankets, Trans. Amer. Math. Soc. 69 (1947), 418–442.

    Article  MathSciNet  Google Scholar 

  55. Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.

    Article  MATH  MathSciNet  Google Scholar 

  56. Muckenhoupt, B., The equivalence of two conditions for weight functions, Studia Math. 49 (1973/1974), 101–106.

    Google Scholar 

  57. Muckenhoupt, B., Wheeden, R. L., Two weight function norm inequalities for the Hardy–Littlewood maximal function and the Hilbert transform, Studia Math. 55 (1976), no. 3, 279–294.

    MATH  MathSciNet  Google Scholar 

  58. Nazarov, F., Reznikov, A., Vasyunin, V., Volberg, A., A 1 conjecture: weak norm estimates of weighted singular integrals and Bellman functions, http://sashavolberg.wordpress.com

    Google Scholar 

  59. Nazarov, F., Treil, S., Volberg, A., The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909–928.

    Article  MATH  MathSciNet  Google Scholar 

  60. Nazarov, F., Treil, S., Volberg, A., Bellman function in stochastic control and harmonic analysis, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), pp. 393–423, Oper. Theory Adv. Appl. 129, Birkhäuser, Basel, 2001.

    Google Scholar 

  61. Nazarov, F., Treil, S., Volberg, A., Two weight inequalities for individual Haar multipliers and other well localized operators, Math. Res. Lett. 15 (2008), no. 3, 583–597.

    Article  MATH  MathSciNet  Google Scholar 

  62. Orobitg, J., Pérez, C., A p weights for nondoubling measures in R n and applications, Trans. Amer. Math. Soc. 354 (2002), no. 5, 2013–2033 (electronic).

    Google Scholar 

  63. Pérez, C., Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), no. 2, 296–308.

    Google Scholar 

  64. Pérez, C., Some topics from Calderón–Zygmund theory related to Poincaré-Sobolev inequalities, fractional integrals and singular integral operators, Function Spaces Lectures, Spring School in Analysis, pp. 31–94, Jaroslav Lukeš and Luboš Pick (eds.), Paseky, 1999.

    Google Scholar 

  65. Petermichl, S., The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic, Amer. J. Math. 129 (2007), no. 5, 1355–1375.

    Article  MATH  MathSciNet  Google Scholar 

  66. Petermichl, S., The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1237–1249.

    Article  MATH  MathSciNet  Google Scholar 

  67. Petermichl, S., Volberg, A., Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), no. 2, 281–305.

    Article  MATH  MathSciNet  Google Scholar 

  68. Reguera, M. C., On Muckenhoupt-Wheeden conjecture, Adv. Math. 227 (2011), no. 4, 1436–1450.

    Article  MATH  MathSciNet  Google Scholar 

  69. Reguera, M., C., Thiele, C., The Hilbert transform does not map L 1 (Mw) to \(L^{1,\infty }(w)\), Math. Res. Lett. 19 (2012), no. 1, 1–7.

    Google Scholar 

  70. Rosenblum, M., Summability of Fourier series in L p (dμ), Trans. Amer. Math. Soc. 105 (1962), 32–42.

    MATH  MathSciNet  Google Scholar 

  71. Rubio de Francia, J.-L., Weighted norm inequalities and vector valued inequalities, Harmonic Analysis (Minneapolis, MN, 1981), pp. 86–101, Lect. Notes in Math. 908, Springer, Berlin, New York, 1982.

    Google Scholar 

  72. Rubio de Francia, J.-L., Factorization theory and A p weights, Amer. J. Math. 106 (1984), no. 3, 533–547.

    Google Scholar 

  73. Sawyer, E., A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11.

    MATH  MathSciNet  Google Scholar 

  74. Stein, E. M., Note on singular integrals, Proc. Amer. Math. Soc. 8 (1957), 250–254.

    Article  MATH  MathSciNet  Google Scholar 

  75. Stein, E. M., Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis (Beijing, 1984), pp. 307–355, Annals of Math. Studies 112, Princeton Univ. Press, Princeton, NJ, 1986.

    Google Scholar 

  76. Verbitsky, I. E., Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization through L p∞, Integral Equations Operator Theory 15 (1992), no. 1, 124–153.

    Article  MATH  MathSciNet  Google Scholar 

  77. Wilson, J. M., Weighted norm inequalities for the continuous square function, Trans. Amer. Math. Soc. 314 (1989), no. 2, 661–692.

    Article  MATH  MathSciNet  Google Scholar 

  78. Wilson, M., Weighted Littlewood–Paley Theory and Exponential-Square Integrability, Lecture Notes in Mathematics, 1924 Springer, Berlin, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grafakos, L. (2014). Weighted Inequalities. In: Classical Fourier Analysis. Graduate Texts in Mathematics, vol 249. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1194-3_7

Download citation

Publish with us

Policies and ethics