Skip to main content

Nicotinic Receptors and Mental Illness

  • Chapter
  • First Online:
Nicotinic Receptors

Part of the book series: The Receptors ((REC,volume 26))

Abstract

The prevalence of smoking in the mentally ill, particularly in schizophrenic patients, is much higher than in the general population. While smoking demographics are altered in these patients, nicotinic receptors are implicated in the disorder. Nicotine normalizes several sensory processing deficits in schizophrenia, as well as improving cognition and disease symptomatology. Smoking has a large effect on gene expression in human brain, and many genes abnormally expressed in schizophrenic nonsmokers are brought to control levels in schizophrenic smokers. The α7 nicotinic receptor gene, CHRNA7, is genetically linked to the disorder in multiple studies. Deletion of Chrna7 in mice results in several traits found in schizophrenic individuals. The expression of α7nAChRs is decreased in postmortem brain of schizophrenic subjects, as measured by α-bungarotoxin binding. Nicotine binding is also decreased in schizophrenic brain, suggesting that high-affinity nicotinic receptor expression is reduced as well. Regulation of the CHRNA7 gene is complex. Promoter methylation and several transcription factors have been identified that affect transcription. The human CHRNA7 gene is unusual in that it is partially duplicated. The duplicated sequences are expressed with exons from a second partial duplication, forming a new, chimeric gene, CHRFAM7A. The duplicated gene is human specific, not being found in rodents or primates. The duplicated sequences in CHRFAM7A are nearly identical to exons 5–10 of the full-length gene, CHRNA7. Thus, exons 5–10 cannot be accurately queried for CHRNA7 in genome-wide association studies. Further, the duplicated gene product, dupα7, is a dominant negative regulator of α7nAChR function, reducing current in response to acetylcholine application. Functional mutations in the CHRNA7 gene promoter and in CHRFAM7A have been identified and are associated with schizophrenia. Several agonists of the α7nAChR have been identified as possible therapeutic drugs, including DMXB-A and choline. Type II allosteric modulators appear to potentiate function of the human heteromeric receptor, containing both CHRNA7 and CHRFAM7A gene products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIMH. The numbers count: mental disorders in America. Bethesda, MD: NIH; 2013.

    Google Scholar 

  2. Ziedonis D, Hitsman B, Beckham JC, Zvolensky M, Adler LE, Audrain-McGovern J, et al. Tobacco use and cessation in psychiatric disorders: National Institute of Mental Health report. Nic Tob Res. 2008;10:1691–715.

    Google Scholar 

  3. Leonard S, Adler LE, Benhammou K, Berger R, Breese CR, Drebing C, et al. Smoking and mental illness. Pharmacol Biochem Behav. 2001;70:561–70.

    CAS  PubMed  Google Scholar 

  4. Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness - a population-based prevalence study. JAMA. 2000;284(20):2606–10.

    CAS  PubMed  Google Scholar 

  5. Dalack GW, Healy DJ, Meador-Woodruff JH. Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. Am J Psychiatry. 1998;155:1490–501.

    CAS  PubMed  Google Scholar 

  6. de Leon J, Diaz FJ. A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schiz Res. 2005;76:135–57.

    Google Scholar 

  7. Williams JM, Ziedonis D. Addressing tobacco among individuals with a mental illness or an addiction. Add Behav. 2004;29:1067–83.

    Google Scholar 

  8. Leonard S, Gault J, Adams C, Breese CR, Rollins Y, Adler LE, et al. Nicotinic receptors, smoking and schizophrenia. Restor Neurol Neurosci. 1998;12:195–201.

    CAS  PubMed  Google Scholar 

  9. Aubin HJ, Rollema H, Svensson RH, Winterer G. Smoking, quitting, and psychiatric disease: a review. Neurosci Biobehav Rev. 2012;36:271–84.

    PubMed  Google Scholar 

  10. Williams JM, Gandhi KK, Lu SE, Kumar S, Shen JW, Foulds J, et al. Higher nicotine levels in schizophrenia compared with controls after smoking a single cigarette. Nic Tob Res. 2010;12:855–9.

    CAS  Google Scholar 

  11. Olincy A, Young DA, Freedman R. Increased levels of the nicotine metabolite cotinine in schizophrenic smokers compared to other smokers. Biol Psychiatry. 1997;42:1–5.

    CAS  PubMed  Google Scholar 

  12. Williams JM, Ziedonis DM, Abanyie F, Steinberg ML, Foulds J, Benowitz NL. Increased nicotine and cotinine levels in smokers with schizophrenia and schizoaffective disorder is not a metabolic effect. Schiz Res. 2005;79:323–35.

    Google Scholar 

  13. Williams JM, Gandhi KK, Lu SE, Kumar S, Steinberg ML, Cottler B, et al. Shorter interpuff interval is associated with higher nicotine intake in smokers with schizophrenia. Drug Alc Depend. 2011;118:313–9.

    CAS  Google Scholar 

  14. Tidey JW, Rohsenow DJ, Kaplan GB, Swift RM. Cigarette smoking topography in smokers with schizophrenia and matched non-psychiatric controls. Drug Alc Depend. 2005;80:259–65.

    Google Scholar 

  15. Williams JM, Gandhi KK, Lu SE, Steinberg ML, Benowitz NL. Rapid smoking may not be aversive in schizophrenia. Nic Tob Res. 2013;15:262–6.

    Google Scholar 

  16. Glassman AH, Helzer JE, Covey LS, Cottler LB, Stetner F, Tipp JE, et al. Smoking, smoking cessation, and major depression. JAMA. 1990;264:1546–9.

    CAS  PubMed  Google Scholar 

  17. Thornton LK, Baker AL, Lewin TJ, Kay-Lambkin FJ, Kavanagh D, Richmond R, et al. Reasons for substance use among people with mental disorders. Addict Behav. 2012;37:1134–43.

    Google Scholar 

  18. Janowsky DS, El-Yousef MK, David JM, Sekerke HJ. A cholinergic-adrenergic hypothesis of mania and depression. Lancet. 1972;2:632–5.

    CAS  PubMed  Google Scholar 

  19. Janowsky DS, El-Yousef MK, David JM. Acetylcholine and depression. Psychosom Med. 1974;36:248–57.

    CAS  PubMed  Google Scholar 

  20. Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A, et al. Persistent beta(2)*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. Am J Psychiatry. 2012;169:851–9.

    PubMed Central  PubMed  Google Scholar 

  21. Brasic JR, Cascella N, Kumar A, Zhou Y, Hilton J, Raymont V, et al. Positron emission tomography experience with 2-[18 F]fluoro-3-(2(s)-azetidinylmethoxy)pyridine (2-[18 F]fa) in the living human brain of smokers with paranoid schizophrenia. Synapse. 2012;66:352–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. D’Souza DC, Esterlis I, Carbuto M, Krasenics M, Seibyl J, Bois F, et al. Lower beta(2)*-nicotinic acetylcholine receptor availability in smokers with schizophrenia. Am J Psychiatry. 2012;169:326–34.

    PubMed  Google Scholar 

  23. Fryer JD, Lukas RJ. Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function. J Neurochem. 1999;72:1117–24.

    CAS  PubMed  Google Scholar 

  24. Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci. 2013;110:3573–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Brunzell DH, McIntosh JM. Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: implications for smoking and schizophrenia. Neuropsychopharmacology. 2012;37:1134–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Leonard S, Mexal S, Freedman R. Smoking, genetics and schizophrenia: evidence for self medication. J Dual Diag. 2007;3:43–59.

    Google Scholar 

  27. Kumari V, Postma P. Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev. 2005;29:1021–34.

    CAS  PubMed  Google Scholar 

  28. Forchuk C, Norman R, Malla A, Martin ML, McLean T, Cheng S, et al. Schizophrenia and the motivation for smoking. Perspect Psychiatry Care. 2002;38:41–9.

    Google Scholar 

  29. Adler LE, Hoffer LD, Wiser A, Freedman R. Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry. 1993;150:1856–61.

    CAS  PubMed  Google Scholar 

  30. Cadenhead KS, Geyer MA, Swerdlow NR, Shafer K, Diaz M, Clementz BA, et al. Sensorimotor gating deficits in schizophrenic patients and their relatives. Biol Psychiatry. 1998;43:33.

    Google Scholar 

  31. Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H. Elementary neuronal dysfunctions in schizophrenia. Schiz Res. 1991;4:233–43.

    CAS  Google Scholar 

  32. Clementz BA, Geyer MA, Braff DL. Multiple site evaluation of P50 suppression among schizophrenia and normal comparison subjects. Schiz Res. 1998;30:71–80.

    CAS  Google Scholar 

  33. Sherr JD, Myers C, Avila MT, Elliott A, Blaxton TA, Thaker GK. The effects of nicotine on specific eye tracking measures in schizophrenia. Biol Psychiatry. 2002;52:721–8.

    CAS  PubMed  Google Scholar 

  34. Olincy A, Johnson LL, Ross RG. Differential effects of cigarette smoking on performance of a smooth pursuit and a saccadic eye movement task in schizophrenia. Psychiatry Res. 2003;117:223–36.

    PubMed  Google Scholar 

  35. Tanabe J, Tregellas JR, Martin LF, Freedman R. Effects of nicotine on hippocampal and cingulate activity during smooth pursuit eye movement in schizophrenia. Biol Psychiatry. 2006;59:754–61.

    CAS  PubMed  Google Scholar 

  36. Kumari V, Soni W, Sharma T. Influence of cigarette smoking on prepulse inhibition of the acoustic startle response in schizophrenia. Hum Psychopharmacol Clin Exp. 2001;16:321–6.

    Google Scholar 

  37. George TP, Vessicchio JC, Termine A, Sahady DM, Head CA, Pepper WT, et al. Effects of smoking abstinence on visuospatial working memory function in schizophrenia. Neuropsychopharmacolgy. 2002;26(1):75–85.

    Google Scholar 

  38. Sacco KA, Termine A, Seyal A, Dudas MM, Vessicchio JC, Krishnan-Sarin S, et al. Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia - involvement of nicotinic receptor mechanisms. Arch Gen Psychiatry. 2005;62(6):649–59.

    PubMed  Google Scholar 

  39. Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH. Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry. 2004;55(8):850–8.

    CAS  PubMed  Google Scholar 

  40. Myers CS, Robles O, Kakoyannis AN, Sherr JD, Avila MT, Blaxton TA, et al. Nicotine improves delayed recognition in schizophrenic patients. Psychopharmacology. 2004;174(3):334–40.

    CAS  PubMed  Google Scholar 

  41. Dalack GW, Becks L, Hill E, Pomerleau OF, Meador-Woodruff JH. Nicotine withdrawal and psychiatric symptoms in cigarette smokers with schizophrenia. Neuropsychopharmacology. 1999;21(2):195–202.

    CAS  PubMed  Google Scholar 

  42. Smith RC, Singh A, Infante M, Khandat A, Kloos A. Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia. Neuropsychopharmacolgy. 2002;27(3):479–97.

    CAS  Google Scholar 

  43. Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17:1206–27.

    CAS  PubMed  Google Scholar 

  44. Dani JA. Roles of dopamine signaling in nicotine addiction. Mol Psychiatry. 2003;8(3):255–6.

    CAS  PubMed  Google Scholar 

  45. Dickinson JA, Kew JNC, Wonnacott S. Presynaptic alpha 7- and beta 2-containing nicotinic acetylcholine receptors modulate excitatory amino acid release from rat prefrontal cortex nerve terminals via distinct cellular mechanisms. Mol Pharmacol. 2008;74(2):348–59.

    CAS  PubMed  Google Scholar 

  46. Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW. Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol. 2000;393(1–3):51–8.

    CAS  PubMed  Google Scholar 

  47. Covernton POJ, Lester RAJ. Prolonged stimulation of presynaptic nicotinic acetylcholine receptors in the rat interpeduncular nucleus has differential effects on transmitter release. Int J Develop Neurosci. 2002;20(3–5):247–58.

    CAS  Google Scholar 

  48. Schilstrom B, Rawal N, Mameli-Engvall M, Nomikos GG, Svensson TH. Dual effects of nicotine on dopamine neurons mediated by different nicotinic receptor subtypes. Int J Neuropsychopharmacol. 2003;6(1):1–11.

    PubMed  Google Scholar 

  49. Mexal S, Frank M, Berger R, Adams CE, Ross RG, Freedman R, et al. Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers. Mol Brain Res. 2005;139(2):317–32.

    CAS  PubMed  Google Scholar 

  50. Tidey JW, Rohsenow DJ, Kaplan GB, Swift RM, Adolfo AB. Effects of smoking abstinence, smoking cues and nicotine replacement in smokers with schizophrenia and controls. Nic Tob Res. 2008;10:1047–56.

    CAS  Google Scholar 

  51. Moss TG, Sacco KA, Alien RM, Weinberger AH, Vessicchio JC, George TP. Prefrontal cognitive dysfunction is associated with tobacco dependence treatment failure in smokers with schizophrenia. Drug Alc Depend. 2009;104:94–9.

    Google Scholar 

  52. Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei XL, et al. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry. 2008;165(9):1163–71.

    PubMed Central  PubMed  Google Scholar 

  53. Saccone NL, Schwantes-An TH, Wang JC, Grucza RA, Breslau N, Hatsukami D, et al. Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav. 2010;9(7):741–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, et al. Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry. 2008;13(4):368–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Jackson KJ, Fanous AH, Chen J, Kendler KS, Chen X. Variants in the 15q25 gene cluster are associated with risk for schizophrenia and bipolar disorder. Psychiatry Genet. 2013;23:20–8.

    CAS  Google Scholar 

  56. Chen LS, Xian H, Grucza RA, Saccone NL, Wang JC, Johnson EO, et al. Nicotine dependence and comorbid psychiatric disorders: examination of specific genetic variants in the CHRNA5-A3-B4 nicotinic receptor genes. Drug Alc Depend. 2012;123:S42–51.

    CAS  Google Scholar 

  57. Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D, et al. Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22. Am J Hum Genet. 2003;73(3):601–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Freedman R, Leonard S, Olincy A, Kaufmann CA, Malaspina D, Cloninger CR, et al. Evidence for the multigenic inheritance of schizophrenia. Am J Med Genet. 2001;105(8):794–800.

    CAS  PubMed  Google Scholar 

  59. Gejman PV, Sanders AR, Badner JA, Cao QH, Zhang J. Linkage analysis of schizophrenia to chromosome 15. Am J Med Genet. 2001;105(8):789–93.

    CAS  PubMed  Google Scholar 

  60. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD, et al. NIMH Genetics Initiative Millennium Schizophrenia Consortium: linkage analysis of African-American pedigrees. Am J Med Genet. 1998;81(4):282–9.

    CAS  PubMed  Google Scholar 

  61. Liu CM, Hwu HG, Lin MW, Ou-Yang WC, Lee SFC, Fann CSJ, et al. Suggestive evidence for linkage of schizophrenia to markers at chromosome 15q13-14 in Taiwanese families. Am J Med Genet. 2001;105(8):658–61.

    CAS  PubMed  Google Scholar 

  62. Leonard S, Freedman R. Genetics of chromosome 15q13-q14 in schizophrenia. Biol Psychiatry. 2006;60(2):115–22.

    CAS  PubMed  Google Scholar 

  63. Riley BP, Makoff AM, Magudi-Carter M, Jenkins TJ, Williamson R, Collier DA, et al. Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in Southern African Bantu families. Am J Med Genet. 2000;96:196–201.

    CAS  PubMed  Google Scholar 

  64. Tsuang DW, Skol AD, Faraone SV, Bingham S, Young KA, Prabhudesai S, et al. Examination of genetic linkage of chromosome 15 to schizophrenia in a large veterans affairs cooperative study sample. Am J Med Genet. 2001;105(8):662–8.

    CAS  PubMed  Google Scholar 

  65. Turecki G, Grof P, Grof E, D’Souza V, Cavazzoni P, Duffy A, et al. A genome scan using a pharmacogenetic approach indicates a susceptibility locus for BD on 15q14. Biol Psychiatry. 2000;47:69S.

    Google Scholar 

  66. Edenberg HJ, Foroud T, Conneally PM, Sorbel JJ, Carr K, Crose C, et al. Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 3, 5, 15, 16, 17, and 22. Am J Med Genet. 1997;74(3):238–46.

    CAS  PubMed  Google Scholar 

  67. Stefansson H, Rujescu D, Cichon S, Pietilainen OPH, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455(7210):232–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Stone JL, O’Donovan MC, Gurling H, Kirov GK, Blackwood DHR, Corvin A, et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455(7210):237–41.

    CAS  Google Scholar 

  69. Masurel-Paulet A, Andrieux J, Callier P, Cuisset JM, Le Caignec C, Holder M, et al. Delineation of 15q13.3 microdeletions. Clin Genet. 2010;78:149–61.

    CAS  PubMed  Google Scholar 

  70. Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C, et al. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet. 2009;46(4):242–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Mewborn SK, Miley NL, Fantes JA, Brown RL, Butler MG, Christian SL, et al. Breakpoint junction fragments in Prader-Willi and Angelman syndrome (PWS/AS) deletion patients reveal variable breakpoints within large duplicons. Am J Hum Genet. 2002;71(4):736.

    Google Scholar 

  72. Boer H, Holland A, Whittington J, Butler J, Webb T, Clarke D. Psychotic illness in people with Prader Willi syndrome due to chromosome 15 maternal uniparental disomy. Lancet. 2002;359(9301):135–6.

    PubMed  Google Scholar 

  73. Vogels A, De Hert M, Descheemaeker MJ, Govers V, Devriendt K, Legius E, et al. Psychotic disorders in Prader-Willi syndrome. Am J Med Genet A. 2004;127A(3):238–43.

    CAS  PubMed  Google Scholar 

  74. Young JW, Crawford N, Kelly JS, Kerr LE, Marston HM, Spratt C, et al. Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur Neuropsychopharmacol. 2007;17(2):145–55.

    CAS  PubMed  Google Scholar 

  75. Young JW, Meves JM, Tarantino IS, Caldwell S, Geyer MA. Delayed procedural learning in alpha 7-nicotinic acetylcholine receptor knockout mice. Genes Brain Behav. 2011;10:720–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Stevens KE, Adams CE, Yonchek J, Zheng L, Collins AC. C3H alpha7 nicotinic receptor heterozygote mice as a new model of schizophrenia. Schiz Res. 2010;117(2–3):510.

    Google Scholar 

  77. De Luca V, Wong AHC, Muller DJ, Wong GWH, Tyndale RF, Kennedy JL. Evidence of association between smoking and alpha 7 nicotinic receptor subunit gene in schizophrenia patients. Neuropsychopharmacolgy. 2004;29(8):1522–6.

    Google Scholar 

  78. Faraone SV, Su J, Taylor L, Wilcox M. A novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families. Hum Hered. 2004;57(2):59–68.

    CAS  PubMed  Google Scholar 

  79. Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC, et al. Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharm Exp Ther. 1997;282:7–13.

    CAS  Google Scholar 

  80. Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharm Exp Ther. 1999;289(3):1545–52.

    CAS  Google Scholar 

  81. Benwell ME, Balfour DJ, Anderson JM. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem. 1988;50(4):1243–7.

    CAS  PubMed  Google Scholar 

  82. Benhammou K, Lee MJ, Strook M, Sullivan B, Logel J, Raschen K, et al. [3H]Nicotine binding in peripheral blood cells of smokers is correlated with the number of cigarettes smoked per day. Neuropharmacology. 2000;39:2818–29.

    CAS  PubMed  Google Scholar 

  83. Breese CR, Lee MJ, Adams CE, Sullivan B, Logel J, Gillen KM, et al. Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacolgy. 2000;23(4):351–64.

    CAS  Google Scholar 

  84. Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry. 1995;38(1):22–33.

    CAS  PubMed  Google Scholar 

  85. Guan ZZ, Zhang X, Blennow K, Nordberg A. Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. Neuroreport. 1999;10(8):1779–82.

    CAS  PubMed  Google Scholar 

  86. Marutle A, Zhang X, Court J, Piggott M, Johnson M, Perry R, et al. Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat. 2001;22(1–2):115–26.

    CAS  PubMed  Google Scholar 

  87. Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N, et al. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus. J Neurochem. 1999;73(4):1590–7.

    CAS  PubMed  Google Scholar 

  88. Gault J, Robinson M, Berger R, Drebing C, Logel J, Hopkins J, et al. Genomic organization and partial duplication of the human α7 neuronal nicotinic acetylcholine receptor gene. Genomics. 1998;52(2):173–85.

    CAS  PubMed  Google Scholar 

  89. Riley B, Williamson M, Collier D, Wilkie H, Makoff A. A 3-Mb map of a large segmental duplication overlapping the alpha 7-nicotinic acetylcholine receptor gene (CHRNA7) at human 15q13-q14. Genomics. 2002;79(2):197–209.

    CAS  PubMed  Google Scholar 

  90. Locke DP, Jiang Z, Pertz LM, Misceo D, Archidiacono N, Eichler EE. Molecular evolution of the human chromosome 15 pericentromeric region. Cytogen Genome Res. 2005;108(1–3):73–82.

    CAS  Google Scholar 

  91. Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, et al. Association of promoter variants in the alpha 7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry. 2002;59(12):1085–96.

    CAS  PubMed  Google Scholar 

  92. Nachman MW, Crowell SL. Estimate of the mutation rate per nucleotide in humans. Genetics. 2000;156:297–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Houy E, Raux G, Thibaut F, Belmont A, Demily C, Allio G, et al. The promoter-194 C polymorphism of the nicotinic alpha 7 receptor gene has a protective effect against the P50 sensory gating deficit. Mol Psychiatry. 2004;9(3):320–2.

    CAS  PubMed  Google Scholar 

  94. Stephens SH, Franks A, Berger R, Palionyte M, Fingerlin TE, Wagner B, et al. Multiple genes in the 15q13-q14 chromosomal region are associated with schizophrenia. Psychiatric Genetics. 2012;22:1–14.

    Google Scholar 

  95. Tregellas JR, Tanabe J, Rojas DC, Shatti S, Olincy A, Johnson L, et al. Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol Psychiatry. 2010;69:7–11.

    PubMed Central  PubMed  Google Scholar 

  96. Kem WR, Mahnir VM, Prokai L, Papke RL, Cao XF, LeFrancois S, et al. Hydroxy metabolites of the Alzheimer’s drug candidate 3-[(2,4-dimethoxy)benzylidene]-anabaseine dihydrochloride (GTS-21): their molecular properties, interactions with brain nicotinic receptors, and brain penetration. Mol Pharmacol. 2004;65(1):56–67.

    CAS  PubMed  Google Scholar 

  97. Ross RG, Hunter SK, McCarthy L, Beuler J, Hutchison AK, Wagner BD, et al. Perinatal choline effects on neonatal pathophysiology related to later schizophrenia risk. Am J Psychiatry. 2013;170:290–8.

    PubMed Central  PubMed  Google Scholar 

  98. Gault J, Hopkins J, Berger R, Drebing C, Logel J, Walton K, et al. Comparison of polymorphisms in the α7 nicotinic receptor gene and its partial duplication in schizophrenic and control subjects. Am J Med Genet B. 2003;123(1):39–49.

    Google Scholar 

  99. Sinkus ML, Lee MJ, Gault J, Logel J, Short M, Freedman R, et al. A 2-base pair deletion polymorphism in the partial duplication of the alpha 7 nicotinic acetylcholine gene (CHRFAM7A) on chromosome 15q14 is associated with schizophrenia. Brain Res. 2009;1291:1–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Raux G, Bonnet-Brilhault F, Louchart S, Houy E, Gantier R, Levillain D, et al. The-2 bp deletion in exon 6 of the ‘alpha 7-like’ nicotinic receptor subunit gene is a risk factor for the P50 sensory gating deficit. Mol Psychiatry. 2002;7(9):1006–11.

    CAS  PubMed  Google Scholar 

  101. Flomen RH, Shaikh M, Walshe M, Schulze K, Hall M-H, Picchioni M, et al. Association between the 2-bp deletion polymorphism in the duplicated version of the alpha7 nicotinic receptor gene and P50 gating. Eur J Hum Genet. 2013;21:76–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Flomen RH, Davies AF, Di Forti M, La Cascia C, Mackie-Ogilvie C, Murray R, et al. The copy number variant involving part of the alpha 7 nicotinic receptor gene contains a polymorphic inversion. Eur J Hum Genet. 2008;16(11):1364–71.

    CAS  PubMed  Google Scholar 

  103. Villiger Y, Szanto I, Jaconi S, Blanchet C, Buisson B, Krause KH, et al. Expression of an alpha 7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. J Neuroimmunol. 2002;126(1–2):86–98.

    CAS  PubMed  Google Scholar 

  104. Araud T, Graw S, Berger R, Neveu E, Bertrand D, Leonard S. The duplicated alpha 7 nicotinic receptor gene CHRFAM7A is a dominant negative regulator of CHRNA7 expression. Biochem Pharmacol. 2011;82:904–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. de Lucas-Cerrillo AM, Maldifassi MC, Arnalich F, Renart J, Atienza G, Serantes R, et al. Function of partially duplicated human alpha 7 nicotinic receptor subunit CHRFAM7A Gene: potential implications for the cholinergic anti-inflammatory response. J Biol Chem. 2011;286(1):594–606.

    PubMed Central  PubMed  Google Scholar 

  106. Benfante R, Antonini RA, De Pizzol M, Gotti C, Clementi F, Locati M, et al. Expression of the α7 nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS. J Immunol. 2011;230:74–84.

    CAS  Google Scholar 

  107. Gault J, Logel J, Drebing C, Berger R, Hopkins J, Olincy A, et al. Mutation analysis of the α7 nicotinic acetylcholine receptor gene and its partial duplication in schizophrenia patients. Am J Hum Genet. 1999;65(Supp.):A271.

    Google Scholar 

  108. Canastar A, Logel J, Graw S, Finlay-Schulz JF, Osborne C, Palionyte M, et al. DNA methylation and tissue-specific transcription of the α7 nicotinic receptor gene (CHRNA7). J Mol Neurosci. 2012;47:389–400.

    CAS  PubMed  Google Scholar 

  109. Finlay-Schulz JA, Canastar A, Short M, El Gazzar MA, Leonard S. Transcriptional repression of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) by AP-2α. J Biol Chem. 2011;286:42123–32.

    Google Scholar 

  110. Stevens KE, Bullock AE, Collins AC. Chronic corticosterone treatment alters sensory gating in C3H mice. Pharmacol Biochem Behav. 2001;69(3–4):359–66.

    CAS  PubMed  Google Scholar 

  111. Bullock AE, Clark AL, Grady SR, Robinson SF, Slobe BS, Marks MJ, et al. Neurosteroids modulate nicotinic receptor function in mouse striatal and thalamic synaptosomes. J Neurochem. 1997;68(6):2412–23.

    CAS  PubMed  Google Scholar 

  112. Carrasco-Serrano C, Criado M. Glucocorticoid activation of the neuronal nicotinic acetylcholine receptor alpha 7 subunit gene: involvement of transcription factor Egr-1. FEBS Lett. 2004;566(1–3):247–50.

    CAS  PubMed  Google Scholar 

  113. Stefansson H, Steinthorsdottir V, Thorgeirsson TE, Gulcher JR, Stefansson K. Neuregulin 1 and schizophrenia. Ann Med. 2004;36(1):62–71.

    CAS  PubMed  Google Scholar 

  114. Harrison PJ, Law AJ. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry. 2006;60(2):132–40.

    CAS  PubMed  Google Scholar 

  115. Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR, et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry. 2005;10(4):366–74.

    CAS  PubMed  Google Scholar 

  116. Yang X, Kuo YH, Devay P, Yu CR, Role L. A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron. 1998;20(2):255–70.

    CAS  PubMed  Google Scholar 

  117. Chen YJJ, Johnson MA, Lieberman MD, Goodchild RE, Schobel S, Lewandowski N, et al. Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci. 2008;28(27):6872–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Mathew SV, Law AJ, Lipska BK, Davila-Garcia MI, Zamora ED, Mitkus SN, et al. Alpha 7 nicotinic acetylcholine receptor mRNA expression and binding in postmortem human brain are associated with genetic variation in neuregulin 1. Hum Mol Genet. 2007;16(23):2921–32.

    CAS  PubMed  Google Scholar 

  119. Hsu YN, Edwards SC, Wecker L. Nicotine enhances the cyclic AMP-dependent protein kinase- mediated phosphorylation of alpha 4 subunits of neuronal nicotinic receptors. J Neurochem. 1997;69(6):2427–31.

    CAS  PubMed  Google Scholar 

  120. Moss SJ, McDonald BJ, Rudhard Y, Schoepfer R. Phosphorylation of the predicted major intracellular domains of the rat and chick neuronal nicotinic acetylcholine receptor alpha 7 subunit by cAMP-dependent protein kinase. Neuropharmacology. 1996;35(8):1023–8.

    CAS  PubMed  Google Scholar 

  121. Drisdel RC, Manzana E, Green WN. The role of palmitoylation in functional expression of nicotinic alpha 7 receptors. J Neurosci. 2004;24(46):10502–10.

    CAS  PubMed  Google Scholar 

  122. Alexander JK, Govind AP, Drisdel RC, Blanton MP, Vallejo Y, Lam TT, et al. Palmitoylation of nicotinic acetylcholine receptors. J Mol Neurosci. 2010;40:12–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Yao JK, Leonard S, Reddy RD. Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients. Schiz Res. 2000;42(1):7–17.

    CAS  Google Scholar 

  124. Castelan F, Castillo M, Mulet J, Sala S, Sala F, del Toro ED, et al. Molecular characterization and localization of the RIC-3 protein, an effector of nicotinic acetylcholine receptor expression. J Neurochem. 2008;105(3):617–27.

    CAS  PubMed  Google Scholar 

  125. Valles AS, Barrantes FJ. Chaperoning alpha 7 neuronal nicotinic acetylcholine receptors. Biochim Biophys Acta. 1818;2012:718–29.

    Google Scholar 

  126. Miwa JM, Stevens TR, King SL, Caldarone BJ, Ibanez-Tallon I, Cheng X, et al. The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron. 2006;51(5):587–600.

    CAS  PubMed  Google Scholar 

  127. Morishita H, Miwa JM, Heintz N, Hensch TK. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science. 2010;330(6008):1238–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Lester HA, Xiao C, Srinivasan R, Son CD, Miwa J, Pantoja R, et al. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry: implications for drug discovery. AAPS J. 2009;11(1):167–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AFT, Wang M. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci. 2013;110(29):12078–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Levy RB, Aoki C. alpha 7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. J Neurosci. 2002;22(12):5001–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Li S, Li ZX, Pei L, Le AD, Liu F. The α7nACh-NMDA rceptor complex is involved in cue-induced reinstatement of nicotine seeking. J Exp Med. 2012;209(12):2141–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Yasui DH, Scoles HA, Horike S, Meguro-Horike M, Dunaway KW, Schroeder DI, et al. 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum Mol Genet. 2011;20(22):4311–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia. Am J Psychiatry. 1996;153:321–30.

    CAS  PubMed  Google Scholar 

  134. Mihailescu S, Drucker-Colin R. Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch Med Res. 2000;31(2):131–44.

    CAS  PubMed  Google Scholar 

  135. D’Souza MS, Markou A. Schizophrenia and tobacco smoking comorbidity: nAChR agonists in the treatment of schizophrenia-associated cognitive deficits. Neuropharmacology. 2012;62:1371–80.

    Google Scholar 

  136. McEvoy JP, Lieberman JA, Stroup TS, Davis SM, Meltzer HY, Rosenheck RA, et al. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry. 2006;163:600–10.

    PubMed  Google Scholar 

  137. Lieberman JA, Stroup TS. The NIMH-CATIE schizophrenia study: what did we learn? Am J Psychiatry. 2011;168:770–5.

    PubMed  Google Scholar 

  138. Barnes NM, Sharp T. A review of central 5HT receptors and their function. Neuropharmacology. 1999;38:1083–152.

    CAS  PubMed  Google Scholar 

  139. Shirazi-Southall S, Rodriguez DE, Nomikos GG. Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacolgy. 2002;26(5):583–94.

    CAS  Google Scholar 

  140. McEvoy J, Freudenreich O, McGee M, Vanderzwaag C, Levin E, Rose J. Clozapine decreases smoking in patients with chronic schizophrenia. Biol Psychiatry. 1995;37(8):550–2.

    CAS  PubMed  Google Scholar 

  141. Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schiz Bull. 1999;25(2):233–55.

    CAS  Google Scholar 

  142. Adler LE, Hoffer LJ, Griffith J, Waldo MC, Freedman R. Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiatry. 1992;32:607–16.

    CAS  PubMed  Google Scholar 

  143. Nagamoto HT, Adler LE, Hea RA, Griffith JM, McRae KA, Freedman R. Gating of auditory P50 in schizophrenics: unique effects of clozapine. Biol Psychiatry. 1996;40(3):181–8.

    CAS  PubMed  Google Scholar 

  144. Koike K, Hashimoto K, Takai N, Shimizu E, Komatsu N, Watanabe H, et al. Tropisetron improves deficits in auditory P50 suppression in schizophrenia. Schiz Res. 2005;76(1):67–72.

    Google Scholar 

  145. Oncken C, Gonzales D, Nides M, Rennard S, Watsky E, Billing C, et al. Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation. Arch Int Med. 2006;166:1571–7.

    CAS  Google Scholar 

  146. Smith RC, Lindenmayer J-P, Davis JM, Cornwell J, Noth K, Gupta S, et al. Cognitive and antismoking effects of varenicline in patients with schizophrenia or schizoaffective disorder. Schiz Res. 2009;110:149–55.

    Google Scholar 

  147. Williams JM, Anthenelli RM, Morris CD, Treadow J, Thompson JR, Yunis C, et al. A randomized, double-blind, placebo-controlled study evaluating the safety and efficacy of varenicline for smoking cessation in patients with schizophrenia or schizoaffective disorder. J Clin Psychiatry. 2012;73:654–60.

    CAS  PubMed  Google Scholar 

  148. Freedman R. Exacerbation of schizophrenia by varenicline. Am J Psychiatry. 2007;164(8):1269.

    PubMed  Google Scholar 

  149. Liu ME, Tsai SJ, Yang ST. Varenicline-induced mixed mood and psychotic episode in a patient with schizophrenia. CNS Spect. 2009;14:346.

    Google Scholar 

  150. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D, et al. Proof-of-concept trial of an alpha 7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry. 2006;63(6):630–8.

    CAS  PubMed  Google Scholar 

  151. Olincy A, Freedman R, Buchanan RW, Harris JG, Gold JM, Johnson LL, et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry. 2008;165(8):1040–7.

    PubMed Central  PubMed  Google Scholar 

  152. Stephens SH, Logel J, Barton A, Franks A, Schultz J, Short M, et al. Association of the 5′-upstream regulatory region of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schiz Res. 2009;109:102–12.

    Google Scholar 

  153. Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Ann Rev Nutr. 2006;26:229–50.

    CAS  Google Scholar 

  154. Ross RG, Stevens KE, Proctor WR, Leonard S, Kisley MA, Hunter SK, et al. Cholinergic mechanisms, early brain development, and risk for schizophrenia. J Child Psychol Psychiatry. 2010;51:535–49.

    PubMed Central  PubMed  Google Scholar 

  155. Hunter SK, Corral N, Ponicsan H, Ross RG. Reliability of P50 auditory sensory gating measures in infants during active sleep. Neuroreport. 2008;19(1):79–82.

    PubMed  Google Scholar 

  156. Liu ZP, Neff RA, Berg DK. Sequential interplay of nicotinic and GABAergic signaling guides neuronal development. Science. 2006;314:1610–3.

    CAS  PubMed  Google Scholar 

  157. Arion D, Lewis DA. Altered expression of regulators of the cortical chloride transporters NRCC1 and KCC2 in schizophrenia. Arch Gen Psychiatry. 2010;68:21–31.

    PubMed Central  PubMed  Google Scholar 

  158. Bertrand D, Bertrand S, Cassar S, Gubbins E, Li JH, Gopalakrishnan M. Positive allosteric modulation of the alpha 7 nicotinic acetylcholine receptor: ligand interactions with distinct binding sites and evidence for a prominent role of the M2-M3 segment. Mol Pharmacol. 2008;74(5):1407–16.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherry Leonard Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leonard, S. (2014). Nicotinic Receptors and Mental Illness. In: Lester, R. (eds) Nicotinic Receptors. The Receptors, vol 26. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1167-7_20

Download citation

Publish with us

Policies and ethics