Advertisement

Littlewood–Paley Theory and Multipliers

  • Loukas Grafakos
Chapter
Part of the Graduate Texts in Mathematics book series (GTM, volume 249)

Abstract

In this chapter we are concerned with orthogonality properties of the Fourier transform. This orthogonality is easily understood on L 2, but at this point it is not clear how it manifests itself on other spaces. Square functions introduce a way to express and quantify orthogonality of the Fourier transform on L p and other function spaces. The introduction of square functions in this setting was pioneered by Littlewood and Paley, and the theory that subsequently developed is named after them. The extent to which Littlewood–Paley theory characterizes function spaces is remarkable.

References

  1. 22.
    Benedek, A., Calderón, A.-P., Panzone, R., Convolution operators on Banach-space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356–365.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 23.
    Benedetto, J., Frazier, M. (eds.), Wavelets: Mathematics and Applications, CRC Press, Boca Raton, FL, 1994.zbMATHGoogle Scholar
  3. 34.
    Bourgain, J., On square functions on the trigonometric system, Bull. Soc. Math. Belg. Sér. B 37 (1985), no. 1, 20–26.zbMATHMathSciNetGoogle Scholar
  4. 36.
    Bourgain, J., Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 39.
    Burkholder, D. L., Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1505.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 40.
    Burkholder, D. L., Gundy, R. F., Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970), no. 1, 249–304.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 42.
    Calderón, A. P., Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190.zbMATHMathSciNetGoogle Scholar
  8. 45.
    Calderón, A. P., Torchinsky, A., Parabolic maximal functions associated with a distribution, II, Advances in Math. 24 (1977), no. 2, 101–171.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 50.
    Calderón, C., Lacunary spherical means, Illinois J. Math. 23 (1979), no. 3, 476–484.MathSciNetGoogle Scholar
  10. 52.
    Carbery, A., Variants of the Calderón–Zygmund theory for L p -spaces, Rev. Mat. Iberoamericana 2 (1986), no. 4, 381–396.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 55.
    Carleson, L., On the Littlewood–Paley Theorem, Mittag-Leffler Institute Report, Djursholm, Sweden, 1967.Google Scholar
  12. 59.
    Christ, M., A convolution inequality for Cantor-Lebesgue measures, Rev. Mat. Iberoamericana 1 (1985), no. 4, 79–83.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 64.
    Chui, C. (ed.), Wavelets: A Tutorial in Theory and Applications, Academic Press, San Diego, CA, 1992.zbMATHGoogle Scholar
  14. 69.
    Coifman, R. R., Rubio de Francia, J.-L., Semmes, S., Multiplicateurs de Fourier de \(L^{p}(\mathbb{R})\) et estimations quadratiques, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 8, 351–354.Google Scholar
  15. 71.
    Coifman, R. R., Weiss, G., Book review of “Littlewood–Paley and multiplier theory”, Bull. Amer. Math. Soc. 84 (1978), no. 2, 242–250.CrossRefMathSciNetGoogle Scholar
  16. 76.
    Cowling, M., Mauceri, G., On maximal functions, Rend. Sem. Mat. Fis. Milano 49 (1979), 79–87.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 88.
    Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 89.
    Daubechies, I., Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Math, 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.Google Scholar
  19. 90.
    Davis, B., On the integrability of the martingale square function, Israel J. Math. 8 (1970), 187–190.zbMATHGoogle Scholar
  20. 97.
    Doob, J. L., Stochastic Processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953.Google Scholar
  21. 102.
    Duoandikoetxea, J., Rubio de Francia, J.-L., Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561.Google Scholar
  22. 103.
    Duoandikoetxea, J., Vega, L., Spherical means and weighted inequalities, J. London Math. Soc. (2) 53 (1996), no. 2, 343–353.Google Scholar
  23. 120.
    Frazier, M., An Introduction to Wavelets Through Linear Algebra, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1999.Google Scholar
  24. 124.
    Garrigós, G., Seeger, A., Characterizations of Hankel multipliers, Math. Ann. 342 (2008), no. 1, 31–68.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 131.
    Grafakos, L., Modern Fourier Analysis, 3rd edition, Graduate Texts in Math. 250, Springer, New York, 2014.Google Scholar
  26. 133.
    Grafakos, L., Kalton, N., The Marcinkiewicz multiplier condition for bilinear operators, Studia Math. 146 (2001), no. 2, 115–156.CrossRefzbMATHMathSciNetGoogle Scholar
  27. 140.
    Gröchenig, K., Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis Birkhäuser Boston, Inc., Boston, MA, 2001.CrossRefzbMATHGoogle Scholar
  28. 150.
    Heo, Y., Nazarov, F., Seeger, A., Radial Fourier multipliers in high dimensions, Acta Math. 206 (2011), no. 1, 55–92.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 151.
    Hérnandez, E., Weiss, G., A First Course on Wavelets (Studies in Advanced Mathematics), CRC Press, Boca Raton, FL, 1996.CrossRefGoogle Scholar
  30. 159.
    Hörmander, L., Estimates for translation invariant operators in L p spaces, Acta Math. 104 (1960), no. 1–2, 93–140.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 173.
    Iosevich, A., Sawyer, E., Maximal averages over surfaces, Adv. Math. 132 (1997), no. 1, 46–119.CrossRefzbMATHMathSciNetGoogle Scholar
  32. 181.
    Journé, J.- L., Calderón–Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1 (1985), no. 3, 55–91.Google Scholar
  33. 184.
    Kaiser, G., A Friendly Guide to Wavelets, Birkhäuser, Boston, MA, 1994.zbMATHGoogle Scholar
  34. 196.
    Kolmogorov, A. N., Une contribution à l’​ étude de la convergence des séries de Fourier, Fund. Math. 5 (1924), 96–97.Google Scholar
  35. 208.
    Kurtz, D., Operator estimates using the sharp function, Pacific J. Math. 139 (1989), no. 2, 267–277.CrossRefzbMATHMathSciNetGoogle Scholar
  36. 209.
    Kurtz, D., Wheeden, R., Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362.CrossRefzbMATHMathSciNetGoogle Scholar
  37. 216.
    Lemarié, P., Meyer, Y., Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2 (1986), no. 1–2, 1–18.CrossRefMathSciNetGoogle Scholar
  38. 227.
    Littlewood, J. E., Paley, R. E. A. C., Theorems on Fourier series and power series, J. London Math. Soc. 6 (1931), no. 3, 230–233.Google Scholar
  39. 228.
    Littlewood, J. E., Paley, R. E. A. C., Theorems on Fourier series and power series (II), Proc. London Math. Soc. 42 (1936), no. 1, 52–89.Google Scholar
  40. 229.
    Littlewood, J. E., Paley, R. E. A. C., Theorems on Fourier series and power series (III), Proc. London Math. Soc. 43 (1937), no. 2, 105–126.Google Scholar
  41. 237.
    Magyar, A., Stein, E. M., Wainger, S., Discrete analogues in harmonic analysis: spherical averages, Ann. of Math. (2nd Ser.) 155 (2002), no. 1, 189–208.Google Scholar
  42. 238.
    Mallat, S., Multiresolution approximations and wavelet orthonormal bases of L 2 (R), Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87.zbMATHMathSciNetGoogle Scholar
  43. 239.
    Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, Inc., San Diego, CA, 1998.zbMATHGoogle Scholar
  44. 241.
    Marcinkiewicz, J., Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78–91.Google Scholar
  45. 249.
    Meyer, Y., Principe d’​ incertitude, bases hilbertiennes et algèbres d’​ opérateurs, Séminaire Bourbaki, Vol. 1985/86, Astérisque No. 145-146 (1987) 4, 209–223.Google Scholar
  46. 250.
    Meyer, Y., Ondelettes et Opérateurs, I, Ondelletes, Hermann, Paris, 1990.Google Scholar
  47. 251.
    Meyer, Y., Ondelettes et Opérateurs, II, Opérateurs de Calderón-Zygmund, Hermann, Paris, 1990.zbMATHGoogle Scholar
  48. 252.
    Meyer, Y., Wavelets, Vibrations, and Scalings, CRM Monograph Series, 9, American Mathematical Society, Providence, RI, 1998.Google Scholar
  49. 253.
    Meyer, Y., Coifman, R. R., Ondelettes et Opérateurs, III, Opérateurs multilinéaires, Hermann, Paris, 1991.zbMATHGoogle Scholar
  50. 254.
    Mihlin, S. G., On the multipliers of Fourier integrals [Russian], Dokl. Akad. Nauk. SSSR (N.S.) 109 (1956), 701–703.Google Scholar
  51. 255.
    Miyachi, A., On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 2, 267–315.zbMATHMathSciNetGoogle Scholar
  52. 256.
    Mockenhaupt, G., Seeger, A., Sogge, C., Wave front sets, local smoothing and Bourgain’s circular maximal theorem, Ann. of Math. (2nd Ser.) 136 (1992), no. 1, 207–218.Google Scholar
  53. 264.
    Nagel, A., Stein, E. M., Wainger, S., Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060–1062.CrossRefzbMATHMathSciNetGoogle Scholar
  54. 269.
    Nguyen, H. V., A maximal Fourier integral operator and an application, J. of Pseudodiffential Operators 4 (2013), 443–456.Google Scholar
  55. 270.
    Nyquist, H., Certain topics in telegraph transmission theory, Trans. AIEE 47 (Apr. 1928), 617–64.Google Scholar
  56. 276.
    Pereyra, M. C., Lecture Notes on Dyadic Harmonic Analysis, Second Summer School in Analysis and Mathematical Physics (Cuernavaca, 2000), pp. 1–60, Contemp. Math., 289, American Mathematical Society, Providence, RI, 2001.Google Scholar
  57. 285.
    Plancherel, M., Pólya, G., Fonctions entières et intégrales de fourier multiples, Comment. Math. Helv. 10 (1937), no. 1, 110–163.CrossRefzbMATHMathSciNetGoogle Scholar
  58. 301.
    Rubio de Francia, J.-L., A Littlewood–Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 1 (1985), no. 2, 1–14.Google Scholar
  59. 302.
    Rubio de Francia, J.-L., Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), no. 2, 395–404.Google Scholar
  60. 311.
    Sato, S., Note on a Littlewood–Paley operator in higher dimensions, J. London Math. Soc. (2) 42 (1990), no. 3, 527–534.Google Scholar
  61. 313.
    Schlag, W., A geometric proof of the circular maximal theorem, Duke Math. J. 93 (1998), no. 3, 505–533.CrossRefzbMATHMathSciNetGoogle Scholar
  62. 316.
    Seeger, A., Some inequalities for singular convolution operators in L p -spaces, Trans. Amer. Math. Soc. 308 (1988), no. 1, 259–272.zbMATHMathSciNetGoogle Scholar
  63. 319.
    Shannon, C. E., Communication in the presence of noise, Proc. I.R.E. 37 (1949), 10–21.Google Scholar
  64. 326.
    Sjölin, P., A note on Littlewood–Paley decompositions with arbitrary intervals, J. Approx. Theory 48 (1986), no. 3, 328–334.CrossRefzbMATHMathSciNetGoogle Scholar
  65. 328.
    Sogge, C., Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, 105, Cambridge University Press, Cambridge, 1993.Google Scholar
  66. 329.
    Soria, F., A note on a Littlewood–Paley inequality for arbitrary intervals in \(\mathbb{R}^{2}\), J. London Math. Soc. (2) 36 (1987), no. 1, 137–142.Google Scholar
  67. 334.
    Stein, E. M., On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430–466.CrossRefMathSciNetGoogle Scholar
  68. 337.
    Stein, E. M., Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, NJ, 1970.Google Scholar
  69. 339.
    Stein, E. M., Maximal functions I: Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175.CrossRefzbMATHMathSciNetGoogle Scholar
  70. 340.
    Stein, E. M., The development of square functions in the work of A. Zygmund, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 359–376.Google Scholar
  71. 352.
    Strömberg, J.-O., A modified Franklin system and higher-order spline systems on \(\mathbb{R}^{n}\) as unconditional bases for Hardy spaces, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, IL, 1981), pp. 475–494, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983.Google Scholar
  72. 357.
    Tao, T., Wright, J., Endpoint multiplier theorems of Marcinkiewicz type, Rev. Mat. Iberoamericana 17 (2001), no. 3, 521–558.CrossRefzbMATHMathSciNetGoogle Scholar
  73. 374.
    Wickerhauser, M. V., Adapted Wavelet Analysis from Theory to Software, A. K. Peters, Ltd., Wellesley, MA, 1994.zbMATHGoogle Scholar
  74. 379.
    Wojtaszczyk, P., A Mathematical Introduction to Wavelets, London Mathematical Society Student Texts 37, Cambridge University Press, Cambridge, 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Loukas Grafakos
    • 1
  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA

Personalised recommendations