Skip to main content

On the Discovery of the Nicotinic Acetylcholine Receptor Channel

  • Chapter
  • First Online:
Nicotinic Receptors

Part of the book series: The Receptors ((REC,volume 26))

Abstract

The discovery and characterization of the nicotinic acetylcholine receptor (nAChR) is in essence the story of receptor pharmacology in general; arguably one of the greatest journeys in neuroscience, spanning more than 150 years. From its beginnings as the site of action of the poison, curare, and the psychotropic drug, nicotine, to its high-resolution structure, it has touched every subfield of biology. It has shaped how transmitter–receptor interactions are analyzed quantitatively, along the way introducing the scientific community to many novel receptor concepts and kinetic mechanisms, in addition to methods, techniques, and/or their refinement, particularly for understanding single channel behavior. Important to note, is that our knowledge of fast synaptic transmission would not be the same without analysis of nAChRs at the neuromuscular junction. Although determination of nAChR function has benefited from parallel discoveries on other proteins, it can be reasonably argued that all ligand-gated ion channels have their roots somewhere in this receptor. We highlight some of the chronological steps in the discovery and characterization of the receptor, together with some of the key players.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dani JA, Balfour DJ. Historical and current perspective on tobacco use and nicotine addiction. Trends Neurosci. 2011;34:383–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. James I King of England. A Counter-Blaste to Tobacco. Goldsmid E, editor. Dodo Press; 1604.

    Google Scholar 

  3. Stewart GG. A history of the medicinal use of tobacco 1492–1860. Med Hist. 1967;11:228–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Charlton A. Medicinal uses of tobacco in history. J R Soc Med. 2004;97:292–6.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Posselt W, Reimann L. Chemische Untersuchungen des Tabaks und Darstellung des eigenhumlichen wirksamen Principes dieser Pflanze. Geigers Magazin der Pharmazie. 1828;24:138–61.

    Google Scholar 

  6. Cheney RH. Geographic and taxonomic distribution of american plant arrow poisons. Am J Bot. 1931;18:136–45.

    Article  Google Scholar 

  7. Humboldt A. von. Personal Narrative of Travels to the Equinoctial Regions of America, During the Year 1799–1804. Http://www.gutenberg.org/ebooks/7014

  8. Dale HH. The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther. 1914;6:147–90.

    CAS  Google Scholar 

  9. Brodie BC. Experiments and observations on the different modes in which death is produced by certain vegetable poisons. Phil Trans Roy Soc Lond. 1811;101:178–207.

    Article  Google Scholar 

  10. Bennett MR. The concept of transmitter receptors: 100 years on. Neuropharmacology. 2000;39:523–46.

    Article  CAS  PubMed  Google Scholar 

  11. Cousin MT. History of anaesthesia: who discovered the neuromuscular junction? The opposing views of Claude Bernard and Alfred Vulpian. Eur J Anaesthesiol. 2013;30:1–4.

    Article  PubMed  Google Scholar 

  12. Sherrington CS. In: A textbook of physiology 7th ed. Pt 3. Foster M, Sherrington CS, editors. 915–1000. London: Macmillan; 1897.

    Google Scholar 

  13. Langley JN. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol. 1905;33:374–413.

    PubMed Central  PubMed  Google Scholar 

  14. Maehle AH. “Receptive substances”: John Newport Langley (1852–1925) and his path to a receptor theory of drug action. Med Hist. 2004;48:153–74.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Langley JN, Dickenson WL. On the local paralysis of peripheral ganglia and on the connection of different classes of nerve fibres with them. Proc R Soc Lond. 1889;46:423–31.

    Article  Google Scholar 

  16. Langley JN. On the stimulation and paralysis of nerve-cells and of nerve-endings: Part I. J Physiol. 1901;27:224–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Langley JN. Observations on the physiological action of extracts of the supra-renal bodies. J Physiol. 1901;27:237–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Kuffler SW, Yoshikami D. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol. 1975;251:465–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Dale HH, Feldberg W, Vogt M. Release of acetylcholine at voluntary motor nerve endings. J Physiol. 1936;86:353–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bosch F, Rosich L. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology. 2008;82:171–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Langley JN. On the physiology of the salivary secretion: Part II. On the mutual antagonism of atropin and pilocarpin, having especial reference to their relations in the Sub-maxillary gland of the Cat. J Physiol. 1878;1:339–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Colquhoun D. The quantitative analysis of drug-receptor interactions: a short history. Trends Pharmacol Sci. 2006;27:149–57.

    Article  CAS  PubMed  Google Scholar 

  23. Hill AV. The mode of action of nicotine and curari determined by the form of the contraction curve and the method of temperature coefficients. J Physiol. 1909;39:361–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Colquhoun D. How fast do drugs work? Trends Pharmacol Sci. 1981;8:212–7.

    Article  Google Scholar 

  25. Colquhoun D. Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol. 1998;125:924–47.

    Article  CAS  PubMed  Google Scholar 

  26. Colquhoun D. Agonist-activated ion channels. Br J Pharmacol. 2006;147 Suppl 1:S17–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curve. J Physiol. 1910;40:IV–VII.

    Google Scholar 

  28. Clark AJ. The reaction between acetyl choline and muscle cells. J Physiol. 1926;61:530–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Brown DA. The history of the neuronal nicotinic receptors. In: Neuronal Nicotinic Receptors. F. Clementi et al., editor. Berlin Heidelberg: Springer-Verlag; 2000. p 3–11.

    Google Scholar 

  30. Jenkinson DH. The antagonism between tubocurarine and substances which depolarize the motor end-plate. J Physiol. 1960;152:309–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Stephenson RP. A modification of receptor theory. Br J Pharmacol Chemother. 1956;11:379–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Del Casillo J, Katz B. Interaction at end-plate receptors between different choline derivatives. Proc R Soc Lond B Biol Sci. 1957;146:369–81.

    Article  Google Scholar 

  33. Katz B, Thesleff S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957;138:63–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Quick MW, Lester RAJ. Desensitization of neuronal nicotinic receptors. J Neurobiol. 2002;53:457–78.

    Article  CAS  PubMed  Google Scholar 

  35. Adams PR. An analysis of the dose-response curve at voltage-clamped frog-endplates. Pflugers Arch. 1975;360:145–53.

    Article  CAS  PubMed  Google Scholar 

  36. Lester HA, Changeux JP, Sheridan RE. Conductance increases produced by bath application of cholinergic agonists to Electrophorus electroplaques. J Gen Physiol. 1975;65(6):797–816.

    Article  CAS  PubMed  Google Scholar 

  37. Dionne VE, Steinbach JH, Stevens CF. An analysis of the dose-response relationship at voltage-clamped frog neuromuscular junctions. J Physiol. 1978;281:421–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. Neuron. 1998;21:959–80.

    Article  CAS  PubMed  Google Scholar 

  39. Karlin A. On the application of “a plausible model” of allosteric proteins to the receptor for acetylcholine. J Theor Biol. 1967;16:306–20.

    Article  CAS  PubMed  Google Scholar 

  40. Jackson MB. Kinetics of unliganded acetylcholine receptor channel gating. Biophys J. 1986;49:663–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Auerbach A. Thinking in cycles: MWC is a good model for acetylcholine receptor-channels. J Physiol. 2012;590:93–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Eccles J, Katz B, Kuffler S. Nature of the “end plate potential” in curarized muscle. J Neurophysiol. 1941;4:362–87.

    Google Scholar 

  43. Fatt P, Katz B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952;117:109–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Eccles JC, Jaeger JC. The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc R Soc Lond B Biol Sci. 1958;148:38–56.

    Article  CAS  PubMed  Google Scholar 

  45. Takeuchi A, Takeuchi N. Active phase of frog’s end-plate potential. J Neurophysiol. 1959;22:395–411.

    CAS  PubMed  Google Scholar 

  46. Katz B, Miledi R. Membrane noise produced by acetylcholine. Nature. 1970;226:962–3.

    Article  CAS  PubMed  Google Scholar 

  47. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976;260:799–802.

    Article  CAS  PubMed  Google Scholar 

  48. Anderson CR, Stevens CF. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol. 1973;235:655–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Katz B, Miledi R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol. 1973;231:549–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Colquhoun D, Sakmann B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol. 1985;369:501–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Magleby KL, Stevens CF. A quantitative description of end-plate currents. J Physiol. 1972;223:173–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Colquhoun D, Ogden DC. Activation of ion channels in the frog end-plate by high concentrations of acetylcholine. J Physiol. 1988;395:131–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Schild HO. Dale and the development of pharmacology. Lecture given at Sir Henry Dale Centennial Symposium, Cambridge, 17-19 September 1975. Br J Pharmacol. 1975;1976(56):3–7.

    Google Scholar 

  54. Changeux J-P. Allosteric receptors: from electric organ to cognition. Ann Rev Pharmacol Toxicol. 2010;50:1–38.

    Article  CAS  Google Scholar 

  55. Katz B, Miledi R. The statistical nature of the acetycholine potential and its molecular components. J Physiol. 1972;224:665–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Changeux JP, Kasai M, Lee CY. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci U S A. 1970;67:1241–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Weill CL, McNamee MG, Karlin A. Affinity-labeling of purified acetylcholine receptor from Torpedo californica. Biochem Biophys Res Commun. 1974;61:997–1003.

    Article  CAS  PubMed  Google Scholar 

  58. Raftery MA, Hunkapiller MW, Strader CD, Hood LE. Acetylcholine receptor: complex of homologous subunits. Science. 1980;208:1454–356.

    Article  CAS  PubMed  Google Scholar 

  59. Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyati T, Numa S. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature. 1982;299:793–7.

    Article  CAS  PubMed  Google Scholar 

  60. Claudio T, Ballivet M, Patrick J, Heinemann S. Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma subunit. Proc Natl Acad Sci U S A. 1983;80:1111–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Unwin N. Neurotransmitter action: opening of ligand-gated ion channels. Cell. 1993;72(Suppl):31–41.

    Article  PubMed  Google Scholar 

  62. Imoto K, Methfessel C, Sakmann B, Mishina M, Mori Y, Konno T, Fukuda K, Kurasaki M, Bujo H, Fujita Y, Numa S. Location of a delta-subunit region determining ion transport through the acetylcholine receptor channel. Nature. 1986;324:670–4.

    Article  CAS  PubMed  Google Scholar 

  63. Revah F, Galzi JL, Giraudat J, Haumont PY, Lederer F, Changeux JP. The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel. Proc Natl Acad Sci U S A. 1990;87:4675–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K, Numa S. Rings of negatively charged amino acids as determinants of acetylcholine receptor channel conductance. Nature. 1988;335:645–8.

    Article  CAS  PubMed  Google Scholar 

  65. Villarroel A, Sakmann B. Threonine in the selectivity filter of the acetylcholine receptor channel. Biophys J. 1992;62:196–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Unwin N. Acetylcholine receptor channel imaged in the open state. Nature. 1995;373:37–43.

    Article  CAS  PubMed  Google Scholar 

  67. Revah F, Bertrand D, Galzi JL, Devillers-Thiéry A, Mulle C, Hussy N, Bertrand S, Ballivet M, Changeux JP. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature. 1991;353:846–9.

    Article  CAS  PubMed  Google Scholar 

  68. Labarca C, Nowak MW, Zhang H, Tang L, Deshpande P, Lester HA. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature. 1995;376:514–6.

    Article  CAS  PubMed  Google Scholar 

  69. Akabas MH, Kaufmann C, Archdeacon P, Karlin A. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron. 1994;13:919–27.

    Article  CAS  PubMed  Google Scholar 

  70. Brejc K, Van Dijk WJ, Klaassen RV, Schuurmans M, Van Der Oost J, Smit AB, Sixma TK. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 2001;411:269–76.

    Article  CAS  PubMed  Google Scholar 

  71. Gao F, Mer G, Tonelli M, Hansen SB, Burghardt TP, Taylor P, Sine SM. Solution NMR of acetylcholine binding protein reveals agonist-mediated conformational change of the C-loop. Mol Pharmacol. 2006;70:1230–5.

    Article  CAS  PubMed  Google Scholar 

  72. Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA. From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. Proc Natl Acad Sci U S A. 1998;95:12088–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol. 2005;346:967–89.

    Article  CAS  PubMed  Google Scholar 

  74. Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, Corringer PJ. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature. 2009;457:111–4.

    Article  CAS  PubMed  Google Scholar 

  75. Yakel JL. Gating of nicotinic ACh receptors: latest insights into ligand binding and function. J Physiol. 2010;588:597–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Yakel J. Advances and hold-ups in the study of structure, function and regulation of Cys-loop ligand-gated ion channels and receptors. J Physiol. 2010;588:555–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Huang S, Li SX, Bren N, Cheng K, Gomoto R, Chen L, Sine SM. Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera. Biochem J. 2013;454:303–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Unwin N. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 2003;555:91–5.

    Article  CAS  PubMed  Google Scholar 

  79. Grosman C, Zhou M, Auerbach A. Mapping the conformational wave of acetylcholine receptor channel gating. Nature. 2000;2000(403):773–6.

    Article  Google Scholar 

  80. Zhang J, Xue F, Liu Y, Yang H, Wang X. The structural mechanism of the cys-loop receptor desensitization. Mol Neurobiol. 2013;48(1):97–108.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin A. J. Lester Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martindale, R., Lester, R.A.J. (2014). On the Discovery of the Nicotinic Acetylcholine Receptor Channel. In: Lester, R. (eds) Nicotinic Receptors. The Receptors, vol 26. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1167-7_1

Download citation

Publish with us

Policies and ethics