• Javier Ávalos
  • Violeta Díaz-Sánchez
  • Jorge García-Martínez
  • Marta Castrillo
  • Macarena Ruger-Herreros
  • M. Carmen Limón
Part of the Fungal Biology book series (FUNGBIO)


Carotenoids are valuable biotechnological compounds because of their health-promoting properties and their use as food and feed additives. Carotenoid biosynthesis is a widespread trait in fungi, and the easy detection of carotenoid mutants have made them useful visual markers for genetic analysis in model species. These features have attracted the interest of researchers towards the analysis of their biosynthetic pathways. The genetics and biochemistry of fungal carotenogenesis have reached high levels of knowledge for three biosynthetic carotenoid pathways: those for β-carotene in zygomycetes, neurosporaxanthin in ascomycetes, and astaxanthin in basidiomycetes. The information on astaxanthin biosynthesis is presented in another chapter. This chapter reviews the current knowledge on the genes and enzymes responsible for β-carotene and neurosporaxanthin biosynthesis in some model fungi, describes the available information on the relevant regulatory factors that affect the production of them, and their potential biological roles. Less information is available on the biosynthesis of other fungal carotenoids, which are also briefly reviewed.


Carotenoid Biosynthesis Rhodotorula Glutinis Lycopene Production Carotenoid Pathway Albino Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Spanish Government (Ministerio de Ciencia y Tecnología, projects BIO2006-01323 and BIO2009-11131) and Andalusian Government (project P07-CVI-02813 and CTS-6638) for funding support.


  1. 1.
    Britton G, Liaaen-Jensen S, Pfander H. Carotenoids. Basel: Birkhäuser; 1998.Google Scholar
  2. 2.
    Britton G, Liaaen-Jensen S, Pfander H. Carotenoids: handbook. Boston: Birkhauser; 2004.CrossRefGoogle Scholar
  3. 3.
    Sandmann G, Misawa N. Fungal carotenoids. In: Osiewacz HD, editor. The Mycota X industrial applications. Berlin: Springer; 2002. p. 247–62.CrossRefGoogle Scholar
  4. 4.
    Sieiro C, Poza M, de Miguel T, Villa TG. Genetic basis of microbial carotenogenesis. Int Microbiol. 2003;6:11–6.PubMedGoogle Scholar
  5. 5.
    Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res. 2004;43:228–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res. 2013;52:539–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Blomhoff R, Blomhoff HK. Overview of retinoid metabolism and function. J Neurobiol. 2006;66:606–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Moran NA, Jarvik T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science. 2010;328:624–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Avalos J, Cerdá-Olmedo E. Fungal carotenoid production. In: Arora DK, editor. Handbook of fungal biotechnology. 2nd ed. New York: Marcel Dekker, Inc.; 2004. p. 367–78.Google Scholar
  10. 10.
    Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol. 2007;74:1163–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993;15: 517–24.CrossRefGoogle Scholar
  12. 12.
    Cerdá-Olmedo E. Carotene. In: Cerdá-Olmedo E, Lipson ED, editors. Phycomyces. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1987. p. 199–222.Google Scholar
  13. 13.
    Navarro E, Sandmann G, Torres-Martínez S. Mutants of the carotenoid biosynthetic pathway of Mucor circinelloides. Exp Mycol. 1995;19:186–90.CrossRefGoogle Scholar
  14. 14.
    Fraser PD, Ruiz-Hidalgo MJ, López-Matas MA, Álvarez MI, Eslava AP, Bramley PM. Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochim Biophys Acta. 1996;1289:203–8.PubMedCrossRefGoogle Scholar
  15. 15.
    de Miguel T, Calo P, Díaz A, Villa TG. The genus Rhodosporidium: a potential source of β-carotene. Microbiologia. 1997;13:67–70.PubMedGoogle Scholar
  16. 16.
    Georgiou CD, Zervoudakis G, Tairis N, Kornaros M. β-Carotene production and its role in sclerotial differentiation of Sclerotium rolfsii. Fungal Genet Biol. 2001;34:11–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Georgiou CD, Tairis N, Polycratis A. Production of β-carotene by Sclerotinia sclerotiorum and its role in sclerotium differentiation. Mycol Res. 2001;105:1110–5.CrossRefGoogle Scholar
  18. 18.
    Han M, He Q, Zhang WG. Carotenoids production in different culture conditions by Sporidiobolus pararoseus. Prep Biochem Biotechnol. 2012;42:293–303.PubMedCrossRefGoogle Scholar
  19. 19.
    Estrada AF, Brefort T, Mengel C, Díaz-Sánchez V, Alder A, Al-Babili S, et al. Ustilago maydis accumulates β-carotene at levels determined by a retinal-forming carotenoid oxygenase. Fungal Genet Biol. 2010;46:803–13.CrossRefGoogle Scholar
  20. 20.
    Will OH, Ruddat M, Garber ED, Kezdy FJ. Characterization of carotene accumulation in Ustilago violacea using high-performance liquid chromatography. Curr Microbiol. 1984;10:57–63.CrossRefGoogle Scholar
  21. 21.
    Will OH, Ruddat M, Newland NA. Characterization of carotene accumulation in species of the fungal genus Ustilago using high-performance liquid chromatography. Bot Gaz. 1985;146:204–7.CrossRefGoogle Scholar
  22. 22.
    El-Jack M, Mackenzie A, Bramley PM. The photoregulation of carotenoid biosynthesis in Aspergillus giganteus mut. alba. Planta. 1988;174:59–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Daub ME, Payne GA. The role of carotenoids in resistance of fungi to cercosporin. Phytopathology. 1989;79:180–5.CrossRefGoogle Scholar
  24. 24.
    Han JR, Zhao WJ, Gao YY, Yuan JM. Effect of oxidative stress and exogenous β-carotene on sclerotial differentiation and carotenoid yield of Penicillium sp. PT95. Lett Appl Microbiol. 2005;40:412–7.PubMedCrossRefGoogle Scholar
  25. 25.
    van Eijk GW, Mummery RS, Roeymans HJ, Valadon LR. A comparative study of carotenoids of Aschersonia aleyroides and Aspergillus giganteus. Antonie Van Leeuwenhoek. 1979;45:417–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Johnson EA. Phaffia rhodozyma: colorful odyssey. Int Microbiol. 2003;6:169–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Bhosale PB, Gadre RV. Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol. 2001;55:423–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Bejarano ER, Govind NS, Cerdá-Olmedo E. ξ-Carotene and other carotenes in a Phycomyces mutant. Phytochemistry. 1987;26:2251–4.CrossRefGoogle Scholar
  29. 29.
    Ruiz-Hidalgo MJ, Benito EP, Sandmann G, Eslava AP. The phytoene dehydrogenase gene of Phycomyces: regulation of its expression by blue light and vitamin A. Mol Gen Genet. 1997;253:734–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Velayos A, Blasco JL, Alvarez MI, Iturriaga EA, Eslava AP. Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta. 2000;210:938–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Rodríguez-Saiz M, Paz B, De la Fuente JL, López-Nieto MJ, Cabri W, Barredo JL. Blakeslea trispora genes for carotene biosynthesis. Appl Environ Microbiol. 2004;70:5589–94.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ehrenshaft M, Daub ME. Isolation, sequence, and characterization of the Cercospora nicotianae phytoene dehydrogenase gene. Appl Environ Microbiol. 1994;60:2766–71.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Verdoes JC, Krubasik KP, Sandmann G, van Ooyen AJ. Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet. 1999;262:453–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Arrach N, Fernández-Martín R, Cerdá-Olmedo E, Avalos J. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci USA. 2001;98:1687–92.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Velayos A, Eslava AP, Iturriaga EA. A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem. 2000;267:5509–19.PubMedCrossRefGoogle Scholar
  36. 36.
    Sanz C, Velayos A, Alvarez MI, Benito EP, Eslava AP. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase. PLoS One. 2011;6:e23102.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Torres-Martínez S, Murillo FJ, Cerdá-Olmedo E. Genetics of lycopene cyclization and substrate transfer in β-carotene biosynthesis in Phycomyces. Genet Res. 1980;36:299–309.PubMedCrossRefGoogle Scholar
  38. 38.
    Breitenbach J, Fraser PD, Sandmann G. Carotenoid synthesis and phytoene synthase activity during mating of Blakeslea trispora. Phytochemistry. 2012;76:40–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Cerdá-Olmedo E. Carotene mutants of Phycomyces. Methods Enzymol. 1985;110:220–43.CrossRefGoogle Scholar
  40. 40.
    Velayos A, López-Matas MA, Ruiz-Hidalgo MJ, Eslava AP. Complementation analysis of carotenogenic mutants of Mucor circinelloides. Fungal Genet Biol. 1997;22:19–27.PubMedCrossRefGoogle Scholar
  41. 41.
    Mehta BJ, Cerdá-Olmedo E. Mutants of carotene production in Blakeslea trispora. Appl Microbiol Biotechnol. 1995;42:836–8.CrossRefGoogle Scholar
  42. 42.
    Mehta BJ, Obraztsova IN, Cerdá-Olmedo E. Mutants and intersexual heterokaryons of Blakeslea trispora for production of β-carotene and lycopene. Appl Environ Microbiol. 2003;69:4043–8.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Goodwin TW. The biochemistry of the carotenoids. 2nd ed. London: Chapman & Hall; 1980.CrossRefGoogle Scholar
  44. 44.
    Fraser PD, Bramley PM. The purification of phytoene dehydrogenase from Phycomyces blakesleeanus. Biochim Biophys Acta. 1994;1212:59–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Ootaki T, Crafts-Lighty A, Delbrück M, Hsu WJ. Complementation between mutants of Phycomyces deficient with respect to carotenogenesis. Mol Gen Genet. 1973;121:57–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Avalos J, Cerdá-Olmedo E. Chemical modification of carotenogenesis in Gibberella fujikuroi. Phytochemistry. 1986;25:1837–41.CrossRefGoogle Scholar
  47. 47.
    Bejarano ER, Cerdá-Olmedo E. Inhibition of phytoene dehydrogenation and activation of carotenogenesis in Phycomyces. Phytochemistry. 1989;28:1623–6.CrossRefGoogle Scholar
  48. 48.
    De la Guardia MD, Aragón CM, Murillo FJ, Cerdá-Olmedo E. A carotenogenic enzyme aggregate in Phycomyces: evidence from quantitive complementation. Proc Natl Acad Sci USA. 1971;68:2012–5.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Aragón CM, Murillo FJ, de la Guardia MD, Cerdá-Olmedo E. An enzyme complex for the dehydrogenation of phytoene in Phycomyces. Eur J Biochem. 1976;63:71–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Candau R, Bejarano ER, Cerdá-Olmedo E. In vivo channeling of substrates in an enzyme aggregate for β-carotene biosynthesis. Proc Natl Acad Sci USA. 1991;88:4936–40.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Sanz C, Alvarez MI, Orejas M, Velayos A, Eslava AP, Benito EP. Interallelic complementation provides genetic evidence for the multimeric organization of the Phycomyces blakesleeanus phytoene dehydrogenase. Eur J Biochem. 2002;269:902–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Mehta BJ, Cerdá-Olmedo E. Lycopene cyclization in Blakeslea trispora. Mycoscience. 1999;40:307–10.CrossRefGoogle Scholar
  53. 53.
    Lampila LE, Wallen SE, Bullerman LB. A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia. 1985;90:65–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Avalos J, Bejarano ER, Cerdá-Olmedo E. Photoinduction of carotenoid biosynthesis. Methods Enzymol. 1993;214:283–94.CrossRefGoogle Scholar
  55. 55.
    Bergman K, Eslava AP, Cerdá-Olmedo E. Mutants of Phycomyces with abnormal phototropism. Mol Gen Genet. 1973;123:1–16.PubMedCrossRefGoogle Scholar
  56. 56.
    Bejarano ER, Avalos J, Lipson ED, Cerdá-Olmedo E. Photoinduced accumulation of carotene in Phycomyces. Planta. 1991;183:1–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Sutter RP. Effect of light on β-carotene accumulation in Blakeslea trispora. J Gen Microbiol. 1970;64:215–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Blasco JL, Roessink D, Iturriaga EA, Eslava AP, Galland P. Photocarotenogenesis in Phycomyces: expression of the carB gene encoding phytoene dehydrogenase. J Plant Res. 2001;114:25–31.CrossRefGoogle Scholar
  59. 59.
    Almeida ER, Cerdá-Olmedo E. Gene expression in the regulation of carotene biosynthesis in Phycomyces. Curr Genet. 2008;53:129–37.PubMedCrossRefGoogle Scholar
  60. 60.
    Sanz C, Benito EP, Orejas M, Alvarez MI, Eslava AP. Protein-DNA interactions in the promoter region of the Phycomyces carB and carRA genes correlate with the kinetics of their mRNA accumulation in response to light. Fungal Genet Biol. 2010;47:773–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Quiles-Rosillo MD, Ruiz-Vázquez RM, Torres-Martínez S, Garre V. Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora. Fungal Genet Biol. 2005;42:141–53.PubMedCrossRefGoogle Scholar
  62. 62.
    López-Díaz I, Cerdá-Olmedo E. Relationship of photocarotenogenesis to other behavioural and regulatory responses in Phycomyces. Planta. 1980;150:134–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Jayaram M, Leutwiler L, Delbrück M. Light-induced carotene synthesis in mutants of Phycomyces with abnormal phototropism. Photochem Photobiol. 1980;32:241–5.CrossRefGoogle Scholar
  64. 64.
    Flores R, Cerdá-Olmedo E, Corrochano LM. Separate sensory pathways for photomorphogenesis in Phycomyces. Photochem Photobiol. 1998;67:467–72.CrossRefGoogle Scholar
  65. 65.
    Tsolakis G, Parashi E, Galland P, Kotzabasis K. Blue light signaling chains in Phycomyces: phototransduction of carotenogenesis and morphogenesis involves distinct protein kinase/phosphatase elements. Fungal Genet Biol. 1999;28:201–13.PubMedCrossRefGoogle Scholar
  66. 66.
    Idnurm A, Rodríguez-Romero J, Corrochano LM, Sanz C, Iturriaga EA, Eslava AP, et al. The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci USA. 2006;103:4546–51.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Liu Y, He Q, Cheng P. Photoreception in Neurospora: a tale of two White Collar proteins. Cell Mol Life Sci. 2003;60:2131–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Sanz C, Rodríguez-Romero J, Idnurm A, Christie JM, Heitman J, Corrochano LM, et al. Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proc Natl Acad Sci USA. 2009;106:7095–100.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Corrochano LM, Garre V. Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol. 2010;47:893–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Torres-Martínez S, Ruiz-Vázquez RM, Garre V, López-García S, Navarro E, Vila A. Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides. Methods Mol Biol. 2012;898:85–107.PubMedCrossRefGoogle Scholar
  71. 71.
    Silva F, Torres-Martínez S, Garre V. Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol. 2006;61:1023–37.PubMedCrossRefGoogle Scholar
  72. 72.
    Murillo FJ, Cerdá-Olmedo E. Regulation of carotene synthesis in Phycomyces. Mol Gen Genet. 1976;148:19–24.PubMedCrossRefGoogle Scholar
  73. 73.
    Salgado LM, Bejarano ER, Cerdá-Olmedo E. Carotene-superproducing mutants of Phycomyces blakesleeanus. Exp Mycol. 1989;13:332–6.CrossRefGoogle Scholar
  74. 74.
    Mehta BJ, Salgado LM, Bejarano ER, Cerdá-Olmedo E. New mutants of Phycomyces blakesleeanus for β-carotene production. Appl Environ Microbiol. 1997;63:3657–61.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Salgado LM, Avalos J, Bejarano ER, Cerdá-Olmedo E. Correlation between in vivo and in vitro carotenogenesis in Phycomyces. Phytochemistry. 1991;30:2587–91.CrossRefGoogle Scholar
  76. 76.
    Murillo FJ, Torres-Martínez S, Aragón CM, Cerdá-Olmedo E. Substrate transfer in carotene biosynthesis in Phycomyces. Eur J Biochem. 1981;119:511–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Corrochano LM, Cerdá-Olmedo E. Photomorphogenesis in behavioural and colour mutants of Phycomyces. J Photochem Photobiol B. 1990;6:325–35.CrossRefGoogle Scholar
  78. 78.
    Revuelta JL, Eslava AP. A new gene (carC) involved in the regulation of carotenogenesis in Phycomyces. Mol Gen Genet. 1983;192:225–9.CrossRefGoogle Scholar
  79. 79.
    Bejarano ER, Cerdá-Olmedo E. Independence of the carotene and sterol pathways of Phycomyces. FEBS Lett. 1992;306:209–12.PubMedCrossRefGoogle Scholar
  80. 80.
    Kuzina V, Domenech C, Cerdá-Olmedo E. Relationships among the biosyntheses of ubiquinone, carotene, sterols, and triacylglycerols in zygomycetes. Arch Microbiol. 2006;186: 485–93.PubMedCrossRefGoogle Scholar
  81. 81.
    Navarro E, Ruiz-Pérez VL, Torres-Martínez S. Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in Mucor circinelloides. Eur J Biochem. 2000;267:800–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, Nicolás FE, Garre V, Torres-Martínez S, et al. A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Genet Genomics. 2001;266:463–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Lorca-Pascual JM, Murcia-Flores L, Garre V, Torres-Martínez S, Ruiz-Vázquez RM. The RING-finger domain of the fungal repressor crgA is essential for accurate light regulation of carotenogenesis. Mol Microbiol. 2004;52:1463–74.PubMedCrossRefGoogle Scholar
  84. 84.
    Silva F, Navarro E, Peñaranda A, Murcia-Flores L, Torres-Martínez S, Garre V. A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a White Collar-1-like activator. Mol Microbiol. 2008;70:1026–36.PubMedGoogle Scholar
  85. 85.
    Quiles-Rosillo MD, Torres-Martínez S, Garre V. cigA, a light-inducible gene involved in vegetative growth in Mucor circinelloides is regulated by the carotenogenic repressor crgA. Fungal Genet Biol. 2003;38:122–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Murcia-Flores L, Lorca-Pascual JM, Garre V, Torres-Martínez S, Ruiz-Vázquez RM. Non-AUG translation initiation of a fungal RING finger repressor involved in photocarotenogenesis. J Biol Chem. 2007;282:15394–403.PubMedCrossRefGoogle Scholar
  87. 87.
    Bejarano ER, Parra F, Murillo FJ, Cerdá-Olmedo E. End-product regulation of carotenogenesis in Phycomyces. Arch Microbiol. 1988;150:209–14.CrossRefGoogle Scholar
  88. 88.
    Eslava AP, Alvarez MI, Cerdá-Olmedo E. Regulation of carotene biosynthesis in Phycomyces by vitamin A and β-ionone. Eur J Biochem. 1974;48:617–23.CrossRefGoogle Scholar
  89. 89.
    Cerdá-Olmedo E, Hüttermann A. Förderung und Hemmung der Carotinsynthese bei Phycomyces durch Aromaten. Angew Botanik. 1986;60:59–70.Google Scholar
  90. 90.
    Choudhari SM, Ananthanarayan L, Singhal RS. Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour Technol. 2008;99:3166–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Ninet L, Renaut J, Tissier R. Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnol Bioeng. 1969;11:1195–210.CrossRefGoogle Scholar
  92. 92.
    Hu X, Sun J, Yuan Q. Improved β-carotene biosynthesis and gene transcription in Blakeslea trispora with arachidonic acid. Biotechnol Lett. 2012;34:2107–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Tang Q, Li Y, Yuan QP. Effects of an ergosterol synthesis inhibitor on gene transcription of terpenoid biosynthesis in Blakeslea trispora. Curr Microbiol. 2008;57:527–31.PubMedCrossRefGoogle Scholar
  94. 94.
    Blakeslee AF. Sexual reproduction in the Mucorineae. Proc Am Acad Arts Sci. 1904;40:205–319.CrossRefGoogle Scholar
  95. 95.
    Burgeff H. Untersuchungen über Sexualität und Parasitismus bei Mucorineen. Bot Abh. 1924;4:1–135.Google Scholar
  96. 96.
    Govind NS, Cerdá-Olmedo E. Sexual activation of carotenogenesis in Phycomyces blakesleeanus. J Gen Microbiol. 1986;132:2775–80.Google Scholar
  97. 97.
    Sutter RP, Harrison TL, Galasko G. Trisporic acid biosynthesis in Blakeslea trispora via mating type-specific precursors. J Biol Chem. 1974;249:2282–4.PubMedGoogle Scholar
  98. 98.
    Sutter RP. Sexual development. In: Cerdá-Olmedo E, Lipson ED, editors. Phycomyces. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1987. p. 317–36.Google Scholar
  99. 99.
    Sahadevan Y, Richter M, Hoffmann K, Voigt K, Boland W. Early and late trisporoids differentially regulate β-carotene production and gene transcript levels in the mucoralean fungi Blakeslea trispora and Mucor mucedo. Appl Environ Microbiol. 2013;79(23):7466–75.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Murillo FJ, Calderón IL, López-Díaz I, Cerdá-Olmedo E. Carotene-superproducing strains of Phycomyces. Appl Environ Microbiol. 1978;36:639–42.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Austin DG, Bu’Lock JD, Winstanley DJ. Trisporic acid biosynthesis and carotenogenesis in Blakesleea trispora. Biochem J. 1969;113:34P.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Sutter RP. Mutations affecting sexual development in Phycomyces blakesleeanus. Proc Natl Acad Sci USA. 1975;72:127–30.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Kuzina V, Cerdá-Olmedo E. Modification of sexual development and carotene production by acetate and other small carboxylic acids in Blakeslea trispora and Phycomyces blakesleeanus. Appl Environ Microbiol. 2006;72:4917–22.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Schmidt AD, Heinekamp T, Matuschek M, Liebmann B, Bollschweiler C, Brakhage AA. Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR. Appl Microbiol Biotechnol. 2005;67:549–55.PubMedCrossRefGoogle Scholar
  105. 105.
    Kuzina V, Ramírez-Medina H, Visser H, van Ooyen AJ, Cerdá-Olmedo E, van den Berg JA. Genes involved in carotene synthesis and mating in Blakeslea trispora. Curr Genet. 2008;54:143–52.PubMedCrossRefGoogle Scholar
  106. 106.
    Cerdá-Olmedo E. Production of carotenoids with fungi. In: Vandamme E, editor. Biotechnology of vitamin, growth factor and pigment production. London: Elsevier Applied Science; 1989. p. 27–42.CrossRefGoogle Scholar
  107. 107.
    Mehta BJ, Cerdá-Olmedo E. Intersexual partial diploids of Phycomyces. Genetics. 2001;158:635–41.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Lilly VG, Barnett HL, Krause RF. The production of carotene by Phycomyces blakesleeanus. W Va Agric Exp Stn Bull. 1960;441T:1–80.Google Scholar
  109. 109.
    Csernetics A, Nagy G, Iturriaga EA, Szekeres A, Eslava AP, Vágvölgyi C, et al. Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. Fungal Genet Biol. 2011;48:696–703.PubMedCrossRefGoogle Scholar
  110. 110.
    Papp T, Velayos A, Bartok T, Eslava AP, Vagvolgyi C, Iturriaga EA. Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol. 2006;69:526–31.PubMedCrossRefGoogle Scholar
  111. 111.
    Papp T, Csernetics A, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, et al. Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol. 2013;97:4937–50.PubMedCrossRefGoogle Scholar
  112. 112.
    Nicolás-Molina FE, Navarro E, Ruiz-Vázquez RM. Lycopene over-accumulation by disruption of the negative regulator gene crgA in Mucor circinelloides. Appl Microbiol Biotechnol. 2008;78:131–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Austin DJ, Bu'Lock JD, Drake D. The biosynthesis of trisporic acids from β-carotene via retinal and trisporol. Experientia. 1970;26:348–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Caglioti L, Cainelli G, Camerino B, Mondelli R, Prieto A, Quilico A, et al. The structure of trisporic-C acid. Tetrahedron. 1966;22:175–87.CrossRefGoogle Scholar
  115. 115.
    Sutter RP, Dadok J, Bothner-By AA, Smith RR, Mishra PK. Cultures of separated mating types of Blakeslea trispora make D and E forms of trisporic acids. Biochemistry. 1989;28:4060–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Barrero AF, Herrador MM, Arteaga P, Gil J, González JA, Alcalde E, et al. New apocarotenoids and β-carotene cleavage in Blakeslea trispora. Org Biomol Chem. 2011;9:7190–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Polaino S, González-Delgado JA, Arteaga P, Herrador MM, Barrero AF, Cerdá-Olmedo E. Apocarotenoids in the sexual interaction of Phycomyces blakesleeanus. Org Biomol Chem. 2012;10:3002–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Burmester A, Richter M, Schultze K, Voelz K, Schachtschabel D, Boland W, et al. Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genet Biol. 2007;44: 1096–108.PubMedCrossRefGoogle Scholar
  119. 119.
    Polaino S, Herrador MM, Cerdá-Olmedo E, Barrero AF. Splitting of β-carotene in the sexual interaction of Phycomyces. Org Biomol Chem. 2010;8:4229–31.PubMedCrossRefGoogle Scholar
  120. 120.
    Tagua VG, Medina HR, Martín-Domínguez R, Eslava AP, Corrochano LM, Cerdá-Olmedo E, et al. A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genet Biol. 2012;49:398–404.PubMedCrossRefGoogle Scholar
  121. 121.
    Medina HR, Cerdá-Olmedo E, Al-Babili S. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol Microbiol. 2011;82:199–208.PubMedCrossRefGoogle Scholar
  122. 122.
    Salgado LM, Cerdá-Olmedo E. Genetic interactions in the regulation of carotenogenesis in Phycomyces. Curr Genet. 1992;21:67–71.CrossRefGoogle Scholar
  123. 123.
    Czempinski K, Kruft V, Wöstemeyer J, Burmester A. 4-Dihydromethyltrisporate dehydrogenase from Mucor mucedo, an enzyme of the sexual hormone pathway: purification, and cloning of the corresponding gene. Microbiology. 1996;142:2647–54.PubMedCrossRefGoogle Scholar
  124. 124.
    Schimek C, Petzold A, Schultze K, Wetzel J, Wolschendorf F, Burmester A, et al. 4-Dihydromethyltrisporate dehydrogenase, an enzyme of the sex hormone pathway in Mucor mucedo, is constitutively transcribed but its activity is differently regulated in (+) and (-) mating types. Fungal Genet Biol. 2005;42:804–12.PubMedCrossRefGoogle Scholar
  125. 125.
    Wetzel J, Scheibner O, Burmester A, Schimek C, Wöstemeyer J. 4-dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression. Eukaryot Cell. 2009;8:88–95.PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Schimek C, Wöstemeyer J. Carotene derivatives in sexual communication of zygomycete fungi. Phytochemistry. 2009;70:1867–75.PubMedCrossRefGoogle Scholar
  127. 127.
    Polaino S. Apocarotenoides en la interacción sexual de Phycomyces. PhD thesis, University of Seville; 2009.Google Scholar
  128. 128.
    Haxo F. Studies on the carotenoid pigments of Neurospora; composition of the pigment. Arch Biochem. 1949;20:400–21.PubMedGoogle Scholar
  129. 129.
    Zalokar M. Studies on biosynthesis of carotenoids in Neurospora crassa. Arch Biochem Biophys. 1954;50:71–80.PubMedCrossRefGoogle Scholar
  130. 130.
    Zalokar M. Isolation of an acidic pigment in Neurospora. Arch Biochem Biophys. 1957;70:568–71.PubMedCrossRefGoogle Scholar
  131. 131.
    Aasen AJ, Jensen SL. Fungal carotenoids II. The structure of the carotenoid acid neurosporaxanthin. Acta Chem Scand. 1965;19:1843–53.PubMedCrossRefGoogle Scholar
  132. 132.
    Bindl E, Lang W, Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese. VI. Zeitlicher Verlauf der Synthese der einzelnen Carotinoide bei Fusarium aquaeductuum unter verschiedenen Induktionsbedingungen. Planta. 1970;94:156–74.PubMedCrossRefGoogle Scholar
  133. 133.
    Valadon LRG, Mummery RS. Biosynthesis of neurosporaxanthin. Microbios. 1969;1A:3–8.Google Scholar
  134. 134.
    Valadon LRG, Osman M, Mummery RS, Jerebzoff-Quintin S, Jerebzoff S. The effect of monochromatic radiation in the range 350 to 750 nm on the carotenogenesis in Verticillium agaricinum. Physiol Plant. 1982;56:199–203.CrossRefGoogle Scholar
  135. 135.
    Strobel I, Breitenbach J, Scheckhuber CQ, Osiewacz HD, Sandmann G. Carotenoids and carotenogenic genes in Podospora anserina: engineering of the carotenoid composition extends the life span of the mycelium. Curr Genet. 2009;55:175–84.PubMedCrossRefGoogle Scholar
  136. 136.
    Harding RW, Huang PC, Mitchell HK. Photochemical studies of the carotenoid biosynthetic pathway in Neurospora crassa. Arch Biochem Biophys. 1969;129:696–707.PubMedCrossRefGoogle Scholar
  137. 137.
    Mitzka U, Rau W. Composition and photoinduced biosynthesis of the carotenoids of a protoplast-like Neurospora crassa “slime” mutant. Arch Microbiol. 1977;111:261–3.PubMedCrossRefGoogle Scholar
  138. 138.
    Avalos J, Cerdá-Olmedo E. Carotenoid mutants of Gibberella fujikuroi. Curr Genet. 1987;25:1837–41.Google Scholar
  139. 139.
    Valadon LRG, Mummery RS. Natural β-apo-4′-carotenoic acid methyl ester in the fungus Verticillium agaricinum. Phytochemistry. 1977;16:613–4.CrossRefGoogle Scholar
  140. 140.
    Sakaki H, Kaneno H, Sumiya Y, Tsushima M, Miki W, Kishimoto N, et al. A new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1. J Nat Prod. 2002;65:1683–4.PubMedCrossRefGoogle Scholar
  141. 141.
    Spurgeon SL, Turner RV, Harding RW. Biosynthesis of phytoene from isopentenyl pyrophosphate by a Neurospora enzyme system. Arch Biochem Biophys. 1979;195:23–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Huang PC. Recombination and complementation of albino mutants in Neurospora. Genetics. 1964;49:453–69.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Wang SS, Magill JM, Phillips RW. Auxotrophic and visible mutations in white spore (ws-1). Neurospora Newsl. 1971;18:16–7.Google Scholar
  144. 144.
    Goldie AH, Subden RE. The neutral carotenoids of wild-type and mutant strains of Neurospora crassa. Biochem Genet. 1973;10:275–84.PubMedCrossRefGoogle Scholar
  145. 145.
    Nelson MA, Morelli G, Carattoli A, Romano N, Macino G. Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol Cell Biol. 1989;9:1271–6.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Carattoli A, Romano N, Ballario P, Morelli G, Macino G. The Neurospora crassa carotenoid biosynthetic gene (albino 3) reveals highly conserved regions among prenyltransferases. J Biol Chem. 1991;266:5854–9.PubMedGoogle Scholar
  147. 147.
    Sandmann G, Misawa N, Wiedemann M, Vittorioso P, Carattoli A, Morelli G, et al. Functional identification of al-3 from Neurospora crassa as the gene for geranylgeranyl pyrophosphate synthase by complementation with crt genes, in vitro characterization of the gene product and mutant analysis. J Photochem Photobiol B. 1993;18:245–51.PubMedCrossRefGoogle Scholar
  148. 148.
    Barbato C, Calissano M, Pickford A, Romano N, Sandmann G, Macino G. Mild RIP-an alternative method for in vivo mutagenesis of the albino-3 gene in Neurospora crassa. Mol Gen Genet. 1996;252:353–61.PubMedGoogle Scholar
  149. 149.
    Schmidhauser TJ, Lauter FR, Russo VE, Yanofsky C. Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol Cell Biol. 1990;10:5064–70.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Bartley GE, Schmidhauser TJ, Yanofsky C, Scolnik PA. Carotenoid desaturases from Rhodobacter capsulatus and Neurospora crassa are structurally and functionally conserved and contain domains homologous to flavoprotein disulfide oxidoreductases. J Biol Chem. 1990;265:16020–4.PubMedGoogle Scholar
  151. 151.
    Sandmann G. Evolution of carotene desaturation: the complication of a simple pathway. Arch Biochem Biophys. 2009;483:169–74.PubMedCrossRefGoogle Scholar
  152. 152.
    Hausmann A, Sandmann G. A single five-step desaturase is involved in the carotenoid biosynthesis pathway to β-carotene and torulene in Neurospora crassa. Fungal Genet Biol. 2000;30:147–53.PubMedCrossRefGoogle Scholar
  153. 153.
    Fernández-Martín R, Cerdá-Olmedo E, Avalos J. Homologous recombination and allele replacement in transformants of Fusarium fujikuroi. Mol Gen Genet. 2000;263: 838–45.PubMedCrossRefGoogle Scholar
  154. 154.
    Linnemannstöns P, Prado MM, Fernández-Martín R, Tudzynski B, Avalos J. A carotenoid biosynthesis gene cluster in Fusarium fujikuroi: the genes carB and carRA. Mol Genet Genomics. 2002;267:593–602.PubMedCrossRefGoogle Scholar
  155. 155.
    Prado-Cabrero A, Schaub P, Díaz-Sánchez V, Estrada AF, Al-Babili S, Avalos J. Deviation of the neurosporaxanthin pathway towards β-carotene biosynthesis in Fusarium fujikuroi by a point mutation in the phytoene desaturase gene. FEBS J. 2009;276:4582–97.PubMedCrossRefGoogle Scholar
  156. 156.
    Schmidhauser TJ, Lauter FR, Schumacher M, Zhou W, Russo VE, Yanofsky C. Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J Biol Chem. 1994;269:12060–6.PubMedGoogle Scholar
  157. 157.
    Arrach N, Schmidhauser TJ, Avalos J. Mutants of the carotene cyclase domain of al-2 from Neurospora crassa. Mol Genet Genomics. 2002;266:914–21.PubMedCrossRefGoogle Scholar
  158. 158.
    Díaz-Sánchez V, Estrada AF, Trautmann D, Limón MC, Al-Babili S, Avalos J. Analysis of al-2 mutations in Neurospora. PLoS One. 2011;6:e21948.PubMedCentralPubMedCrossRefGoogle Scholar
  159. 159.
    Sandmann G, Zhu C, Krubasik P, Fraser PD. The biotechnological potential of the al-2 gene from Neurospora crassa for the production of monocyclic keto hydroxy carotenoids. Biochim Biophys Acta. 2006;1761:1085–92.PubMedCrossRefGoogle Scholar
  160. 160.
    Sui X, Kiser PD, Lintig JV, Palczewski K. Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys. 2013;539(2):203–13.PubMedCrossRefGoogle Scholar
  161. 161.
    Prado-Cabrero A, Estrada AF, Al-Babili S, Avalos J. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol Microbiol. 2007;64:448–60.PubMedCrossRefGoogle Scholar
  162. 162.
    Saelices L, Youssar L, Holdermann I, Al-Babili S, Avalos J. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Genet Genomics. 2007;278:527–37.PubMedCrossRefGoogle Scholar
  163. 163.
    Jin JM, Lee J, Lee YW. Characterization of carotenoid biosynthetic genes in the ascomycete Gibberella zeae. FEMS Microbiol Lett. 2010;302:197–202.PubMedCrossRefGoogle Scholar
  164. 164.
    Estrada AF, Youssar L, Scherzinger D, Al-Babili S, Avalos J. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol Microbiol. 2008;69:1207–20.PubMedCrossRefGoogle Scholar
  165. 165.
    Díaz-Sánchez V, Estrada AF, Trautmann D, Al-Babili S, Avalos J. The gene carD encodes the aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in Fusarium fujikuroi. FEBS J. 2011;278:3164–76.PubMedCrossRefGoogle Scholar
  166. 166.
    Sandmann G. Photoregulation of carotenoid biosynthesis in mutants of Neurospora crassa: activities of enzymes involved in the synthesis and conversion of phytoene. Z Naturforsch. 1993;48c:570–4.Google Scholar
  167. 167.
    Sandmann G, Takaichi S, Fraser PD. C(35)-apocarotenoids in the yellow mutant Neurospora crassa YLO. Phytochemistry. 2008;69:2886–90.PubMedCrossRefGoogle Scholar
  168. 168.
    Mitzka-Schnabel U, Rau W. The subcellular distribution of carotenoids in Neurospora crassa. Phytochemistry. 1980;19:1409–13.CrossRefGoogle Scholar
  169. 169.
    Mitzka-Schnabel U. Carotenogenic enzymes from Neurospora. Pure Appl Chem. 1985;57: 667–9.CrossRefGoogle Scholar
  170. 170.
    Domenech CE, Giordano W, Avalos J, Cerdá-Olmedo E. Separate compartments for the production of sterols, carotenoids and gibberellins in Gibberella fujikuroi. Eur J Biochem. 1996;239:720–5.PubMedCrossRefGoogle Scholar
  171. 171.
    Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci USA. 1999;96:8034–9.PubMedCentralPubMedCrossRefGoogle Scholar
  172. 172.
    Prado MM, Prado-Cabrero A, Fernández-Martín R, Avalos J. A gene of the opsin family in the carotenoid gene cluster of Fusarium fujikuroi. Curr Genet. 2004;46:47–58.PubMedCrossRefGoogle Scholar
  173. 173.
    Estrada AF, Avalos J. Regulation and targeted mutation of opsA, coding for the NOP-1 opsin orthologue in Fusarium fujikuroi. J Mol Biol. 2009;387:59–73.PubMedCrossRefGoogle Scholar
  174. 174.
    Bieszke JA, Spudich EN, Scott KL, Borkovich KA, Spudich JL. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry. 1999;38:14138–45.PubMedCrossRefGoogle Scholar
  175. 175.
    Wyss A. Carotene oxygenases: a new family of double bond cleavage enzymes. J Nutr. 2004;134:246S–50.PubMedGoogle Scholar
  176. 176.
    Thewes S, Prado-Cabrero A, Prado MM, Tudzynski B, Avalos J. Characterization of a gene in the car cluster of Fusarium fujikuroi that codes for a protein of the carotenoid oxygenase family. Mol Genet Genomics. 2005;274:217–28.PubMedCrossRefGoogle Scholar
  177. 177.
    Prado-Cabrero A, Scherzinger D, Avalos J, Al-Babili S. Retinal biosynthesis in fungi: characterization of the carotenoid oxygenase CarX from Fusarium fujikuroi. Eukaryot Cell. 2007;6:650–7.PubMedCentralPubMedCrossRefGoogle Scholar
  178. 178.
    Díaz-Sánchez V, Estrada AF, Limón MC, Al-Babili S, Avalos J. The oxygenase CAO-1 of Neurospora crassa is a resveratrol cleavage enzyme. Eukaryot Cell. 2013;12:1305–14.PubMedCentralPubMedCrossRefGoogle Scholar
  179. 179.
    Avalos J, Estrada AF. Regulation by light in Fusarium. Fungal Genet Biol. 2010;47:930–8.PubMedCrossRefGoogle Scholar
  180. 180.
    Avalos J, Corrochano LM. Carotenoid biosynthesis in Neurospora. In: Kasbekar DP, McCluskey K, editors. Neurospora: genomics and molecular biology. Norfolk: Caister Academic Press; 2013.Google Scholar
  181. 181.
    Rau W, Lindemann I, Rau-Hund A. Untersuchungen über die lichtabhängige Carotinoidsynthese. III Die Farbstoffbildung von Neurospora crassa in Submerskultur. Planta. 1968;80:309–16.CrossRefGoogle Scholar
  182. 182.
    Zalokar M. Biosynthesis of carotenoids in Neurospora. Action spectrum of photoactivation. Arch Biochem Biophys. 1955;56:318–25.PubMedCrossRefGoogle Scholar
  183. 183.
    Schrott EL. Fluence response relationship of carotenogenesis in Neurospora crassa. Planta. 1980;150:174–9.PubMedCrossRefGoogle Scholar
  184. 184.
    Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese. IV. Die Rolle des Sauerstoffs bei der Lichtinduktion. Planta. 1969;84:30–42.CrossRefGoogle Scholar
  185. 185.
    Avalos J, Schrott EL. Photoinduction of carotenoid biosynthesis in Gibberella fujikuroi. FEMS Microbiol Lett. 1990;66:295–8.CrossRefGoogle Scholar
  186. 186.
    Schrott EL. The biphasic fluence response of carotenogenesis in Neurospora crassa: temporary insensitivity of the photoreceptor system. Planta. 1981;151:371–4.PubMedCrossRefGoogle Scholar
  187. 187.
    Rau W, Feuser B, Rau-Hund A. Substitution of p-chloro- or p-hydroxymercuribenzoate for light in carotenoid synthesis by Fusarium aquaeductuum. Biochim Biophys Acta. 1967;136:589–90.PubMedCrossRefGoogle Scholar
  188. 188.
    Theimer RR, Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese V. Aufhebung der Lichtinduktion dutch Reduktionsmittel und Ersatz des Lichts durch Wasserstoffperoxid. Planta. 1970;92:129–37.PubMedCrossRefGoogle Scholar
  189. 189.
    Theimer RR, Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese VIII. Die unterschiedlichen Wirkungsmechanismen von Licht und Mercuribenzoat. Planta. 1972;106: 331–43.PubMedCrossRefGoogle Scholar
  190. 190.
    de Fabo EC, Harding RW, Shropshire Jr W. Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa. Plant Physiol. 1976;57:440–5.PubMedCentralPubMedCrossRefGoogle Scholar
  191. 191.
    Paietta J, Sargent ML. Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency. Proc Natl Acad Sci USA. 1981;78:5573–7.PubMedCentralPubMedCrossRefGoogle Scholar
  192. 192.
    Paietta J, Sargent ML. Modification of blue light photoresponses by riboflavin analogs in Neurospora crassa. Plant Physiol. 1983;72:764–6.PubMedCentralPubMedCrossRefGoogle Scholar
  193. 193.
    Rau W. Untersuchungen über die lichtabhängige Carotinoidsynthese. I. Das Wirkungsspektrum von Fusarium aquaeductuum. Planta. 1967;72:14–28.CrossRefGoogle Scholar
  194. 194.
    Schrott EL, Huber-Willer A, Rau W. Is phytochrome involved in the light-mediated carotenogenesis in Fusarium aquaeductuum and Neurospora crassa? Photochem Photobiol. 1982;35:213–6.CrossRefGoogle Scholar
  195. 195.
    Lang-Feulner J, Rau W. Redox dyes as artificial photoreceptors in light-dependent carotenoid synthesis. Photochem Photobiol. 1975;21:179–83.PubMedCrossRefGoogle Scholar
  196. 196.
    Harding RW, Turner RV. Photoregulation of the carotenoid biosynthetic pathway in albino and white collar mutants of Neurospora crassa. Plant Physiol. 1981;68:745–9.PubMedCentralPubMedCrossRefGoogle Scholar
  197. 197.
    Degli-Innocenti F, Russo VE. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol. 1984;159:757–61.PubMedCentralPubMedGoogle Scholar
  198. 198.
    He Q, Liu Y. Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev. 2005;19:2888–99.PubMedCentralPubMedCrossRefGoogle Scholar
  199. 199.
    Carattoli A, Cogoni C, Morelli G, Macino G. Molecular characterization of upstream regulatory sequences controlling the photoinduced expression of the albino-3 gene of Neurospora crassa. Mol Microbiol. 1994;13:787–95.PubMedCrossRefGoogle Scholar
  200. 200.
    Estrada AF, Avalos J. The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet Biol. 2008;45:705–18.PubMedCrossRefGoogle Scholar
  201. 201.
    Ruiz-Roldán MC, Garre V, Guarro J, Mariné M, Roncero MI. Role of the white collar 1 photoreceptor in carotenogenesis, UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryot Cell. 2008;7:1227–30.PubMedCentralPubMedCrossRefGoogle Scholar
  202. 202.
    Castrillo M, García-Martínez J, Avalos J. Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol. 2013;79:2777–88.PubMedCentralPubMedCrossRefGoogle Scholar
  203. 203.
    García-Martínez J, Ádám AL, Avalos J. Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi. PLoS One. 2012;7:e28849.PubMedCentralPubMedCrossRefGoogle Scholar
  204. 204.
    Ádám AL, García-Martínez J, Szücs EP, Avalos J, Hornok L. The MAT1-2-1 mating-type gene upregulates photo-inducible carotenoid biosynthesis in Fusarium verticillioides. FEMS Microbiol Lett. 2011;318:76–83.PubMedCrossRefGoogle Scholar
  205. 205.
    Rodríguez-Ortiz R, Michielse C, Rep M, Limón MC, Avalos J. Genetic basis of carotenoid overproduction in Fusarium oxysporum. Fungal Genet Biol. 2012;49:684–96.PubMedCrossRefGoogle Scholar
  206. 206.
    Baima S, Macino G, Morelli G. Photoregulation of the albino-3 gene in Neurospora crassa. J Photochem Photobiol B. 1991;11:107–15.PubMedCrossRefGoogle Scholar
  207. 207.
    Velayos A, Papp T, Aguilar-Elena R, Fuentes-Vicente M, Eslava AP, Iturriaga EA, et al. Expression of the carG gene, encoding geranylgeranyl pyrophosphate synthase, is up-regulated by blue light in Mucor circinelloides. Curr Genet. 2003;43:112–20.PubMedGoogle Scholar
  208. 208.
    Homann V, Mende K, Arntz C, Ilardi V, Macino G, Morelli G, et al. The isoprenoid pathway: cloning and characterization of fungal FPPS genes. Curr Genet. 1996;30:232–9.PubMedCrossRefGoogle Scholar
  209. 209.
    Mende K, Homann V, Tudzynski B. The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression. Mol Gen Genet. 1997;255:96–105.PubMedCrossRefGoogle Scholar
  210. 210.
    Tudzynski B, Holter K. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol. 1998;25:157–70.PubMedCrossRefGoogle Scholar
  211. 211.
    Shrode LB, Lewis ZA, White LD, Bell-Pedersen D, Ebbole DJ. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet Biol. 2001;32:169–81.PubMedCrossRefGoogle Scholar
  212. 212.
    Schwerdtfeger C, Linden H. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 2003;22:4846–55.PubMedCentralPubMedCrossRefGoogle Scholar
  213. 213.
    Youssar L, Schmidhauser TJ, Avalos J. The Neurospora crassa gene responsible for the cut and ovc phenotypes encodes a protein of the haloacid dehalogenase family. Mol Microbiol. 2005;55:828–38.PubMedCrossRefGoogle Scholar
  214. 214.
    Navarro-Sampedro L, Yanofsky C, Corrochano LM. A genetic selection for Neurospora crassa mutants altered in their light regulation of transcription. Genetics. 2008;178:171–83.PubMedCentralPubMedCrossRefGoogle Scholar
  215. 215.
    Li C, Schmidhauser TJ. Developmental and photoregulation of al-1 and al-2, structural genes for two enzymes essential for carotenoid biosynthesis in Neurospora. Dev Biol. 1995;169: 90–5.PubMedCrossRefGoogle Scholar
  216. 216.
    Arpaia G, Carattoli A, Macino G. Light and development regulate the expression of the albino-3 gene in Neurospora crassa. Dev Biol. 1995;170:626–35.PubMedCrossRefGoogle Scholar
  217. 217.
    Li C, Sachs MS, Schmidhauser TJ. Developmental and photoregulation of three Neurospora crassa carotenogenic genes during conidiation induced by desiccation. Fungal Genet Biol. 1997;21:101–8.CrossRefGoogle Scholar
  218. 218.
    Vittorioso P, Carattoli A, Londei P, Macino G. Internal translational initiation in the mRNA from the Neurospora crassa albino-3 gene. J Biol Chem. 1994;269:26650–4.PubMedGoogle Scholar
  219. 219.
    Baima S, Carattoli A, Macino G, Morelli G. Photoinduction of albino-3 gene expression in Neurospora crassa conidia. J Photochem Photobiol B. 1992;15:233–8.PubMedCrossRefGoogle Scholar
  220. 220.
    Yang Q, Borkovich KA. Mutational activation of a Gαi causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics. 1999;151:107–17.PubMedCentralPubMedGoogle Scholar
  221. 221.
    Kritsky MS, Sokolovsky VY, Belozerskaya TA, Chernysheva EK. Relationship between cyclic AMP level and accumulation of carotenoid pigments in Neurospora crassa. Arch Microbiol. 1982;133:206–8.CrossRefGoogle Scholar
  222. 222.
    Harding RW. Inhibition of conidiation and photoinduced carotenoid biosynthesis by cyclic AMP. Neurospora Newsl. 1973;20:20–1.Google Scholar
  223. 223.
    Barba-Ostria C, Lledias F, Georgellis D. The Neurospora crassa DCC-1 protein, a putative histidine kinase, is required for normal sexual and asexual development and carotenogenesis. Eukaryot Cell. 2011;10:1733–9.PubMedCentralPubMedCrossRefGoogle Scholar
  224. 224.
    Harding RW. The effect of temperature on photo-induced carotenoid biosynthesis in Neurospora crassa. Plant Physiol. 1974;54:142–7.PubMedCentralPubMedCrossRefGoogle Scholar
  225. 225.
    Rau W. Über den Einfluss der Temperatur auf die lichtabhängige Carotinoidbildung von Fusarium aquaeductuum. Planta. 1962;59:123–37.CrossRefGoogle Scholar
  226. 226.
    Estrada AF, Maier D, Scherzinger D, Avalos J, Al-Babili S. Novel apocarotenoid intermediates in Neurospora crassa mutants imply a new biosynthetic reaction sequence leading to neurosporaxanthin formation. Fungal Genet Biol. 2008;45:1497–505.PubMedCrossRefGoogle Scholar
  227. 227.
    Garbayo I, Vílchez C, Nava-Saucedo JE, Barbotin JN. Nitrogen, carbon and light-mediated regulation studies of carotenoid biosynthesis in immobilized mycelia of Gibberella fujikuroi. Enzyme Microb Technol. 2003;33:629–34.CrossRefGoogle Scholar
  228. 228.
    Rodríguez-Ortiz R, Limón MC, Avalos J. Regulation of carotenogenesis and secondary metabolism by nitrogen in wild-type Fusarium fujikuroi and carotenoid-overproducing mutants. Appl Environ Microbiol. 2009;75:405–13.PubMedCentralPubMedCrossRefGoogle Scholar
  229. 229.
    Sokolovsky VY, Lauter FR, Müller-Röber B, Ricci M, Schmidhauser TJ, Russo VEA. Nitrogen regulation of blue light-inducible genes in Neurospora crassa. J Gen Microbiol. 1992;138:2045–9.CrossRefGoogle Scholar
  230. 230.
    Avalos J, Mackenzie A, Nelki DS, Bramley PM. Terpenoid biosynthesis in cell-extracts of wild type and mutant strains of Gibberella fujikuroi. Biochim Biophys Acta. 1988;966: 257–65.CrossRefGoogle Scholar
  231. 231.
    Candau R, Avalos J, Cerdá-Olmedo E. Gibberellins and carotenoids in the wild type and mutants of Gibberella fujikuroi. Appl Environ Microbiol. 1991;57:3378–82.PubMedCentralPubMedGoogle Scholar
  232. 232.
    Rodríguez-Ortiz R, Limón MC, Avalos J. Functional analysis of the carS gene of Fusarium fujikuroi. Mol Genet Genomics. 2013;288:157–73.PubMedCrossRefGoogle Scholar
  233. 233.
    Linden H, Rodríguez-Franco M, Macino G. Mutants of Neurospora crassa defective in regulation of blue light perception. Mol Gen Genet. 1997;254:111–8.PubMedCrossRefGoogle Scholar
  234. 234.
    Harding RW, Philip DQ, Drozdowicz BZ, Williams NP. A Neurospora crassa mutant which overaccumulates carotenoid pigments. Neurospora newsl. 1984;31:23–5.Google Scholar
  235. 235.
    Youssar L, Avalos J. Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77 kb deletion. Curr Genet. 2007;51:19–30.PubMedCrossRefGoogle Scholar
  236. 236.
    Imblum RL, Rodwell VW. 3-Hydroxy-3-methylglutaryl CoA reductase and mevalonate kinase of Neurospora crassa. J Lipid Res. 1974;15:211–22.PubMedGoogle Scholar
  237. 237.
    Wang GY, Keasling JD. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab Eng. 2002;4:193–201.PubMedCrossRefGoogle Scholar
  238. 238.
    Bhosale P, Bernstein PS. Microbial xanthophylls. Appl Microbiol Biotechnol. 2005;68: 445–55.PubMedCrossRefGoogle Scholar
  239. 239.
    Moliné M, Libkind D, van Broock M. Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts. Methods Mol Biol. 2012;898:275–83.PubMedCrossRefGoogle Scholar
  240. 240.
    Frengova GI, Beshkova DM. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol. 2009;36:163–80.PubMedCrossRefGoogle Scholar
  241. 241.
    Arpin N, Lebreton P, Fiasson JL. Chemotaxonomic research on fungi. II. Carotenoids of Peniophora aurantiaca (Bres.) (Basidiomycete). Bull Soc Mycol Fr. 1966;82:450–9.Google Scholar
  242. 242.
    Davoli P, Mierau V, Weber RWS. Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Appl Biochem Microbiol. 2004;40:392–7.CrossRefGoogle Scholar
  243. 243.
    Iurkov AM, Vustin MM, Tiaglov BV, Maksimova IA, Sineokii SP. Pigmented basidiomycete yeasts are a promising source of carotenoids and ubiquinone Q10. Mikrobiologiya. 2008;77:5–10.Google Scholar
  244. 244.
    Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol. 2007;53:1024–31.PubMedCrossRefGoogle Scholar
  245. 245.
    Herz S, Weber RW, Anke H, Mucci A, Davoli P. Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi). Phytochemistry. 2007;68:2503–11.PubMedCrossRefGoogle Scholar
  246. 246.
    Haxo F. Carotenoids of the mushroom Cantharellus cinnabarinus. Bot Gaz. 1950;112: 228–32.CrossRefGoogle Scholar
  247. 247.
    Madhour A, Anke H, Mucci A, Davoli P, Weber RWS. Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry. 2005;66:2617–26.PubMedCrossRefGoogle Scholar
  248. 248.
    Arpin N, Liaaen-Jensen S. Chemotaxonomic research on fungi. Fungal carotenoids. IV. Carotenoids of Phillipsia carminea (Pat.) Le Gal; isolation and identification of a new natural xanthophyll. Bull Soc Chim Biol. 1967;49:527–36.PubMedGoogle Scholar
  249. 249.
    Brown LS. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci. 2004;3:555–65.PubMedCrossRefGoogle Scholar
  250. 250.
    Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J Biol Chem. 2001;276:32495–505.PubMedCrossRefGoogle Scholar
  251. 251.
    Edge R, McGarvey DJ, Truscott TG. The carotenoids as anti-oxidants—a review. J Photochem Photobiol B. 1997;41:189–200.PubMedCrossRefGoogle Scholar
  252. 252.
    Jeong JC, Lee IY, Kim SW, Park YH. Stimulation of β-carotene synthesis by hydrogen peroxide in Blakeslea trispora. Biotech Lett. 1999;21:683–6.CrossRefGoogle Scholar
  253. 253.
    Liu YS, Wu JY. Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol. 2006;73:663–8.PubMedCrossRefGoogle Scholar
  254. 254.
    Iigusa H, Yoshida Y, Hasunuma K. Oxygen and hydrogen peroxide enhance light-induced carotenoid synthesis in Neurospora crassa. FEBS Lett. 2005;579:4012–6.PubMedCrossRefGoogle Scholar
  255. 255.
    Yoshida Y, Hasunuma K. Reactive oxygen species affect photomorphogenesis in Neurospora crassa. J Biol Chem. 2004;279:6986–93.PubMedCrossRefGoogle Scholar
  256. 256.
    Michán S, Lledías F, Hansberg W. Asexual development is increased in Neurospora crassa cat-3-null mutant strains. Eukaryot Cell. 2003;2:798–808.PubMedCentralPubMedCrossRefGoogle Scholar
  257. 257.
    Ukibe K, Hashida K, Yoshida N, Takagi H. Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol. 2009;75:7205–11.PubMedCentralPubMedCrossRefGoogle Scholar
  258. 258.
    Nanou K, Roukas T. Oxidative stress response of Blakeslea trispora induced by iron ions during carotene production in shake flask culture. Appl Biochem Biotechnol. 2013;169: 2281–9.PubMedCrossRefGoogle Scholar
  259. 259.
    Nanou K, Roukas T. Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen levels in the culture medium. Bioresour Technol. 2011;102:8159–64.PubMedCrossRefGoogle Scholar
  260. 260.
    Nanou K, Roukas T. Oxidative stress response and morphological changes of Blakeslea trispora induced by butylated hydroxytoluene during carotene production. Appl Biochem Biotechnol. 2010;160:2415–23.PubMedCrossRefGoogle Scholar
  261. 261.
    Gessler NN, Sokolov AV, Bykhovsky VY, Belozerskaya TA. Superoxide dismutase and catalase activities in carotenoid-synthesizing fungi Blakeslea trispora and Neurospora crassa in oxidative stress. Appl Biochem Microbiol. 2002;38:205–9.CrossRefGoogle Scholar
  262. 262.
    Hu X, Ma X, Tang P, Yuan Q. Improved β-carotene production by oxidative stress in Blakeslea trispora induced by liquid paraffin. Biotechnol Lett. 2013;35:559–63.PubMedCrossRefGoogle Scholar
  263. 263.
    Sakaki H, Nochide H, Komemushi S, Miki W. Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No. 21. J Biosci Bioeng. 2002;93:338–40.PubMedCrossRefGoogle Scholar
  264. 264.
    Sakaki H, Nakanishi T, Satonaka K, Miki W, Fujita T, Komemushi S. Properties of a high-torularhodin-producing mutant of Rhodotorula glutinis cultivated under oxidative stress. J Biosci Bioeng. 2000;89:203–5.PubMedCrossRefGoogle Scholar
  265. 265.
    Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng. 2001;92: 294–7.PubMedCrossRefGoogle Scholar
  266. 266.
    Shimizu M, Egashira T, Takahama U. Inactivation of Neurospora crassa conidia by singlet molecular oxygen generated by a photosensitized reaction. J Bacteriol. 1979;138:293–6.PubMedCentralPubMedGoogle Scholar
  267. 267.
    Ramadan-Talib Z, Prebble J. Photosensitivity of respiration in Neurospora mitochondria. A protective role for carotenoid. Biochem J. 1978;176:767–75.PubMedCentralPubMedCrossRefGoogle Scholar
  268. 268.
    Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez-Romero J, Ruger-Herreros C, et al. A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One. 2012;7:e33658.PubMedCentralPubMedCrossRefGoogle Scholar
  269. 269.
    Morris SA, Subden RE. Effects of ultraviolet radiation on carotenoid-containing and albino strains of Neurospora crassa. Mut Res. 1974;22:105–9.CrossRefGoogle Scholar
  270. 270.
    Blanc PL, Tuveson RW, Sargent ML. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation. J Bacteriol. 1976;125:616–25.PubMedCentralPubMedGoogle Scholar
  271. 271.
    Chen SJ, Wang Q, Han JR. Influence of oxidative stress and grains on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. J Basic Microbiol. 2010;50:388–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Javier Ávalos
    • 1
  • Violeta Díaz-Sánchez
    • 1
  • Jorge García-Martínez
    • 1
  • Marta Castrillo
    • 1
  • Macarena Ruger-Herreros
    • 1
  • M. Carmen Limón
    • 1
  1. 1.Department of Genetics, Faculty of BiologyUniversity of SevilleSevillaSpain

Personalised recommendations