Skip to main content

Nicotinic Acetylcholine Receptors in Alzheimer’s and Parkinson’s Disease

  • Chapter
  • First Online:
Nicotinic Receptors

Part of the book series: The Receptors ((REC,volume 26))

Abstract

In the CNS, nicotinic acetylcholine receptors prominent roles in modulating presynaptic and postsynaptic signaling and have been implicated in several CNS disorders including the two most prominent neurodegenerative diseases: Alzheimer’s disease and Parkinson’s disease. These neurodegenerative diseases affect scores of millions of persons worldwide with their prevalence increasing as human longevity increases.

This chapter will provide an overview of Alzheimer’s disease and Parkinson’s disease, the cholinergic system affected in each disorder, and the types of nicotinic acetylcholine receptors affected during disease progression. Finally, a discussion of therapeutic strategies targeting nicotinic acetylcholine receptors is included based upon the most current preclinical and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thies W, Bleiler L, Alzheimer’s A. Alzheimer’s disease facts and figures. Alzheimers Dement. 2013;9(2):208–45. PubMed PMID: 23507120.

    Google Scholar 

  2. Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol. 2013;521(18):4124–44. PubMed PMID: 23852922.

    CAS  PubMed  Google Scholar 

  3. Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res. 2011;221(2):555–63. PubMed PMID: 21145918.

    CAS  PubMed  Google Scholar 

  4. Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 2002;68(3):209–45. PubMed PMID: 12450488.

    CAS  PubMed  Google Scholar 

  5. Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST. Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat. 2003;26(4):233–42. PubMed PMID: 14729126.

    CAS  PubMed  Google Scholar 

  6. Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother. 2008;8(11):1703–18. PubMed PMID: 18986241, Pubmed Central PMCID: 2631573.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Everitt BJ, Robbins TW. Central cholinergic systems and cognition. Annu Rev Psychol. 1997;48:649–84. PubMed PMID: 9046571.

    CAS  PubMed  Google Scholar 

  8. Riekkinen PJ, Laulumaa V, Sirvio J, Soininen H, Helkala EL. Recent progress in the research of Alzheimer’s disease. Med Biol. 1987;65(2–3):83–8. PubMed PMID: 3309490.

    CAS  PubMed  Google Scholar 

  9. Bartus RT. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol. 2000;163(2):495–529. PubMed PMID: 10833325.

    CAS  PubMed  Google Scholar 

  10. Bartus RT, Dean 3rd RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217(4558):408–14. PubMed PMID: 7046051.

    CAS  PubMed  Google Scholar 

  11. Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J. 1978;2(6150):1457–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Banerjee C, Nyengaard JR, Wevers A, de Vos RA, Jansen Steur EN, Lindstrom J, et al. Cellular expression of alpha7 nicotinic acetylcholine receptor protein in the temporal cortex in Alzheimer’s and Parkinson’s disease–a stereological approach. Neurobiol Dis. 2000;7(6 Pt B): 666–72. PubMed PMID: 11114264.

    CAS  PubMed  Google Scholar 

  13. Mitsis EM, Cosgrove KP, Staley JK, Bois F, Frohlich EB, Tamagnan GD, et al. Age-related decline in nicotinic receptor availability with [(123)I]5-IA-85380 SPECT. Neurobiol Aging. 2009;30(9):1490–7. PubMed PMID: 18242781.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Pappas BA, Bayley PJ, Bui BK, Hansen LA, Thal LJ. Choline acetyltransferase activity and cognitive domain scores of Alzheimer’s patients. Neurobiol Aging. 2000;21(1):11–7. PubMed PMID: 10794843.

    CAS  PubMed  Google Scholar 

  15. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–91. PubMed PMID: 12399581.

    CAS  PubMed  Google Scholar 

  16. Ikonomovic M, Wecker L, Abrahamson E, Wuu J, Counts S, Ginsberg S, et al. Cortical alpha7 nicotinic acetylcholine receptor and beta-amyloid levels in early Alzheimer’s disease. Arch Neurol. 2009;66(5):646–51.

    PubMed Central  PubMed  Google Scholar 

  17. Ellis JR, Villemagne VL, Nathan PJ, Mulligan RS, Gong SJ, Chan JG, et al. Relationship between nicotinic receptors and cognitive function in early Alzheimer’s disease: a 2-[18F]fluoro-A-85380 PET study. Neurobiol Learn Mem. 2008;90(2):404–12. PubMed PMID: 18620875.

    CAS  PubMed  Google Scholar 

  18. Wang HY, Bakshi K, Shen C, Frankfurt M, Trocme-Thibierge C, Morain P. S 24795 limits beta-amyloid-alpha7 nicotinic receptor interaction and reduces Alzheimer’s disease-like pathologies. Biol Psychiatry. 2010;67(6):522–30. PubMed PMID: 19932469.

    CAS  PubMed  Google Scholar 

  19. Wang HY, Stucky A, Liu J, Shen C, Trocme-Thibierge C, Morain P. Dissociating beta-amyloid from alpha 7 nicotinic acetylcholine receptor by a novel therapeutic agent, S 24795, normalizes alpha 7 nicotinic acetylcholine and NMDA receptor function in Alzheimer’s disease brain. J Neurosci. 2009;29(35):10961–73. PubMed PMID: 19726654.

    CAS  PubMed  Google Scholar 

  20. Hasselmo ME, Giocomo LM. Cholinergic modulation of cortical function. J Mol Neurosci. 2006;30(1–2):133–5. PubMed PMID: 17192659.

    CAS  PubMed  Google Scholar 

  21. Micheau J, Marighetto A. Acetylcholine and memory: a long, complex and chaotic but still living relationship. Behav Brain Res. 2011;221(2):424–9. PubMed PMID: 21130809.

    CAS  PubMed  Google Scholar 

  22. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–29. PubMed PMID: 23040810, Pubmed Central PMCID: 3466476.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Prado VF, Roy A, Kolisnyk B, Gros R, Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J. 2013;450(2):265–74. PubMed PMID: 23410039.

    CAS  PubMed  Google Scholar 

  24. Nilsson OG, Leanza G, Rosenblad C, Lappi DA, Wiley RG, Bjorklund A. Spatial learning impairments in rats with selective immunolesion of the forebrain cholinergic system. Neuroreport. 1992;3(11):1005–8. PubMed PMID: 1482757.

    CAS  PubMed  Google Scholar 

  25. Rossner S, Schliebs R, Hartig W, Bigl V. 192IGG-saporin-induced selective lesion of cholinergic basal forebrain system: neurochemical effects on cholinergic neurotransmission in rat cerebral cortex and hippocampus. Brain Res Bull. 1995;38(4):371–81. PubMed PMID: 8535860.

    CAS  PubMed  Google Scholar 

  26. Dekker AJ, Gage FH, Thal LJ. Delayed treatment with nerve growth factor improves acquisition of a spatial task in rats with lesions of the nucleus basalis magnocellularis: evaluation of the involvement of different neurotransmitter systems. Neuroscience. 1992;48(1):111–9. PubMed PMID: 1374860.

    CAS  PubMed  Google Scholar 

  27. Janis LS, Glasier MM, Stein DG. Effects of a single intraseptal injection of NGF on spatial learning in the water maze. Physiol Behav. 1997;62(1):69–76. PubMed PMID: 9226344.

    CAS  PubMed  Google Scholar 

  28. Woolf NJ, Milov AM, Schweitzer ES, Roghani A. Elevation of nerve growth factor and antisense knockdown of TrkA receptor during contextual memory consolidation. J Neurosci. 2001;21(3):1047–55. PubMed PMID: 11157090.

    CAS  PubMed  Google Scholar 

  29. Ruberti F, Capsoni S, Comparini A, Di Daniel E, Franzot J, Gonfloni S, et al. Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci. 2000;20(7):2589–601. PubMed PMID: 10729339.

    CAS  PubMed  Google Scholar 

  30. DiStefano PS, Friedman B, Radziejewski C, Alexander C, Boland P, Schick CM, et al. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron. 1992;8(5):983–93. PubMed PMID: 1375039.

    CAS  PubMed  Google Scholar 

  31. Darling TL, Petrides PE, Beguin P, Frey P, Shooter EM, Selby M, et al. The biosynthesis and processing of proteins in the mouse 7S nerve growth factor complex. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 1):427–34. PubMed PMID: 6586361.

    CAS  PubMed  Google Scholar 

  32. Edwards RH, Selby MJ, Garcia PD, Rutter WJ. Processing of the native nerve growth factor precursor to form biologically active nerve growth factor. J Biol Chem. 1988;263(14):6810–5. PubMed PMID: 3360808.

    CAS  PubMed  Google Scholar 

  33. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294(5548):1945–8. PubMed PMID: 11729324.

    CAS  PubMed  Google Scholar 

  34. Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M. The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res. 2011;221(2):515–26. PubMed PMID: 20170684.

    CAS  PubMed  Google Scholar 

  35. Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001;76(1):1–10. PubMed PMID: 11145972.

    CAS  PubMed  Google Scholar 

  36. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004;14(3):311–7. PubMed PMID: 15194111.

    CAS  PubMed  Google Scholar 

  37. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 2001;24:1217–81. PubMed PMID: 11520933.

    CAS  PubMed  Google Scholar 

  38. Yakel JL. Nicotinic ACh receptors in the hippocampus: role in excitability and plasticity.Nicotine Tob Res. 2012;14(11):1249–57. Epub 2012 Apr 3. doi: 10.1093/ntr/nts091.

    Google Scholar 

  39. Perry EK, Perry RH, Smith CJ, Dick DJ, Candy JM, Edwardson JA, et al. Nicotinic receptor abnormalities in Alzheimer’s and Parkinson’s diseases. J Neurol Neurosurg Psychiatry. 1987;50(6):806–9. PubMed PMID: 2956364.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Quirion R, Martel JC, Robitaille Y, Etienne P, Wood P, Nair NP, et al. Neurotransmitter and receptor deficits in senile dementia of the Alzheimer type. Can J Neurol Sci. 1986;13 (4 Suppl):503–10. PubMed PMID: 2878714.

    CAS  PubMed  Google Scholar 

  41. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci. 2001;21(20):7993–8003. PubMed PMID: 11588172.

    CAS  PubMed  Google Scholar 

  42. Hunt SP, Schmidt J. The electron microscopic autoradiographic localization of alpha-bungarotoxin binding sites within the central nervous system of the rat. Brain Res. 1978;142(1):152–9. PubMed PMID: 626914.

    CAS  PubMed  Google Scholar 

  43. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 1996;383(6602):713–6. PubMed PMID: 8878480.

    CAS  PubMed  Google Scholar 

  44. Ji D, Lape R, Dani JA. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron. 2001;31(1):131–41. PubMed PMID: 11498056.

    CAS  PubMed  Google Scholar 

  45. Dani JA. Nicotinic receptor activity alters synaptic plasticity. ScientificWorldJournal. 2001;1(8):393–5. PubMed PMID: 12806076.

    CAS  PubMed  Google Scholar 

  46. Rezvani AH, Bushnell PJ, Levin ED. Effects of nicotine and mecamylamine on choice accuracy in an operant visual signal detection task in female rats. Psychopharmacology (Berl). 2002;164(4):369–75. PubMed PMID: 12457266.

    CAS  Google Scholar 

  47. Levin ED, Rezvani AH. Nicotinic treatment for cognitive dysfunction. Curr Drug Targets CNS Neurol Disord. 2002;1(4):423–31. PubMed PMID: 12769614.

    CAS  PubMed  Google Scholar 

  48. Bowen DM, Allen SJ, Benton JS, Goodhardt MJ, Haan EA, Palmer AM, et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem. 1983;41(1):266–72. PubMed PMID: 6306169.

    CAS  PubMed  Google Scholar 

  49. Cummings JL, Benson DF. The role of the nucleus basalis of Meynert in dementia: review and reconsideration. Alzheimer Dis Assoc Disord. 1987;1(3):128–55. PubMed PMID: 3331115.

    CAS  PubMed  Google Scholar 

  50. Perry EK, Haroutunian V, Davis KL, Levy R, Lantos P, Eagger S, et al. Neocortical cholinergic activities differentiate Lewy body dementia from classical Alzheimer’s disease. Neuroreport. 1994;5(7):747–9. PubMed PMID: 8018843.

    CAS  PubMed  Google Scholar 

  51. Court J, Martin-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E. Nicotinic receptor abnormalities in Alzheimer’s disease. Biol Psychiatry. 2001;49(3):175–84. PubMed PMID: 11230868.

    CAS  PubMed  Google Scholar 

  52. Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R. Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem. 1992;58(2):529–41. PubMed PMID: 1729398.

    CAS  PubMed  Google Scholar 

  53. Court JA, Piggott MA, Lloyd S, Cookson N, Ballard CG, McKeith IG, et al. Nicotine binding in human striatum: elevation in schizophrenia and reductions in dementia with Lewy bodies, Parkinson’s disease and Alzheimer’s disease and in relation to neuroleptic medication. Neuroscience. 2000;98(1):79–87. PubMed PMID: 10858614.

    CAS  PubMed  Google Scholar 

  54. Martin-Ruiz CM, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, et al. Alpha4 but not alpha3 and alpha7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem. 1999;73(4):1635–40. PubMed PMID: 10501210.

    CAS  PubMed  Google Scholar 

  55. Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG, et al. Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience. 1995;64(2):385–95. PubMed PMID: 7700528.

    CAS  PubMed  Google Scholar 

  56. Whitehouse PJ, Martino AM, Wagster MV, Price DL, Mayeux R, Atack JR, et al. Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology. 1988;38(5):720–3. PubMed PMID: 3362368.

    CAS  PubMed  Google Scholar 

  57. Svensson AL, Warpman U, Hellstrom-Lindahl E, Bogdanovic N, Lannfelt L, Nordberg A. Nicotinic receptors, muscarinic receptors and choline acetyltransferase activity in the temporal cortex of Alzheimer patients with differing apolipoprotein E genotypes. Neurosci Lett. 1997;232(1):37–40. PubMed PMID: 9292886.

    CAS  PubMed  Google Scholar 

  58. Warpman U, Nordberg A. Epibatidine and ABT 418 reveal selective losses of alpha 4 beta 2 nicotinic receptors in Alzheimer brains. Neuroreport. 1995;6(17):2419–23. PubMed PMID: 8747166.

    CAS  PubMed  Google Scholar 

  59. Nordberg A, Winblad B. Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett. 1986;72(1):115–9. PubMed PMID: 3808458.

    CAS  PubMed  Google Scholar 

  60. Pimlott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, et al. Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology. 2004;29(1):108–16. PubMed PMID: 12955099.

    CAS  PubMed  Google Scholar 

  61. Guan ZZ, Zhang X, Ravid R, Nordberg A. Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer’s disease. J Neurochem. 2000;74(1):237–43. PubMed PMID: 10617125.

    CAS  PubMed  Google Scholar 

  62. Moser N, Mechawar N, Jones I, Gochberg-Sarver A, Orr-Urtreger A, Plomann M, et al. Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures. J Neurochem. 2007;102(2):479–92. PubMed PMID: 17419810.

    CAS  PubMed  Google Scholar 

  63. Schroder H, Giacobini E, Struble RG, Zilles K, Maelicke A. Nicotinic cholinoceptive neurons of the frontal cortex are reduced in Alzheimer’s disease. Neurobiol Aging. 1991;12(3):259–62. PubMed PMID: 1876232.

    CAS  PubMed  Google Scholar 

  64. Schroder H, Giacobini E, Struble RG, Zilles K, Maelicke A, Luiten PG, et al. Cellular distribution and expression of cortical acetylcholine receptors in aging and Alzheimer’s disease. Ann N Y Acad Sci. 1991;640:189–92. PubMed PMID: 1776738.

    CAS  PubMed  Google Scholar 

  65. Herber DL, Severance EG, Cuevas J, Morgan D, Gordon MN. Biochemical and histochemical evidence of nonspecific binding of alpha7nAChR antibodies to mouse brain tissue. J Histochem Cytochem. 2004;52(10):1367–76. PubMed PMID: 15385583.

    CAS  PubMed  Google Scholar 

  66. Gotti C, Moretti M, Bohr I, Ziabreva I, Vailati S, Longhi R, et al. Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer’s disease, Parkinson’s disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol Dis. 2006;23(2):481–9. PubMed PMID: 16759874.

    CAS  PubMed  Google Scholar 

  67. Engidawork E, Gulesserian T, Balic N, Cairns N, Lubec G. Changes in nicotinic acetylcholine receptor subunits expression in brain of patients with Down syndrome and Alzheimer’s disease. J Neural Transm Suppl. 2001;61:211–22. PubMed PMID: 11771745.

    PubMed  Google Scholar 

  68. Burghaus L, Schutz U, Krempel U, de Vos RA, Jansen Steur EN, Wevers A, et al. Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res. 2000;76(2):385–8. PubMed PMID: 10762715.

    CAS  PubMed  Google Scholar 

  69. Hellstrom-Lindahl E, Mousavi M, Zhang X, Ravid R, Nordberg A. Regional distribution of nicotinic receptor subunit mRNAs in human brain: comparison between Alzheimer and normal brain. Brain Res Mol Brain Res. 1999;66(1–2):94–103. PubMed PMID: 10095081.

    CAS  PubMed  Google Scholar 

  70. Davies P, Feisullin S. Postmortem stability of alpha-bungarotoxin binding sites in mouse and human brain. Brain Res. 1981;216(2):449–54. PubMed PMID: 7248786.

    CAS  PubMed  Google Scholar 

  71. Sugaya K, Giacobini E, Chiappinelli VA. Nicotinic acetylcholine receptor subtypes in human frontal cortex: changes in Alzheimer’s disease. J Neurosci Res. 1990;27(3):349–59. PubMed PMID: 2097379.

    CAS  PubMed  Google Scholar 

  72. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012;8(1):1–13. PubMed PMID: 22265587, Pubmed Central PMCID: 3266529.

    PubMed Central  PubMed  Google Scholar 

  73. Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA. 1999;281(15):1401–6. PubMed PMID: 10217056.

    CAS  PubMed  Google Scholar 

  74. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol. 2002;51(2):145–55. PubMed PMID: 11835370.

    CAS  PubMed  Google Scholar 

  75. Counts SE, He B, Che S, Ikonomovic MD, DeKosky ST, Ginsberg SD, et al. Alpha7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease. Arch Neurol. 2007;64(12):1771–6. PubMed PMID: 18071042.

    PubMed  Google Scholar 

  76. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225(4667):1168–70. PubMed PMID: 6474172.

    CAS  PubMed  Google Scholar 

  77. Cotman CW, Matthews DA, Taylor D, Lynch G. Synaptic rearrangement in the dentate gyrus: histochemical evidence of adjustments after lesions in immature and adult rats. Proc Natl Acad Sci U S A. 1973;70(12):3473–7. PubMed PMID: 4519639, Pubmed Central PMCID: 427262.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Savaskan NE, Nitsch R. Molecules involved in reactive sprouting in the hippocampus. Rev Neurosci. 2001;12(3):195–215. PubMed PMID: 11560368.

    CAS  PubMed  Google Scholar 

  79. Parri HR, Hernandez CM, Dineley KT. Research update: alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol. 2011;82(8):931–42. PubMed PMID: 21763291.

    CAS  PubMed  Google Scholar 

  80. Parri RH, Dineley TK. Nicotinic acetylcholine receptor interaction with beta-amyloid: molecular, cellular, and physiological consequences. Curr Alzheimer Res. 2010;7(1):27–39. PubMed PMID: 20205670.

    CAS  PubMed  Google Scholar 

  81. Dineley KT. Beta-amyloid peptide–nicotinic acetylcholine receptor interaction: the two faces of health and disease. Front Biosci. 2007;12:5030–8. PubMed PMID: 17569627.

    CAS  PubMed  Google Scholar 

  82. Dineley KT, Xia X, Bui D, Sweatt JD, Zheng H. Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J Biol Chem. 2002;277(25):22768–80. PubMed PMID: 11912199.

    CAS  PubMed  Google Scholar 

  83. Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB. beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem. 2000;275(8):5626–32.

    CAS  PubMed  Google Scholar 

  84. Puzzo D, Privitera L, Fa M, Staniszewski A, Hashimoto G, Aziz F, et al. Endogenous amyloid-beta is necessary for hippocampal synaptic plasticity and memory. Ann Neurol. 2011;69(5):819–30. PubMed PMID: 21472769.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, et al. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci. 2008;28(53):14537–45. PubMed PMID: 19118188, Pubmed Central PMCID: 2673049.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Fu W, Jhamandas JH. Beta-amyloid peptide activates non-alpha7 nicotinic acetylcholine receptors in rat basal forebrain neurons. J Neurophysiol. 2003;90(5):3130–6. PubMed PMID: 12890800.

    CAS  PubMed  Google Scholar 

  87. Azam L, Winzer-Serhan U, Leslie FM. Co-expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons. Neuroscience. 2003;119(4):965–77. PubMed PMID: 12831856.

    CAS  PubMed  Google Scholar 

  88. Teaktong T, Graham A, Court J, Perry R, Jaros E, Johnson M, et al. Alzheimer’s disease is associated with a selective increase in alpha7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia. 2003;41(2):207–11. PubMed PMID: 12509811.

    PubMed  Google Scholar 

  89. Chu LW, Ma ES, Lam KK, Chan MF, Lee DH. Increased alpha 7 nicotinic acetylcholine receptor protein levels in Alzheimer’s disease patients. Dement Geriatr Cogn Disord. 2005;19(2–3):106–12. PubMed PMID: 15591800.

    CAS  PubMed  Google Scholar 

  90. Govind AP, Walsh H, Green WN. Nicotine-induced upregulation of native neuronal nicotinic receptors is caused by multiple mechanisms. J Neurosci. 2012;32(6):2227–38. PubMed PMID: 22323734, Pubmed Central PMCID: 3286518.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Govind AP, Vezina P, Green WN. Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol. 2009;78(7):756–65. PubMed PMID: 19540212, Pubmed Central PMCID: 2728164.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Colombo SF, Mazzo F, Pistillo F, Gotti C. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol. 2013;86(8):1063–73. PubMed PMID: 23830821.

    CAS  PubMed  Google Scholar 

  93. Marks MJ, McClure-Begley TD, Whiteaker P, Salminen O, Brown RW, Cooper J, et al. Increased nicotinic acetylcholine receptor protein underlies chronic nicotine-induced up-regulation of nicotinic agonist binding sites in mouse brain. J Pharmacol Exp Ther. 2011;337(1):187–200. PubMed PMID: 21228066, Pubmed Central PMCID: 3063733.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Gentry CL, Lukas RJ. Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord. 2002;1(4):359–85. PubMed PMID: 12769610.

    CAS  PubMed  Google Scholar 

  95. Dineley KT, Bell KA, Bui D, Sweatt JD. beta -Amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Biol Chem. 2002;277(28):25056–61. PubMed PMID: 11983690.

    CAS  PubMed  Google Scholar 

  96. Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci. 2001;21(12):4125–33. PubMed PMID: 11404397.

    CAS  PubMed  Google Scholar 

  97. Abbott JJ, Howlett DR, Francis PT, Williams RJ. Abeta(1-42) modulation of Akt phosphorylation via alpha7 nAChR and NMDA receptors. Neurobiol Aging. 2008;29(7):992–1001. PubMed PMID: 17292512.

    CAS  PubMed  Google Scholar 

  98. Dougherty JJ, Wu J, Nichols RA. Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J Neurosci. 2003;23(17):6740–7. PubMed PMID: 12890766.

    CAS  PubMed  Google Scholar 

  99. Bell KA, O’Riordan KJ, Sweatt JD, Dineley KT. MAPK recruitment by beta-amyloid in organotypic hippocampal slice cultures depends on physical state and exposure time. J Neurochem. 2004;91(2):349–61. PubMed PMID: 15447668.

    CAS  PubMed  Google Scholar 

  100. Marambaud P, Dreses-Werringloer U, Vingtdeux V. Calcium signaling in neurodegeneration. Mol Neurodegener. 2009;4:20. PubMed PMID: 19419557, Pubmed Central PMCID: 2689218.

    PubMed Central  PubMed  Google Scholar 

  101. Jancic D. Lopez de Armentia M, Valor LM, Olivares R, Barco A. Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb Cortex. 2009;19(11):2535–47.

    PubMed  Google Scholar 

  102. Baki L, Neve RL, Shao Z, Shioi J, Georgakopoulos A, Robakis NK. Wild-type but not FAD mutant presenilin-1 prevents neuronal degeneration by promoting phosphatidylinositol 3-kinase neuroprotective signaling. J Neurosci. 2008;28(2):483–90. PubMed PMID: 18184791.

    CAS  PubMed  Google Scholar 

  103. Abdul HM, Butterfield DA. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Free Radic Biol Med. 2007;42(3):371–84. PubMed PMID: 17210450, Pubmed Central PMCID: 1808543.

    PubMed Central  PubMed  Google Scholar 

  104. Hernandez CM, Dineley KT. alpha7 nicotinic acetylcholine receptors in Alzheimer’s disease: neuroprotective, neurotrophic or both? Curr Drug Targets. 2012;13(5):613–22. PubMed PMID: 22300028.

    CAS  PubMed  Google Scholar 

  105. Puzzo D, Arancio O. Amyloid-beta peptide: Dr. Jekyll or Mr. Hyde? J Alzheimers Dis. 2013;33 Suppl 1:S111–20. PubMed PMID: 22735675, Pubmed Central PMCID: 3696497.

    PubMed Central  PubMed  Google Scholar 

  106. Liu Q, Kawai H, Berg DK. beta -Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci U S A. 2001;98(8):4734–9. PubMed PMID: 11274373.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Liu Q, Huang Y, Shen J, Steffensen S, Wu J. Functional alpha7beta2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid beta peptides. BMC Neurosci. 2012;13:155. PubMed PMID: 23272676, Pubmed Central PMCID: 3573893.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Liu Q, Huang Y, Xue F, Simard A, DeChon J, Li G, et al. A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci. 2009;29(4):918–29. PubMed PMID: 19176801, Pubmed Central PMCID: 2857410.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Hasselmo ME, Wyble BP, Wallenstein GV. Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus. 1996;6(6):693–708. PubMed PMID: 9034856.

    CAS  PubMed  Google Scholar 

  110. Hasselmo ME. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci. 1999;3(9):351–9. PubMed PMID: 10461198.

    PubMed  Google Scholar 

  111. Chrobak JJ, Hanin I, Schmechel DE, Walsh TJ. AF64A-induced working memory impairment: behavioral, neurochemical and histological correlates. Brain Res. 1988;463(1):107–17. PubMed PMID: 3196899.

    CAS  PubMed  Google Scholar 

  112. Olson L, Nordberg A, von Holst H, Backman L, Ebendal T, Alafuzoff I, et al. Nerve growth factor affects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J Neural Transm Park Dis Dement Sect. 1992;4(1):79–95. PubMed PMID: 1540306.

    CAS  PubMed  Google Scholar 

  113. Doody RS, Cummings JL, Farlow MR. Reviewing the role of donepezil in the treatment of Alzheimer’s disease. Curr Alzheimer Res. 2012;9(7):773–81. PubMed PMID: 22175653.

    CAS  PubMed  Google Scholar 

  114. Rogers SL, Doody RS, Pratt RD, Ieni JR. Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: final analysis of a US multicentre open-label study. Eur Neuropsychopharmacol. 2000;10(3):195–203. PubMed PMID: 10793322.

    CAS  PubMed  Google Scholar 

  115. Gauthier S, Cummings J, Ballard C, Brodaty H, Grossberg G, Robert P, et al. Management of behavioral problems in Alzheimer’s disease. Int Psychogeriatr. 2010;22(3):346–72. PubMed PMID: 20096151.

    PubMed  Google Scholar 

  116. Di Santo SG, Prinelli F, Adorni F, Caltagirone C, Musicco M. A meta-analysis of the efficacy of donepezil, rivastigmine, galantamine, and memantine in relation to severity of Alzheimer’s disease. J Alzheimers Dis. 2013;35(2):349–61. PubMed PMID: 23411693.

    PubMed  Google Scholar 

  117. Cummings JL. Treatment of Alzheimer’s disease: the role of symptomatic agents in an era of disease-modifying therapies. Rev Neurol Dis. 2007;4(2):57–62. PubMed PMID: 17609636.

    PubMed  Google Scholar 

  118. Takada-Takatori Y, Kume T, Sugimoto M, Katsuki H, Sugimoto H, Akaike A. Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology. 2006;51(3):474–86. PubMed PMID: 16762377.

    CAS  PubMed  Google Scholar 

  119. Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, et al. alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem. 2001;276(17):13541–6. PubMed PMID: 11278378.

    CAS  PubMed  Google Scholar 

  120. Li XD, Buccafusco JJ. Effect of beta-amyloid peptide 1-42 on the cytoprotective action mediated by alpha7 nicotinic acetylcholine receptors in growth factor-deprived differentiated PC-12 cells. J Pharmacol Exp Ther. 2003;307(2):670–5. PubMed PMID: 12970390.

    CAS  PubMed  Google Scholar 

  121. Li XD, Arias E, Jonnala RR, Mruthinti S, Buccafusco JJ. Effect of amyloid peptides on the increase in TrkA receptor expression induced by nicotine in vitro and in vivo. J Mol Neurosci. 2005;27(3):325–36. PubMed PMID: 16280603.

    CAS  PubMed  Google Scholar 

  122. Hernandez CM, Terry Jr AV. Repeated nicotine exposure in rats: effects on memory function, cholinergic markers and nerve growth factor. Neuroscience. 2005;130(4):997–1012. PubMed PMID: 15652996.

    CAS  PubMed  Google Scholar 

  123. Dunbar GC, Kuchibhatla RV, Lee G, Group T-ACS. A randomized double-blind study comparing 25 and 50 mg TC-1734 (AZD3480) with placebo, in older subjects with age-associated memory impairment. J Psychopharmacol. 2011;25(8):1020–9. PubMed PMID: 20542923.

    CAS  PubMed  Google Scholar 

  124. Arneric SP, Sullivan JP, Briggs CA, Donnelly-Roberts D, Anderson DJ, Raszkiewicz JL, et al. (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl) isoxazole (ABT 418): a novel cholinergic ligand with cognition-enhancing and anxiolytic activities: I. In vitro characterization. J Pharmacol Exp Ther. 1994;270(1):310–8.

    CAS  PubMed  Google Scholar 

  125. Papke RL, Thinschmidt JS, Moulton BA, Meyer EM, Poirier A. Activation and inhibition of rat neuronal nicotinic receptors by ABT-418. Br J Pharmacol. 1997;120(3):429–38. PubMed PMID: 9031746, Pubmed Central PMCID: 1564486.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Bencherif M, Lovette ME, Fowler KW, Arrington S, Reeves L, Caldwell WS, et al. RJR-2403: a nicotinic agonist with CNS selectivity I. In vitro characterization. J Pharmacol Exp Ther. 1996;279(3):1413–21. PubMed PMID: 8968366.

    CAS  PubMed  Google Scholar 

  127. Lippiello PM, Bencherif M, Gray JA, Peters S, Grigoryan G, Hodges H, et al. RJR-2403: a nicotinic agonist with CNS selectivity II. In vivo characterization. J Pharmacol Exp Ther. 1996;279(3):1422–9. PubMed PMID: 8968367.

    CAS  PubMed  Google Scholar 

  128. Gatto GJ, Bohme GA, Caldwell WS, Letchworth SR, Traina VM, Obinu MC, et al. TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects. CNS Drug Rev. 2004;10(2):147–66. PubMed PMID: 15179444.

    CAS  PubMed  Google Scholar 

  129. Wilson AL, Langley LK, Monley J, Bauer T, Rottunda S, McFalls E, et al. Nicotine patches in Alzheimer’s disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav. 1995;51(2–3):509–14. PubMed PMID: 7667377.

    CAS  PubMed  Google Scholar 

  130. Lopez-Arrieta JM, Rodriguez JL, Sanz F. Nicotine for Alzheimer’s disease. Cochrane Database Syst Rev 2000 (2):CD001749. PubMed PMID: 10796667.

    Google Scholar 

  131. Zamani MR, Allen YS. Nicotine and its interaction with beta-amyloid protein: a short review. Biol Psychiatry. 2001;49(3):221–32. PubMed PMID: 11230873.

    CAS  PubMed  Google Scholar 

  132. Lopez-Arrieta JM, Rodriguez JL, Sanz F. Efficacy and safety of nicotine on Alzheimer’s disease patients. Cochrane Database Syst Rev 2001 (2):CD001749. PubMed PMID: 11406005

    Google Scholar 

  133. O’Neill MJ, Murray TK, Lakics V, Visanji NP, Duty S. The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr Drug Targets CNS Neurol Disord. 2002;1(4):399–411. PubMed PMID: 12769612.

    PubMed  Google Scholar 

  134. Rezvani AH, Kholdebarin E, Brucato FH, Callahan PM, Lowe DA, Levin ED. Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):269–75. PubMed PMID: 19110025.

    CAS  PubMed  Google Scholar 

  135. Wallace TL, Callahan PM, Tehim A, Bertrand D, Tombaugh G, Wang S, et al. RG3487, a novel nicotinic alpha7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J Pharmacol Exp Ther. 2011;336(1):242–53. PubMed PMID: 20959364.

    CAS  PubMed  Google Scholar 

  136. Bitner RS, Bunnelle WH, Decker MW, Drescher KU, Kohlhaas KL, Markosyan S, et al. In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer’s disease. J Pharmacol Exp Ther. 2010;334(3):875–86. PubMed PMID: 20504913.

    CAS  PubMed  Google Scholar 

  137. Biton B, Bergis OE, Galli F, Nedelec A, Lochead AW, Jegham S, et al. SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) binding and functional profile. Neuropsychopharmacology. 2007;32(1):1–16. PubMed PMID: 17019409.

    CAS  PubMed  Google Scholar 

  138. Barak S, Arad M, De Levie A, Black MD, Griebel G, Weiner I. Pro-cognitive and antipsychotic efficacy of the alpha7 nicotinic partial agonist SSR180711 in pharmacological and neurodevelopmental latent inhibition models of schizophrenia. Neuropsychopharmacology. 2009;34(7):1753–63. PubMed PMID: 19158670.

    CAS  PubMed  Google Scholar 

  139. Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137(1):22–54. PubMed PMID: 22925690.

    CAS  PubMed  Google Scholar 

  140. Vellas B, Carrillo MC, Sampaio C, Brashear HR, Siemers E, Hampel H, et al. Designing drug trials for Alzheimer’s disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheimers Dement. 2013;9(4):438–44. PubMed PMID: 23809364.

    PubMed  Google Scholar 

  141. Becker RE, Greig NH. Fire in the ashes: can failed Alzheimer’s disease drugs succeed with second chances? Alzheimers Dement. 2013;9(1):50–7. PubMed PMID: 22465172.

    PubMed  Google Scholar 

  142. Becker RE, Greig NH. Increasing the success rate for Alzheimer’s disease drug discovery and development. Exp Opin Drug Dis. 2012;7(4):367–70. PubMed PMID: 22439785.

    CAS  Google Scholar 

  143. Vellas B. Recruitment, retention and other methodological issues related to clinical trials for Alzheimer’s disease. J Nutr Health Aging. 2012;16(4):330. PubMed PMID: 22499451.

    CAS  PubMed  Google Scholar 

  144. Jack Jr CR, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):257–62. PubMed PMID: 21514247, Pubmed Central PMCID: 3096735.

    PubMed Central  PubMed  Google Scholar 

  145. Nagele RG, D’Andrea MR, Anderson WJ, Wang HY. Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience. 2002;110(2):199–211. PubMed PMID: 11958863.

    CAS  PubMed  Google Scholar 

  146. Dickson DW. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspec Med. 2012;2(8):a009258. PubMed PMID: 22908195.

    Google Scholar 

  147. Poewe W, Mahlknecht P. The clinical progression of Parkinson’s disease. Parkinsonism Relat Disord. 2009;15 Suppl 4:S28–32. PubMed PMID: 20123553.

    PubMed  Google Scholar 

  148. Schapira AH. Etiology and pathogenesis of Parkinson disease. Neurol Clin. 2009;27(3):583–603. v, PubMed PMID: 19555823.

    PubMed  Google Scholar 

  149. Kumar KR, Lohmann K, Klein C. Genetics of Parkinson disease and other movement disorders. Curr Opin Neurol. 2012;25(4):466–74. PubMed PMID: 22772876.

    CAS  PubMed  Google Scholar 

  150. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 2008;7(7):583–90. PubMed PMID: 18539534, Pubmed Central PMCID: 2832754.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Houlden H, Singleton AB. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol. 2012;124(3):325–38. PubMed PMID: 22806825, Pubmed Central PMCID: 3589971.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov disord. 2011;26(6):1049–55. PubMed PMID: 21626550.

    PubMed  Google Scholar 

  153. Kieburtz K, Wunderle KB. Parkinson’s disease: evidence for environmental risk factors. Mov disord. 2013;28(1):8–13. PubMed PMID: 23097348.

    CAS  PubMed  Google Scholar 

  154. Ferreira JJ, Katzenschlager R, Bloem BR, Bonuccelli U, Burn D, Deuschl G, et al. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur J Neurol. 2013;20(1):5–15. PubMed PMID: 23279439.

    CAS  PubMed  Google Scholar 

  155. Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev. 2013;65(1):171–222. PubMed PMID: 23319549.

    CAS  PubMed  Google Scholar 

  156. Jankovic J. Medical treatment of dystonia. Mov disord. 2013;28(7):1001–12. PubMed PMID: 23893456.

    CAS  PubMed  Google Scholar 

  157. Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov disord. 2008;23 Suppl 3:S548–59. PubMed PMID: 18781672.

    PubMed  Google Scholar 

  158. Smith Y, Kieval JZ. Anatomy of the dopamine system in the basal ganglia. Trends Neurosci. 2000;23(10 Suppl):S28–33. PubMed PMID: 11052217.

    CAS  PubMed  Google Scholar 

  159. Bolam JP, Hanley JJ, Booth PA, Bevan MD. Synaptic organisation of the basal ganglia. J Anat. 2000;196(Pt 4):527–42. PubMed PMID: 10923985, Pubmed Central PMCID: 1468095.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Obeso JA, Lanciego JL. Past, present, and future of the pathophysiological model of the Basal Ganglia. Front Neuroanat. 2011;5:39. PubMed PMID: 21808607, Pubmed Central PMCID: 3136734.

    PubMed Central  PubMed  Google Scholar 

  161. Zhou FM, Liang Y, Dani JA. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci. 2001;4(12):1224–9. PubMed PMID: 11713470.

    CAS  PubMed  Google Scholar 

  162. Zhou FM, Wilson CJ, Dani JA. Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol. 2002;53(4):590–605. PubMed PMID: 12436423.

    CAS  PubMed  Google Scholar 

  163. Ungless MA, Cragg SJ. A choreography of nicotinic receptors directs the dopamine neuron routine. Neuron. 2006;50(6):815–6. PubMed PMID: 16772163.

    CAS  PubMed  Google Scholar 

  164. Threlfell S, Cragg SJ. Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons. Front Syst Neurosci. 2011;5:11. PubMed PMID: 21427783, Pubmed Central PMCID: 3049415.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron. 2012;75(1):58–64. PubMed PMID: 22794260.

    CAS  PubMed  Google Scholar 

  166. Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron. 2010;67(2):294–307. PubMed PMID: 20670836.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Flynn DD, Mash DC. Distinct kinetic binding properties of N-[3H]-methylscopolamine afford differential labeling and localization of M1, M2, and M3 muscarinic receptor subtypes in primate brain. Synapse. 1993;14(4):283–96. PubMed PMID: 8248852.

    CAS  PubMed  Google Scholar 

  168. Nastuk MA, Graybiel AM. Autoradiographic localization and biochemical characteristics of M1 and M2 muscarinic binding sites in the striatum of the cat, monkey, and human. J Neurosci. 1988;8(3):1052–62. PubMed PMID: 3346715.

    CAS  PubMed  Google Scholar 

  169. Ariano MA, Kenny SL. Striatal muscarinic receptors are associated with substance P and somatostatin containing neurons. Brain Res. 1989;497(1):51–8. PubMed PMID: 2477112.

    CAS  PubMed  Google Scholar 

  170. Alcantara AA, Mrzljak L, Jakab RL, Levey AI, Hersch SM, Goldman-Rakic PS. Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: anatomical evidence for cholinergic modulation of glutamatergic prefronto-striatal pathways. J Comp Neurol. 2001;434(4):445–60. PubMed PMID: 11343292.

    CAS  PubMed  Google Scholar 

  171. Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI. Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci. 1994;14(5 Pt 2):3351–63. PubMed PMID: 8182478.

    CAS  PubMed  Google Scholar 

  172. Goldberg JA, Ding JB, Surmeier DJ. Muscarinic modulation of striatal function and circuitry. Handb Exp Pharmacol. 2012;208:223–41. PubMed PMID: 22222701.

    CAS  PubMed  Google Scholar 

  173. Girault JA, Greengard P. The neurobiology of dopamine signaling. Arch Neurol. 2004;61(5):641–4. PubMed PMID: 15148138.

    PubMed  Google Scholar 

  174. Lee CR, Tepper JM. Basal ganglia control of substantia nigra dopaminergic neurons. J Neural Transm Suppl. 2009;73:71–90. PubMed PMID: 20411769.

    CAS  PubMed  Google Scholar 

  175. Keath JR, Iacoviello MP, Barrett LE, Mansvelder HD, McGehee DS. Differential modulation by nicotine of substantia nigra versus ventral tegmental area dopamine neurons. J Neurophysiol. 2007;98(6):3388–96. PubMed PMID: 17942622.

    CAS  PubMed  Google Scholar 

  176. Futami T, Takakusaki K, Kitai ST. Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res. 1995;21(4):331–42. PubMed PMID: 7777224.

    CAS  PubMed  Google Scholar 

  177. Forster GL, Blaha CD. Pedunculopontine tegmental stimulation evokes striatal dopamine efflux by activation of acetylcholine and glutamate receptors in the midbrain and pons of the rat. Eur J Neurosci. 2003;17(4):751–62. PubMed PMID: 12603265.

    PubMed  Google Scholar 

  178. McIntosh JM, Azam L, Staheli S, Dowell C, Lindstrom JM, Kuryatov A, et al. Analogs of alpha-conotoxin MII are selective for alpha6-containing nicotinic acetylcholine receptors. Mol Pharmacol. 2004;65(4):944–52. PubMed PMID: 15044624.

    CAS  PubMed  Google Scholar 

  179. Quik M, McIntosh JM. Striatal alpha6* nicotinic acetylcholine receptors: potential targets for Parkinson’s disease therapy. J Pharmacol Exp Ther. 2006;316(2):481–9. PubMed PMID: 16210393.

    CAS  PubMed  Google Scholar 

  180. Quik M, Wonnacott S. alpha6beta2* and alpha4beta2* nicotinic acetylcholine receptors as drug targets for Parkinson’s disease. Pharmacol Rev. 2011;63(4):938–66. PubMed PMID: 21969327, Pubmed Central PMCID: 3186078.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Gotti C, Guiducci S, Tedesco V, Corbioli S, Zanetti L, Moretti M, et al. Nicotinic acetylcholine receptors in the mesolimbic pathway: primary role of ventral tegmental area alpha6beta2* receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. J Neurosci. 2010;30(15):5311–25. PubMed PMID: 20392953.

    CAS  PubMed  Google Scholar 

  182. Klink R. de Kerchove d’Exaerde A, Zoli M, Changeux JP. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci. 2001;21(5):1452–63.

    CAS  PubMed  Google Scholar 

  183. Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, et al. Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci. 2003;23(21):7820–9. PubMed PMID: 12944511.

    CAS  PubMed  Google Scholar 

  184. Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ, et al. The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci. 2003;23(35):11045–53. PubMed PMID: 14657161.

    CAS  PubMed  Google Scholar 

  185. Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C. Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci. 2002;22(20):8785–9. PubMed PMID: 12388584.

    CAS  PubMed  Google Scholar 

  186. Anderson DJ, Malysz J, Gronlien JH, El Kouhen R, Hakerud M, Wetterstrand C, et al. Stimulation of dopamine release by nicotinic acetylcholine receptor ligands in rat brain slices correlates with the profile of high, but not low, sensitivity alpha4beta2 subunit combination. Biochem Pharmacol. 2009;78(7):844–51. PubMed PMID: 19555668.

    CAS  PubMed  Google Scholar 

  187. Grady SR, Drenan RM, Breining SR, Yohannes D, Wageman CR, Fedorov NB, et al. Structural differences determine the relative selectivity of nicotinic compounds for native alpha 4 beta 2*-, alpha 6 beta 2*-, alpha 3 beta 4*- and alpha 7-nicotine acetylcholine receptors. Neuropharmacology. 2010;58(7):1054–66. PubMed PMID: 20114055, Pubmed Central PMCID: 2849849.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Quik M, Sum JD, Whiteaker P, McCallum SE, Marks MJ, Musachio J, et al. Differential declines in striatal nicotinic receptor subtype function after nigrostriatal damage in mice. Mol Pharmacol. 2003;63(5):1169–79. PubMed PMID: 12695545.

    CAS  PubMed  Google Scholar 

  189. Quik M, Vailati S, Bordia T, Kulak JM, Fan H, McIntosh JM, et al. Subunit composition of nicotinic receptors in monkey striatum: effect of treatments with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine or L-DOPA. Mol Pharmacol. 2005;67(1):32–41. PubMed PMID: 15470079.

    CAS  PubMed  Google Scholar 

  190. Quik M, Polonskaya Y, Kulak JM, McIntosh JM. Vulnerability of 125I-alpha-conotoxin MII binding sites to nigrostriatal damage in monkey. J Neurosci. 2001;21(15):5494–500. PubMed PMID: 11466420.

    CAS  PubMed  Google Scholar 

  191. Kulak JM, Musachio JL, McIntosh JM, Quik M. Declines in different beta2* nicotinic receptor populations in monkey striatum after nigrostriatal damage. J Pharmacol Exp Ther. 2002;303(2):633–9. PubMed PMID: 12388645.

    CAS  PubMed  Google Scholar 

  192. Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, et al. Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol. 1989;284(2):314–35. PubMed PMID: 2754038.

    CAS  PubMed  Google Scholar 

  193. Le Novere N, Zoli M, Changeux JP. Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci. 1996;8(11):2428–39. PubMed PMID: 8950106.

    PubMed  Google Scholar 

  194. Xiao C, Yang KC, Zhou CY, Jin GZ, Wu J, Ye JH. Nicotine modulates GABAergic transmission to dopaminergic neurons in substantia nigra pars compacta. Acta Pharmacol Sin. 2009;30(6):851–8. PubMed PMID: 19498424.

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M. Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem. 2002;80(6):1071–8. PubMed PMID: 11953457.

    CAS  PubMed  Google Scholar 

  196. Sharples CG, Kaiser S, Soliakov L, Marks MJ, Collins AC, Washburn M, et al. UB-165: a novel nicotinic agonist with subtype selectivity implicates the alpha4beta2* subtype in the modulation of dopamine release from rat striatal synaptosomes. J Neurosci. 2000;20(8):2783–91. PubMed PMID: 10751429.

    CAS  PubMed  Google Scholar 

  197. Kaiser S, Wonnacott S. alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol. 2000;58(2):312–8. PubMed PMID: 10908298.

    CAS  PubMed  Google Scholar 

  198. Marks MJ, Stitzel JA, Romm E, Wehner JM, Collins AC. Nicotinic binding sites in rat and mouse brain: comparison of acetylcholine, nicotine, and alpha-bungarotoxin. Mol Pharmacol. 1986;30(5):427–36. PubMed PMID: 3534542.

    CAS  PubMed  Google Scholar 

  199. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci. 1984;4(11):2877–90. PubMed PMID: 6150071.

    CAS  PubMed  Google Scholar 

  200. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci. 1984;4(11):2866–76. PubMed PMID: 6150070.

    CAS  PubMed  Google Scholar 

  201. Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron. 2000;27(2):349–57. PubMed PMID: 10985354.

    CAS  PubMed  Google Scholar 

  202. Placzek AN, Dani JA. Synaptic plasticity within midbrain dopamine centers contributes to nicotine addiction. Nebr Symp Motiv. 2009;55:5–15. PubMed PMID: 19013936.

    PubMed  Google Scholar 

  203. Misgeld U. Innervation of the substantia nigra. Cell Tissue Res. 2004;318(1):107–14. PubMed PMID: 15338269.

    PubMed  Google Scholar 

  204. Marks MJ, Burch JB, Collins AC. Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther. 1983;226(3):817–25. PubMed PMID: 6887012.

    CAS  PubMed  Google Scholar 

  205. Schwartz RD, Kellar KJ. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science. 1983;220(4593):214–6. PubMed PMID: 6828889.

    CAS  PubMed  Google Scholar 

  206. Benwell ME, Balfour DJ, Anderson JM. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem. 1988;50(4):1243–7. PubMed PMID: 3346676.

    CAS  PubMed  Google Scholar 

  207. Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther. 1999;289(3):1545–52. PubMed PMID: 10336551.

    CAS  PubMed  Google Scholar 

  208. McCallum SE, Parameswaran N, Bordia T, Fan H, Tyndale RF, Langston JW, et al. Increases in alpha4* but not alpha3*/alpha6* nicotinic receptor sites and function in the primate striatum following chronic oral nicotine treatment. J Neurochem. 2006;96(4):1028–41. PubMed PMID: 16412091.

    CAS  PubMed  Google Scholar 

  209. Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, et al. Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci. 2006;26(34):8707–14. PubMed PMID: 16928859.

    CAS  PubMed  Google Scholar 

  210. Moretti M, Mugnaini M, Tessari M, Zoli M, Gaimarri A, Manfredi I, et al. A comparative study of the effects of the intravenous self-administration or subcutaneous minipump infusion of nicotine on the expression of brain neuronal nicotinic receptor subtypes. Mol Pharmacol. 2010;78(2):287–96. PubMed PMID: 20439469.

    CAS  PubMed  Google Scholar 

  211. Belluardo N, Mudo G, Blum M, Fuxe K. Central nicotinic receptors, neurotrophic factors and neuroprotection. Behav Brain Res. 2000;113(1–2):21–34. PubMed PMID: 10942029.

    CAS  PubMed  Google Scholar 

  212. O’Neill MJ, Siemers ER. Pharmacological approaches to disease-modifying therapies in Parkinson’s disease. Expert Rev Neurother. 2002;2(6):819–34. PubMed PMID: 19810916.

    PubMed  Google Scholar 

  213. Quik M, O’Neill M, Perez XA. Nicotine neuroprotection against nigrostriatal damage: importance of the animal model. Trends Pharmacol Sci. 2007;28(5):229–35. PubMed PMID: 17412429.

    CAS  PubMed  Google Scholar 

  214. Picciotto MR, Zoli M. Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Front Biosci. 2008;13:492–504. PubMed PMID: 17981563.

    CAS  PubMed  Google Scholar 

  215. Bencherif M. Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection: mechanistic considerations and clinical relevance. Acta Pharmacol Sin. 2009;30(6):702–14. PubMed PMID: 19498416.

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Exley R, Cragg SJ. Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol. 2008;153 Suppl 1:S283–97. PubMed PMID: 18037926, Pubmed Central PMCID: 2268048.

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Quik M, Bordia T, Forno L, McIntosh JM. Loss of alpha-conotoxinMII- and A85380-sensitive nicotinic receptors in Parkinson’s disease striatum. J Neurochem. 2004;88(3):668–79. PubMed PMID: 14720216.

    CAS  PubMed  Google Scholar 

  218. Bohr IJ, Ray MA, McIntosh JM, Chalon S, Guilloteau D, McKeith IG, et al. Cholinergic nicotinic receptor involvement in movement disorders associated with Lewy body diseases. An autoradiography study using [(125)I]alpha-conotoxinMII in the striatum and thalamus. Exp Neurol. 2005;191(2):292–300.

    CAS  PubMed  Google Scholar 

  219. Schwartz RD, Lehmann J, Kellar KJ. Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J Neurochem. 1984;42(5):1495–8. PubMed PMID: 6707650.

    CAS  PubMed  Google Scholar 

  220. Bordia T, Grady SR, McIntosh JM, Quik M. Nigrostriatal damage preferentially decreases a subpopulation of alpha6beta2* nAChRs in mouse, monkey, and Parkinson’s disease striatum. Mol Pharmacol. 2007;72(1):52–61. PubMed PMID: 17409284.

    CAS  PubMed  Google Scholar 

  221. Grady SR, Salminen O, McIntosh JM, Marks MJ, Collins AC. Mouse striatal dopamine nerve terminals express alpha4alpha5beta2 and two stoichiometric forms of alpha4beta2*-nicotinic acetylcholine receptors. J Mol Neurosci. 2010;40(1–2):91–5. PubMed PMID: 19693710.

    CAS  PubMed  Google Scholar 

  222. McClure-Begley TD, King NM, Collins AC, Stitzel JA, Wehner JM, Butt CM. Acetylcholine-stimulated [3H]GABA release from mouse brain synaptosomes is modulated by alpha4beta2 and alpha4alpha5beta2 nicotinic receptor subtypes. Mol Pharmacol. 2009;75(4):918–26. PubMed PMID: 19139153, Pubmed Central PMCID: 2684932.

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Quik M, Polonskaya Y, Gillespie A. G KL, Langston JW. Differential alterations in nicotinic receptor alpha6 and beta3 subunit messenger RNAs in monkey substantia nigra after nigrostriatal degeneration. Neuroscience. 2000;100(1):63–72.

    CAS  PubMed  Google Scholar 

  224. Quik M, Polonskaya Y, McIntosh JM, Kulak JM. Differential nicotinic receptor expression in monkey basal ganglia: effects of nigrostriatal damage. Neuroscience. 2002;112(3):619–30. PubMed PMID: 12074903.

    CAS  PubMed  Google Scholar 

  225. Quik M, Campos C, Parameswaran N, Langston JW, McIntosh JM, Yeluashvili M. Chronic nicotine treatment increases nAChRs and microglial expression in monkey substantia nigra after nigrostriatal damage. J Mol Neurosci. 2010;40(1–2):105–13. PubMed PMID: 19685015, Pubmed Central PMCID: 3133952.

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Morens DM, Grandinetti A, Reed D, White LR, Ross GW. Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology. 1995;45(6):1041–51. PubMed PMID: 7783862.

    CAS  PubMed  Google Scholar 

  227. Gorell JM, Rybicki BA, Johnson CC, Peterson EL. Smoking and Parkinson’s disease: a dose-response relationship. Neurology. 1999;52(1):115–9. PubMed PMID: 9921857.

    CAS  PubMed  Google Scholar 

  228. Hernan MA, Zhang SM, Rueda-deCastro AM, Colditz GA, Speizer FE, Ascherio A. Cigarette smoking and the incidence of Parkinson’s disease in two prospective studies. Ann Neurol. 2001;50(6):780–6. PubMed PMID: 11761476.

    CAS  PubMed  Google Scholar 

  229. Alves G, Kurz M, Lie SA, Larsen JP. Cigarette smoking in Parkinson’s disease: influence on disease progression. Mov disord. 2004;19(9):1087–92. PubMed PMID: 15372603.

    PubMed  Google Scholar 

  230. Allam MF, Campbell MJ, Hofman A, Del Castillo AS, Fernandez-Crehuet NR. Smoking and Parkinson’s disease: systematic review of prospective studies. Mov disord. 2004;19(6):614–21. PubMed PMID: 15197698.

    PubMed  Google Scholar 

  231. Thacker EL, O’Reilly EJ, Weisskopf MG, Chen H, Schwarzschild MA, McCullough ML, et al. Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology. 2007;68(10):764–8. PubMed PMID: 17339584, Pubmed Central PMCID: 2225169.

    CAS  PubMed Central  PubMed  Google Scholar 

  232. Elbaz A, Moisan F. Update in the epidemiology of Parkinson’s disease. Curr Opin Neurol. 2008;21(4):454–60. PubMed PMID: 18607207.

    PubMed  Google Scholar 

  233. Chen H, Huang X, Guo X, Mailman RB, Park Y, Kamel F, et al. Smoking duration, intensity, and risk of Parkinson disease. Neurology. 2010;74(11):878–84. PubMed PMID: 20220126, Pubmed Central PMCID: 2836869.

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Ritz B, Rhodes SL. After half a century of research on smoking and PD, where do we go now? Neurology. 2010;74(11):870–1. PubMed PMID: 20220125.

    PubMed  Google Scholar 

  235. Calabresi P, Di Filippo M, Ghiglieri V, Picconi B. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov disord. 2008;23 Suppl 3:S570–9. PubMed PMID: 18781674.

    PubMed  Google Scholar 

  236. Barik J, Wonnacott S. Molecular and cellular mechanisms of action of nicotine in the CNS. Handb Exp Pharmacol. 2009;192:173–207. PubMed PMID: 19184650.

    CAS  PubMed  Google Scholar 

  237. Quik M, Parameswaran N, McCallum SE, Bordia T, Bao S, McCormack A, et al. Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. J Neurochem. 2006;98(6):1866–75. PubMed PMID: 16882311.

    CAS  PubMed  Google Scholar 

  238. Quik M, Chen L, Parameswaran N, Xie X, Langston JW, McCallum SE. Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. J Neurosci. 2006;26(17):4681–9. PubMed PMID: 16641249.

    CAS  PubMed  Google Scholar 

  239. Srinivasan R, Pantoja R, Moss FJ, Mackey ED, Son CD, Miwa J, et al. Nicotine up-regulates alpha4beta2 nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. J Gen Physiol. 2011;137(1):59–79. PubMed PMID: 21187334, Pubmed Central PMCID: 3010053.

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Xiao C, Nashmi R, McKinney S, Cai H, McIntosh JM, Lester HA. Chronic nicotine selectively enhances alpha4beta2* nicotinic acetylcholine receptors in the nigrostriatal dopamine pathway. J Neurosci. 2009;29(40):12428–39. PubMed PMID: 19812319, Pubmed Central PMCID: 2787412.

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Castagnoli K, Murugesan T. Tobacco leaf, smoke and smoking, MAO inhibitors, Parkinson’s disease and neuroprotection; are there links? Neurotoxicology. 2004;25(1–2):279–91. PubMed PMID: 14697903.

    CAS  PubMed  Google Scholar 

  242. Castagnoli KP, Steyn SJ, Petzer JP, Van der Schyf CJ, Castagnoli Jr N. Neuroprotection in the MPTP Parkinsonian C57BL/6 mouse model by a compound isolated from tobacco. Chem Res Toxicol. 2001;14(5):523–7. PubMed PMID: 11368550.

    CAS  PubMed  Google Scholar 

  243. Miksys S, Tyndale RF. Nicotine induces brain CYP enzymes: relevance to Parkinson’s disease. J Neural Transm Suppl. 2006;70:177–80. PubMed PMID: 17017527.

    CAS  PubMed  Google Scholar 

  244. Fahn S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov disord. 2008;23 Suppl 3:S497–508. PubMed PMID: 18781671.

    PubMed  Google Scholar 

  245. Lang AE. When and how should treatment be started in Parkinson disease? Neurology. 2009;72(7 Suppl):S39–43. PubMed PMID: 19221313.

    CAS  PubMed  Google Scholar 

  246. Poewe W. Treatments for Parkinson disease–past achievements and current clinical needs. Neurology. 2009;72(7 Suppl):S65–73. PubMed PMID: 19221317.

    CAS  PubMed  Google Scholar 

  247. Schapira AH, Emre M, Jenner P, Poewe W. Levodopa in the treatment of Parkinson’s disease. Eur J Neurol. 2009;16(9):982–9. PubMed PMID: 19538218.

    CAS  PubMed  Google Scholar 

  248. Jankovic J, Stacy M. Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs. 2007;21(8):677–92. PubMed PMID: 17630819.

    CAS  PubMed  Google Scholar 

  249. Obeso JA, Olanow W. Continuing efforts to obtain continuous delivery of levodopa. Mov disord. 2011;26(12):2149–50. PubMed PMID: 22021155.

    PubMed  Google Scholar 

  250. Worth PF. How to treat Parkinson’s disease in 2013. Clin Med. 2013;13(1):93–6. PubMed PMID: 23472504.

    PubMed  Google Scholar 

  251. Jankovic J, Poewe W. Therapies in Parkinson’s disease. Curr Opin Neurol. 2012;25(4):433–47. PubMed PMID: 22691758.

    CAS  PubMed  Google Scholar 

  252. Huang LZ, Grady SR, Quik M. Nicotine reduces L-DOPA-induced dyskinesias by acting at beta2* nicotinic receptors. J Pharmacol Exp Ther. 2011;338(3):932–41. PubMed PMID: 21665941, Pubmed Central PMCID: 3164339.

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Quik M, Campos C, Bordia T, Strachan JP, Zhang J, McIntosh JM, et al. Alpha4beta2 nicotinic receptors play a role in the nAChR-mediated decline in L-dopa-induced dyskinesias in parkinsonian rats. Neuropharmacology. 2013;71:191–203. PubMed PMID: 23583932, Pubmed Central PMCID: 3685407.

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Quik M, Campos C, Grady SR. Multiple CNS nicotinic receptors mediate l-dopa-induced dyskinesias: studies with parkinsonian nicotinic receptor knockout mice. Biochem Pharmacol. 2013;86(8):1153–62. PubMed PMID: 23831952.

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Quik M, Park KM, Hrachova M, Mallela A, Huang LZ, McIntosh JM, et al. Role for alpha6 nicotinic receptors in l-dopa-induced dyskinesias in parkinsonian mice. Neuropharmacology. 2012;63(3):450–9. PubMed PMID: 22579614, Pubmed Central PMCID: 3726309.

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Mihalak KB, Carroll FI, Luetje CW. Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol. 2006;70(3):801–5. PubMed PMID: 16766716.

    CAS  PubMed  Google Scholar 

  257. Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, et al. Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology. 2007;52(3):985–94. PubMed PMID: 17157884.

    CAS  PubMed  Google Scholar 

  258. Huang LZ, Parameswaran N, Bordia T, Michael McIntosh J, Quik M. Nicotine is neuroprotective when administered before but not after nigrostriatal damage in rats and monkeys. J Neurochem. 2009;109(3):826–37. PubMed PMID: 19250334, Pubmed Central PMCID: 2677631.

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Olanow CW. The scientific basis for the current treatment of Parkinson’s disease. Annu Rev Med. 2004;55:41–60. PubMed PMID: 14746509.

    CAS  PubMed  Google Scholar 

  260. Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet. 2004;363(9423):1783–93. PubMed PMID: 15172778.

    CAS  PubMed  Google Scholar 

  261. Huang LZ, Campos C, Ly J, Ivy Carroll F, Quik M. Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology. 2011;60(6):861–8. PubMed PMID: 21232546, Pubmed Central PMCID: 3133531.

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Ishikawa A, Miyatake T. Effects of smoking in patients with early-onset Parkinson’s disease. J Neurol Sci. 1993;117(1–2):28–32. PubMed PMID: 8410063.

    CAS  PubMed  Google Scholar 

  263. Kelton MC, Kahn HJ, Conrath CL, Newhouse PA. The effects of nicotine on Parkinson’s disease. Brain Cogn. 2000;43(1–3):274–82. PubMed PMID: 10857708.

    CAS  PubMed  Google Scholar 

  264. Mitsuoka T, Kaseda Y, Yamashita H, Kohriyama T, Kawakami H, Nakamura S, et al. Effects of nicotine chewing gum on UPDRS score and P300 in early-onset parkinsonism. Hiroshima J Med Sci. 2002;51(1):33–9. PubMed PMID: 11999458.

    CAS  PubMed  Google Scholar 

  265. Villafane G, Cesaro P, Rialland A, Baloul S, Azimi S, Bourdet C, et al. Chronic high dose transdermal nicotine in Parkinson’s disease: an open trial. Eur J Neurol. 2007;14(12):1313–6. PubMed PMID: 17941858.

    CAS  PubMed  Google Scholar 

  266. Lemay S, Chouinard S, Blanchet P, Masson H, Soland V, Beuter A, et al. Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(1):31–9. PubMed PMID: 14687854.

    CAS  PubMed  Google Scholar 

  267. Clemens P, Baron JA, Coffey D, Reeves A. The short-term effect of nicotine chewing gum in patients with Parkinson’s disease. Psychopharmacology (Berl). 1995;117(2):253–6. PubMed PMID: 7753975.

    CAS  Google Scholar 

  268. Ebersbach G, Stock M, Muller J, Wenning G, Wissel J, Poewe W. Worsening of motor performance in patients with Parkinson’s disease following transdermal nicotine administration. Mov disord. 1999;14(6):1011–3. PubMed PMID: 10584678.

    CAS  PubMed  Google Scholar 

  269. Vieregge A, Sieberer M, Jacobs H, Hagenah JM, Vieregge P. Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology. 2001;57(6):1032–5. PubMed PMID: 11571330.

    CAS  PubMed  Google Scholar 

  270. Parkinson Study G. Randomized placebo-controlled study of the nicotinic agonist SIB-1508Y in Parkinson disease. Neurology. 2006;66(3):408–10. PubMed PMID: 16476941.

    Google Scholar 

  271. Fagerstrom KO, Pomerleau O, Giordani B, Stelson F. Nicotine may relieve symptoms of Parkinson’s disease. Psychopharmacology (Berl). 1994;116(1):117–9. PubMed PMID: 7862924.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly T. Dineley B.A., M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dineley, K.T. (2014). Nicotinic Acetylcholine Receptors in Alzheimer’s and Parkinson’s Disease. In: Lester, R. (eds) Nicotinic Receptors. The Receptors, vol 26. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1167-7_19

Download citation

Publish with us

Policies and ethics