Research on Plant Pathogenic Fungi in the Genomics Era: From Sequence Analysis to Systems Biology

Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Recent years have seen the development of a variety of so-called “next-generation” sequencing platforms, with several others anticipated to become available shortly. Second-generation sequencing technologies have recently been exploited in genomics of both prokaryotic and eukaryotic plant pathogens. They are also proving to be useful in diagnostics, especially with respect to viruses. Plant pathology stands to gain from the new sequencing technologies that are already making a big impact in academic research. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. The management and analysis of next-generation sequencing data requires the development of informatics tools able to assemble, map, and interpret huge quantities of relatively or extremely short nucleotide sequence data. In this review, we summarize some applications of these high-throughput sequencing methods, useful genomics and bioinformatics resources available to plant pathologists with emphasis on the associated computational and bioinformatics challenges and their solutions. The increasing availability of high-throughput technology and the reduction of costs of these technologies have moved genomics from the sequencing of a few model species to sequencing any organism that is economically important. It has opened new avenues in research, as well as poses new challenges to plant pathologists.

Keywords

Microbe Aspergillus Sorghum Cytosine Fusarium 

References

  1. Aliferis KA, Jabaji S (2012) FT-ICR/MS and GC-EI/MS metabolomics networking unravels global potato sprout’s responses to Rhizoctonia solani infection. PLoS One 7:e42576PubMedCentralPubMedCrossRefGoogle Scholar
  2. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 2013;41(Web Server issue):W204–W212. doi:  10.1093/nar/gkt449.
  3. Brown NA, Antoniw J, Hammond-Kosack KE (2012) The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One 7(4):1–14Google Scholar
  4. do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE (2012) Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS One 7(12):1–19Google Scholar
  5. Doyle S (2011) Fungal proteomics: from identification to function. FEMS Microbiol Lett 321(1):1–9PubMedCrossRefGoogle Scholar
  6. Ellwood SR, Liu Z, Syme RA, Lai Z, Hane JK, Keiper F et al (2010) A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biol 11:R109PubMedCentralPubMedCrossRefGoogle Scholar
  7. Figueiredo A, Fortes AM, Ferreira S, Sebastiana M, Choi YH, Sousa L, Acioli-Santos B, Pessoa F, Verpoorte R, Pais MS (2008) Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. J Exp Bot 59:3371–3381PubMedCrossRefGoogle Scholar
  8. Fitzpatrick D (2012) Horizontal gene transfer in fungi. FEMS Microbiol Lett 329(1):1–8PubMedCrossRefGoogle Scholar
  9. Forster J, Gombert AK, Nielsen J (2002) A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng 79:703–712PubMedCrossRefGoogle Scholar
  10. Gonzalez-Fernandez R, Jorrin-Novo J (2012) Contribution of proteomics to the study of plant pathogenic fungi. J Proteome Res 11(1):3–16PubMedCrossRefGoogle Scholar
  11. González-Fernández R, Prats E, Jorrín-Novo J (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:932527. doi: 10.1155/2010/932527 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gonzalez-Fernandez R, Aloria K, Arizmendi J, Jorrin-Novo J (2013) Application of label-free shotgun nUPLC-MS(E) and 2-DE approaches in the study of Botrytis cinerea mycelium. J Proteome Res 12(6):3042–3056PubMedCrossRefGoogle Scholar
  13. Goss EM, Carbone I, Grunwald NJ (2009) Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogen Phytophthora ramorum. Mol Ecol 18:1161–1174PubMedCrossRefGoogle Scholar
  14. Grunwald NJ, Goss EM (2011) Evolution and population genetics of exotic and re-emerging pathogens: novel tools and approaches. Annu Rev Phytopathol 49:249–267PubMedCrossRefGoogle Scholar
  15. Haridas S, Breuill C, Bohlmann J, Hsiang T (2011) A biologist's guide to de novo genome assembly using next-generation sequence data: a test with fungal genomes. J Microbiol Methods 86:368–375PubMedCrossRefGoogle Scholar
  16. Hong YS, Martinez A, Liger-Belair G, Jeandet P, Nuzillard JM, Cilindre C (2012) Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea- infected Vitis vinifera cv. Chardonnay berries. J Exp Bot 63:5773–5785Google Scholar
  17. Horner DS, Pavesi G, Castrignano T, De Meo PD, Liuni S, Sammeth M, Picardi E, Pesole G (2009) Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Brief Bioinform 11(2):181–197PubMedCrossRefGoogle Scholar
  18. Indian Institute of Spices Research (2013) Annual report 2012–13. Kozhikode: IISR, 92 pGoogle Scholar
  19. Karthika R, Rosana OB, Chandrashekar A, Prasath D. In silico identification of ginger ESTs potentially associated with disease resistance. In: International symposium on biotechnology and bioinformatics, 26 Jun 2013, SV University, TirupathiGoogle Scholar
  20. Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E (2012) Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS One 7(11):e49423. doi: 10.1371/journal.pone.0049423 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741PubMedCentralPubMedCrossRefGoogle Scholar
  22. Levesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E et al (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:R73PubMedCentralPubMedCrossRefGoogle Scholar
  23. Li C, Deng G, Yang J, Viljoen A, Jin Y, Kuang R et al (2012) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 13:374PubMedCentralPubMedCrossRefGoogle Scholar
  24. Li MW, Qi X, Ni M, Lam HM (2013) Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research. Int J Mol Sci 14:11444–11483PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lim S, Borza T, Peters R, Coffin R, Al-Mughrabi K, Pinto D, Wang-Pruski G. Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. J Proteomics 93:207Google Scholar
  26. Lindahl B, Nilsson R, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user's guide. New Phytol 199:288–299PubMedCentralPubMedCrossRefGoogle Scholar
  27. Littlejohn KA, Hooley P, Cox PW (2012) Bioinformatics predicts diverse Aspergillus hydrophobins with novel properties. Food Hydrocoll 27(2):503–516CrossRefGoogle Scholar
  28. Mardis ER (2008) Next-generation DNA, sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedCrossRefGoogle Scholar
  29. Michael CJ, Gerald H, Jens N (2006) Fungal metabolite analysis in genomics and phenomics. Curr Opin Biotechnol 17:191–197CrossRefGoogle Scholar
  30. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A et al (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24:2818–2824PubMedCentralPubMedCrossRefGoogle Scholar
  31. Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151PubMedCrossRefGoogle Scholar
  32. Nan J, Yaping Y, Guilhem J, Jiao P, Xudong Z (2012) Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS One 7(12):1–10Google Scholar
  33. Nora K, Fayaz TS, Geoff T, Daniel H, William CN, Kenneth HW, Natalie DF (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Gene Biol 47:736–741CrossRefGoogle Scholar
  34. Park J, Park B, Jung K, Jang S, Yu K, Choi J et al (2008) CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res 36:D562–D571PubMedCentralPubMedCrossRefGoogle Scholar
  35. Parker D, Beckmann M, Zubair H, Enot DP, Caracuel-Rios Z, Overy DP et al (2009) Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J 59(5):723–737PubMedCrossRefGoogle Scholar
  36. Passos M, de Cruz V, Emediato F, de Teixeira CC, Azevedo VC, Brasileiro AC et al (2013) Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development. BMC Genomics 14:78PubMedCentralPubMedCrossRefGoogle Scholar
  37. Pinzón A, Rodriguez-R LM, González A, Bernal A, Restrepo S (2011) Targeted metabolic reconstruction: a novel approach for the characterization of plant–pathogen interactions. Brief Bioinform 12(2):151–162PubMedCrossRefGoogle Scholar
  38. Prasath D, Amruta B, Vijay M, Rosana OB, Jayasankar S, Anandaraj M (2014) Comparative study of pathogenesis related protein-5 of different Zingiberaceae species. Indian J Biotech 13(2): (in press)Google Scholar
  39. Prasath D, Karthika R, Habeeba NT, Suraby EJ, Rosana OB, Shaji A, Eapen SJ, Deshpande U, Anandaraj M (2014). Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection. PLOS One 9(6): e99731. doi: 10.1371/journal.pone.0099731
  40. Převorovsky M, Atkinson S, Ptáčkova M, McLean J, Gould K, Folk P, Půta F, Bähler J (2011) N-termini of fungal CSL transcription factors are disordered, enriched in regulatory motifs and inhibit DNA binding in fission yeast. PLoS One 6:1–11Google Scholar
  41. Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M et al (2010) Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330:1540–1543PubMedCrossRefGoogle Scholar
  42. Reena N, Anil P, Dhanya KP, Anandaraj M, Eapen SJ (2010a) Structural and docking studies of glucanase inhibitor protein from Phytopthora capsici with plant endo-β-1, 3 glucanses (Abstract). In: Prasath D et al (eds). Bioinformatics: an agricultural perspective. Indian Institute of Spices Research, Kozhikode, p 111Google Scholar
  43. Reena N, Chandrasekar A, Riju A, Nima PL, Eapen SJ, Anandaraj M (2010b) Gene identification in Phytophthora capsici through expressed sequence tags. In: ISB 2010: Proceedings of the international symposium on biocomputing; 11–12 Oct 2010, ACM Digital Library. http://doi.acm.org/10.1145/1722024.1722043
  44. Rokas A, Payne G, Fedorova ND, Baker SE, Machida M, Yu J et al (2007) What can comparative genomics tell us about species concepts in the genus Aspergillus? Stud Mycol 59:11–17PubMedCentralPubMedCrossRefGoogle Scholar
  45. Schneider DJ, Collmer A (2010) Studying plant-pathogen interactions in the genomics era: beyond molecular Koch’s postulates to systems biology. Annu Rev Phytopathol 48:457–479PubMedCrossRefGoogle Scholar
  46. Singh N, Kashyap S (2012) In silico identification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from Phytophthora sojae. J Mol Model 18(9):4101–4111PubMedCrossRefGoogle Scholar
  47. Soanes DM, Talbot NJ (2006) Comparative genomic analysis of phytopathogenic fungi using expressed sequence tag (EST) collections. Mol Plant Pathol 7:61–70PubMedCrossRefGoogle Scholar
  48. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K et al (2010) Genome expansion and gene loss in powdery mildew fungi reveal functional tradeoffs in parasitism. Science 330:1543–1546PubMedCrossRefGoogle Scholar
  49. Stahl PL, Lundeberg J (2012) Toward the single-hour high-quality genome. Annu Rev Biochem 81:359–378PubMedCrossRefGoogle Scholar
  50. Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3:75–93CrossRefGoogle Scholar
  51. Studholme DJ, Glover RH, Boonham N (2011) Application of high-throughput DNA sequencing in phytopathology. Annu Rev Phytopathol 49:87–105PubMedCrossRefGoogle Scholar
  52. Stukenbrock EH, Banke S, Javan-Nikkhah M, McDonald BA (2007) Origin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation. Mol Biol Evol 24:398–411PubMedCrossRefGoogle Scholar
  53. Torto-Alalibo T, Collmer CW, Gwinn-Giglio M (2009) The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium: community development of new gene ontology terms describing biological processes involved in microbe-host interactions. BMC Microbiol 9(Suppl 1):S1PubMedCentralPubMedCrossRefGoogle Scholar
  54. Unterseher M, Jumpponen A, Opik M, Tedersoo L, Moora M, Dormann C, Schnittler M (2011) Species abundance distributions and richness estimations in fungal metagenomics—lessons learned from community ecology. Mol Ecol 20(2):275–285PubMedCrossRefGoogle Scholar
  55. Vijai B, Lucia P, Wen-Sheng Z, You-Liang P (2007) Review: fungal transcriptomics. Microbiol Res 162:285–298CrossRefGoogle Scholar
  56. Vijeshkumar IP, Reena N, Anandaraj M, Eapen SJ, Johnson GK, Vinitha KB (2013) Amplification, cloning and in silico prediction of full length elicitin gene from Phytophthora capsici, the causal agent of foot rot disease of black pepper. J Plant Pathol 4:181Google Scholar
  57. Yazawa T, Kawahigashi H, Matsumoto T, Mizuno H (2013) Simultaneous transcriptome analysis of sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly. PLoS One 8(4):e62460PubMedCentralPubMedCrossRefGoogle Scholar
  58. Zhong SS, Leng YY, Friesen TL, Faris JD, Szabo LJ (2009) Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stem rust fungus Puccinia graminis f. sp. tritici. Phytopathology 99(3):282–289Google Scholar
  59. Zhou J, Fu Y, Xie J, Li B, Jiang D, Li G, Cheng J (2012) Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol Genet Genomics 287(4):275–282PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Indian Institute of Spices ResearchKozhikodeIndia
  2. 2.Division of Crop ProtectionIndian Institute of Spices ResearchKozhikodeIndia

Personalised recommendations