Skip to main content

Epigenetics in Castration Resistant Prostate Cancer

  • Chapter
  • First Online:
Management of Castration Resistant Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Castration resistant prostate cancer (CRPC) remains a therapeutic challenge despite recent therapeutic advances. Epigenetic mechanisms, including DNA methylation, histone modifications, and microRNA (miRs), have been associated with the biology of CRPC and have been identified as potential targets for therapeutic interventions. Rapid development of inhibitors towards these epigenetic targets has given rise to promising novel therapeutic opportunities in cancer, including CRPC. The preclinical data on the role of histone deacetylases, methyltransferases, demethylases, and miRs in CRPC offer a scenario for potential clinical success of epigenetic therapies in rational combination strategies. The identification of predictors of response to agents targeting histone modifications will be critical to identify the CRPC patients who are most suitable for this therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas A, Gupta S. The role of histone deacetylases in prostate cancer. Epigenetics. 2008;3(6):300–9.

    PubMed Central  PubMed  Google Scholar 

  2. Ellis L, Pili R. Histone deacetylase inhibitors: advancing therapeutic strategies in hematological and solid malignancies. Pharmaceuticals (Basel). 2010;3(8):2411–69.

    Google Scholar 

  3. Halkidou K et al. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate. 2004;59(2):177–89.

    CAS  PubMed  Google Scholar 

  4. Welsbie DS et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res. 2009;69(3):958–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Weichert W et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer. 2008;98(3):604–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Halkidou K et al. Nuclear accumulation of histone deacetylase 4 (HDAC4) coincides with the loss of androgen sensitivity in hormone refractory cancer of the prostate. Eur Urol. 2004;45(3):382–9. author reply 389.

    CAS  PubMed  Google Scholar 

  7. Ai J et al. HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol Endocrinol. 2009;23(12):1963–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Kojima K et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Commun. 2008;373(3):423–8.

    CAS  PubMed  Google Scholar 

  9. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002;1(4):287–99.

    CAS  PubMed  Google Scholar 

  10. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6(1):38–51.

    CAS  PubMed  Google Scholar 

  11. Shankar S, Srivastava RK. Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv Ex Med Biol. 2008;615:261–98.

    CAS  Google Scholar 

  12. Xu W et al. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci USA. 2006;103(42):15540–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Butler LM et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 2000;60(18):5165–70.

    CAS  PubMed  Google Scholar 

  14. Marrocco DL et al. Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol Cancer Ther. 2007;6(1):51–60.

    CAS  PubMed  Google Scholar 

  15. Rokhlin OW et al. Mechanisms of cell death induced by histone deacetylase inhibitors in androgen receptor-positive prostate cancer cells. Mol Cancer Res. 2006;4(2):113–23.

    CAS  PubMed  Google Scholar 

  16. Suenaga M et al. Histone deacetylase inhibitors suppress telomerase reverse transcriptase mRNA expression in prostate cancer cells. Int J Cancer. 2002;97(5):621–5.

    CAS  PubMed  Google Scholar 

  17. Ellis L et al. Concurrent HDAC and mTORC1 inhibition attenuate androgen receptor and hypoxia signaling associated with alterations in microRNA expression. PLoS One. 2011;6(11):e27178.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Ellis L et al. Combinatorial antitumor effect of HDAC and the PI3K–Akt–mTOR pathway inhibition in a Pten deficient model of prostate cancer. Oncotarget. 2013;4(12):2225–36.

    PubMed Central  PubMed  Google Scholar 

  19. Sasakawa Y et al. Effects of FK228, a novel histone deacetylase inhibitor, on tumor growth and expression of p21 and c-myc genes in vivo. Cancer Lett. 2003;195(2):161–8.

    CAS  PubMed  Google Scholar 

  20. Lai MT et al. Depsipeptide (FK228) inhibits growth of human prostate cancer cells. Urol Oncol. 2008;26(2):182–9.

    CAS  PubMed  Google Scholar 

  21. Qian DZ et al. Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models. Prostate. 2007;67(11):1182–93.

    CAS  PubMed  Google Scholar 

  22. Camphausen K et al. Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res. 2004;10(18 Pt 1):6066–71.

    CAS  PubMed  Google Scholar 

  23. Roy S et al. Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death Differ. 2005;12(5):482–91.

    CAS  PubMed  Google Scholar 

  24. Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 2005;23(32):8253–61.

    CAS  PubMed  Google Scholar 

  25. Sharma NL et al. The emerging role of histone deacetylase (HDAC) inhibitors in urological cancers. BJU Int. 2013;111(4):537–42.

    CAS  PubMed  Google Scholar 

  26. Rathkopf D et al. A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 2010;66(1):181–9.

    CAS  PubMed  Google Scholar 

  27. Bradley D et al. Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: a study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium. Cancer. 2009;115(23):5541–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Schneider BJ et al. Phase I study of vorinostat (suberoylanilide hydroxamic acid, NSC 701852) in combination with docetaxel in patients with advanced and relapsed solid malignancies. Invest New Drugs. 2012;30(1):249–57.

    CAS  PubMed  Google Scholar 

  29. Munster PN et al. Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br J Cancer. 2009;101(7):1044–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Pili R et al. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer. 2012;106(1):77–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Koochekpour S. Genetic and epigenetic changes in human prostate cancer. Iran Red Crescent Med J. 2011;13(2):80–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Gravina GL et al. Hormonal therapy promotes hormone-resistant phenotype by increasing DNMT activity and expression in prostate cancer models. Endocrinology. 2011;152(12):4550–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Hu R et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69(1):16–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Fialova B et al. Effect of histone deacetylase and DNA methyltransferase inhibitors on the expression of the androgen receptor gene in androgen-independent prostate cancer cell lines. Oncol Rep. 2013;29(5):2039–45.

    CAS  PubMed  Google Scholar 

  35. Thibault A et al. A phase II study of 5-aza-2′deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori. 1998;84(1):87–9.

    CAS  PubMed  Google Scholar 

  36. Sonpavde G et al. Azacitidine favorably modulates PSA kinetics correlating with plasma DNA LINE-1 hypomethylation in men with chemonaive castration-resistant prostate cancer. Urol Oncol. 2011;29(6):682–9.

    CAS  PubMed  Google Scholar 

  37. Savickiene J et al. Epigenetic changes by zebularine leading to enhanced differentiation of human promyelocytic leukemia NB4 and KG1 cells. Mol Cell Biochem. 2012;359(1–2):245–61.

    CAS  PubMed  Google Scholar 

  38. Nakamura K et al. DNA methyltransferase inhibitor zebularine inhibits human hepatic carcinoma cells proliferation and induces apoptosis. PLoS One. 2013;8(1):e54036.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Tan W et al. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo. Biochem Biophys Res Commun. 2013;430(1):250–5.

    CAS  PubMed  Google Scholar 

  40. Chen M et al. DNA methyltransferase inhibitor, zebularine, delays tumor growth and induces apoptosis in a genetically engineered mouse model of breast cancer. Mol Cancer Ther. 2012;11(2):370–82.

    PubMed  Google Scholar 

  41. Fang MZ et al. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63(22):7563–70.

    CAS  PubMed  Google Scholar 

  42. Gravina GL et al. Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol Cancer. 2010;9:305.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang Q et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ke XS et al. Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS One. 2009;4(3):e4687.

    PubMed Central  PubMed  Google Scholar 

  45. Varambally S et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9.

    CAS  PubMed  Google Scholar 

  46. Cao P et al. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer. 2010;9:108.

    PubMed Central  PubMed  Google Scholar 

  47. Xu K et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science. 2012;338(6113):1465–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Asangani IA et al. Characterization of the EZH2–MMSET histone methyltransferase regulatory axis in cancer. Mol Cell. 2013;49(1):80–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Yang P et al. Histone methyltransferase NSD2/MMSET mediates constitutive NF-kappaB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop. Mol Cell Biol. 2012;32(15):3121–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Fiskus W et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood. 2009;114(13):2733–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Rotili D, Mai A. Targeting histone demethylases: a new avenue for the fight against cancer. Genes Cancer. 2011;2(6):663–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Huang J et al. p53 is regulated by the lysine demethylase LSD1. Nature. 2007;449(7158):105–8.

    CAS  PubMed  Google Scholar 

  53. Cai C et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2011;20(4):457–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kahl P et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 2006;66(23):11341–7.

    CAS  PubMed  Google Scholar 

  55. Cloos PA et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature. 2006;442(7100):307–11.

    CAS  PubMed  Google Scholar 

  56. Bjorkman M et al. Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion. Oncogene. 2012;31(29):3444–56.

    CAS  PubMed  Google Scholar 

  57. Xiang Y et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci U S A. 2007;104(49):19226–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Frescas D et al. KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle. 2008;7(22):3539–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Crea F et al. The emerging role of histone lysine demethylases in prostate cancer. Mol Cancer. 2012;11:52.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Lee MG et al. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem Biol. 2006;13(6):563–7.

    CAS  PubMed  Google Scholar 

  61. Zhao H, Flamand V, Peehl DM. Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells. BMC Med Genomics. 2009;2:55.

    PubMed Central  PubMed  Google Scholar 

  62. Hamada S et al. Design, synthesis, enzyme-inhibitory activity, and effect on human cancer cells of a novel series of jumonji domain-containing protein 2 histone demethylase inhibitors. J Med Chem. 2010;53(15):5629–38.

    CAS  PubMed  Google Scholar 

  63. Singh MM et al. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors. Neuro Oncol. 2011;13(8):894–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    CAS  PubMed  Google Scholar 

  65. Reinhart BJ et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    CAS  PubMed  Google Scholar 

  66. Hassan O et al. Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol. 2012;5:9.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Sevli S et al. The function of microRNAs, small but potent molecules, in human prostate cancer. Prostate Cancer Prostatic Dis. 2010;13(3):208–17.

    CAS  PubMed  Google Scholar 

  68. Ribas J, Lupold SE. The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle. 2010;9(5):923–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ribas J et al. MiR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009;69(18):7165–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Watahiki A et al. Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. Int J Mol Sci. 2013;14(4):7757–70.

    PubMed Central  PubMed  Google Scholar 

  71. Zhang HL et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 2011;71(3):326–31.

    CAS  PubMed  Google Scholar 

  72. Liu LZ et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One. 2011;6(4):e19139.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Shi XB et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A. 2007;104(50):19983–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. DeVere White RW et al. MicroRNAs and their potential for translation in prostate cancer. Urol Oncol. 2009;27(3):307–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Shi XB et al. MiR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate. 2011;71(5):538–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Sun T et al. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 2009;69(8):3356–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Sun T et al. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene. 2014;33:2790–800.

    CAS  PubMed  Google Scholar 

  78. Sun T et al. The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate. 2012;72(10):1093–103.

    CAS  PubMed  Google Scholar 

  79. Coppola V, De Maria R, Bonci D. MicroRNAs and prostate cancer. Endocr Relat Cancer. 2010;17(1):F1–17.

    CAS  PubMed  Google Scholar 

  80. Selth LA et al. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer. 2012;131(3):652–61.

    CAS  PubMed  Google Scholar 

  81. Volinia S et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Sylvestre Y et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem. 2007;282(4):2135–43.

    CAS  PubMed  Google Scholar 

  83. Jalava SE et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene. 2012;31(41):4460–71.

    CAS  PubMed  Google Scholar 

  84. Sarkar FH et al. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat. 2010;13(3):57–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Calin GA et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Nadiminty N et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem. 2012;287(2):1527–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Nadiminty N et al. MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One. 2012;7(3):e32832.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Porkka KP et al. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67(13):6130–5.

    CAS  PubMed  Google Scholar 

  89. Ozen M et al. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene. 2008;27(12):1788–93.

    CAS  PubMed  Google Scholar 

  90. Lodygin D et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.

    CAS  PubMed  Google Scholar 

  91. Fujita Y et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun. 2008;377(1):114–9.

    CAS  PubMed  Google Scholar 

  92. Varambally S et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322(5908):1695–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Park SM et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kong D et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 2010;5(8):e12445.

    PubMed Central  PubMed  Google Scholar 

  95. Peng X et al. Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One. 2011;6(5):e20341.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Fletcher CE et al. Androgen-regulated processing of the oncomir miR-27a, which targets prohibition in prostate cancer. Hum Mol Genet. 2012;21(14):3112–27.

    CAS  PubMed  Google Scholar 

  97. Li B et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate. 2011;71(6):567–74.

    CAS  PubMed  Google Scholar 

  98. Fendler A et al. MicroRNAs as regulators of signal transduction in urological tumors. Clin Chem. 2011;57(7):954–68.

    CAS  PubMed  Google Scholar 

  99. Hudson RS et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 2012;40(8):3689–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Bonci D et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.

    CAS  PubMed  Google Scholar 

  101. Ishteiwy RA et al. The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One. 2012;7(12):e52106.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Bhatnagar N et al. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 2010;1:e105.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Xu B et al. MiR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem. 2011;350(1–2):207–13.

    CAS  PubMed  Google Scholar 

  104. Zaman MS et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer. 2010;103(2):256–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Xu B et al. MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate. 2012;72(11):1171–8.

    CAS  PubMed  Google Scholar 

  106. Kong D et al. MiR-200 regulates PDGF-D-mediated epithelial–mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009;27(8):1712–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Noonan EJ et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28(14):1714–24.

    CAS  PubMed  Google Scholar 

  108. Waltering KK et al. Androgen regulation of micro-RNAs in prostate cancer. Prostate. 2011;71(6):604–14.

    CAS  PubMed  Google Scholar 

  109. Nguyen HC et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate. 2013;73(4):346–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Cheng HH et al. Circulating microRNA profiling identifies a subset of metastatic prostate cancer patients with evidence of cancer-associated hypoxia. PLoS One. 2013;8(7):e69239.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Tong AW et al. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther. 2009;16(3):206–16.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pili MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ellis, L., Ku, SY., Lasorsa, E., Pili, R. (2014). Epigenetics in Castration Resistant Prostate Cancer. In: Saad, F., Eisenberger, M. (eds) Management of Castration Resistant Prostate Cancer. Current Clinical Urology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1176-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1176-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1175-2

  • Online ISBN: 978-1-4939-1176-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics