Skip to main content

From Mass Spectrometry-Based Glycosylation Analysis to Glycomics and Glycoproteomics

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

Mass spectrometry (MS) is the pivotal technique driving most current day protein glycosylation analysis. It is unrivaled in combining high sensitivity, resolution, and precision for de novo identification and therefore most conducive to discovery mapping of new or biologically implicated glyco-epitopes. This chapter attempts to provide an account of current advances and limitations in MS-based glycosylation analysis as it rapidly evolves into all-encompassing glycomics and glycoproteomics. Given the omic-scale complexity, an urgent need is to orchestrate advances in chromatographic separation, chemical derivatization, and innovative online LC-MS/MS scan functions for more penetrative and purposeful data acquisition, along with empowering computational tools to overcome the bottleneck in automated data analysis, in order to increase the breadth and depth of glycomic coverage. This entails not only MSn-level resolution and mapping of isomeric variations but also addressing often overlooked structural features such as poly-N-acetyllactosamine extension and the widespread occurrence of sulfation in relation to immuno-activation and malignant transformation. Only then can functional glycotopes of relevance be uncovered, and further localized to particular glycan and protein carriers, the latter by means of target glycoproteomics. Mapping of site occupancy without addressing the full range of occupying glycans by direct sequencing of glycopeptides is essentially inadequate for any glycobiology driven venture. This chapter aims to conceptualize the required experimental workflows from glycomics to glycoproteomics, with MS analysis of permethylated glycans occupying the central node.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CID:

Collision induced dissociation

DMB:

1,2-Diamino-4,5-methylenedioxybenzene

DMSO:

Dimethyl sulfoxide

ECD:

Electron capture dissociation

EDD:

Electron detachment dissociation

EI:

Electron impact

ESI:

Electrospray

ETD:

Electron transfer dissociation

FAB:

Fast atom bombardment

GAGs:

Glycosaminoglycans

GC:

Gas chromatography

GSL:

Glycosphingolipid

HCD:

Higher energy (C-trap) collision dissociation

Hex:

Hexose

HexNAc:

N-acetylhexosamine

HILIC:

Hydrophilic interaction

HPAEC:

High performance anion exchange chromatography

HPLC:

High performance liquid chromatography

IRMPD:

Infrared multiple photon dissociation

LacdiNAc:

N,N′-diacetyllactosamine

LacNAc:

N-acetyllactosamine

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption ionization

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MSn :

Multistage fragmentation

PAD:

Pulsed amperometric detection

PGC:

Poros graphitized carbon

polyLacNAc:

Poly-N-acetyllactosamine

Q/TOF:

Quadrupole/time-of-flight

RP:

Reverse phase

SPE:

Solid phase extraction

TMT:

Tandem mass tags

TOF/TOF:

Time-of-flight/time-of-flight

References

  • Ahn J, Bones J, Yu YQ, Rudd PM, Gilar M. Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 microm sorbent. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(3–4):403–8.

    CAS  PubMed  Google Scholar 

  • Alley Jr WR, Mechref Y, Novotny MV. Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom. 2009;23(1):161–70.

    CAS  PubMed  Google Scholar 

  • Alley Jr WR, Madera M, Mechref Y, Novotny MV. Chip-based reversed-phase liquid chromatography-mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Anal Chem. 2010;82(12):5095–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alley Jr WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev. 2013;113(4):2668–732.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anumula KR. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 2006;350(1):1–23.

    CAS  PubMed  Google Scholar 

  • Anumula KR, Dhume ST. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid. Glycobiology. 1998;8(7):685–94.

    CAS  PubMed  Google Scholar 

  • Aoki K, Perlman M, Lim JM, Cantu R, Wells L, Tiemeyer M. Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J Biol Chem. 2007;282(12):9127–42.

    CAS  PubMed  Google Scholar 

  • Aoki-Kinoshita KF. Using databases and web resources for glycomics research. Mol Cell Proteomics. 2013;12(4):1036–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Artemenko NV, McDonald AG, Davey GP, Rudd PM. Databases and tools in glycobiology. Methods Mol Biol. 2012;899:325–50.

    CAS  PubMed  Google Scholar 

  • Ashline D, Singh S, Hanneman A, Reinhold V. Congruent strategies for carbohydrate sequencing. 1. Mining structural details by MSn. Anal Chem. 2005;77(19):6250–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avril T, North SJ, Haslam SM, Willison HJ, Crocker PR. Probing the cis interactions of the inhibitory receptor Siglec-7 with alpha2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of alpha2,8-sialyltransferase gene expression. J Leukoc Biol. 2006;80(4):787–96.

    CAS  PubMed  Google Scholar 

  • Baenziger JU, Green ED. Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta. 1988;947(2):287–306.

    CAS  PubMed  Google Scholar 

  • Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics. 2012;Chapter 13:Unit13 20.

    Google Scholar 

  • Bern M, Brito AE, Pang PC, Rekhi A, Dell A, Haslam SM. Polylactosaminoglycan glycomics: enhancing the detection of high-molecular-weight N-glycans in matrix-assisted laser desorption ionization time-of-flight profiles by matched filtering. Mol Cell Proteomics. 2013;12(4):996–1004.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995;230(2):229–38.

    CAS  PubMed  Google Scholar 

  • Bjorndal H, Hellerqv CG, Lindberg B, Svensson S. Gas-liquid chromatography and mass spectrometry in methylation analysis of polysaccharides. Angew Chem Int Ed Engl. 1970;9(8):610–9.

    CAS  Google Scholar 

  • Bleckmann C, Geyer H, Geyer R. Nanoelectrospray-MS(n) of native and permethylated glycans. Methods Mol Biol. 2011;790:71–85.

    CAS  PubMed  Google Scholar 

  • Bochner BS, Alvarez RA, Mehta P, Bovin NV, Blixt O, White JR, Schnaar RL. Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem. 2005;280(6):4307–12.

    CAS  PubMed  Google Scholar 

  • Campanero-Rhodes MA, Childs RA, Kiso M, Komba S, Le Narvor C, Warren J, Otto D, Crocker PR, Feizi T. Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochem Biophys Res Commun. 2006;344(4):1141–6.

    CAS  PubMed  Google Scholar 

  • Campbell MP, Hayes CA, Struwe WB, Wilkins MR, Aoki-Kinoshita KF, Harvey DJ, Rudd PM, Kolarich D, Lisacek F, Karlsson NG, Packer NH. UniCarbKB: putting the pieces together for glycomics research. Proteomics. 2011;11(21):4117–21.

    CAS  PubMed  Google Scholar 

  • Canis K, McKinnon TA, Nowak A, Panico M, Morris HR, Laffan M, Dell A. The plasma von Willebrand factor O-glycome comprises a surprising variety of structures including ABH antigens and disialosyl motifs. J Thromb Haemost. 2010;8(1):137–45.

    CAS  PubMed  Google Scholar 

  • Cappadona S, Baker PR, Cutillas PR, Heck AJ, van Breukelen B. Current challenges in software solutions for mass spectrometry-based quantitative proteomics. Amino Acids. 2012;43(3):1087–108.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res. 2008;7(4):1650–9.

    CAS  PubMed  Google Scholar 

  • Cheng PF, Snovida S, Ho MY, Cheng CW, Wu AM, Khoo KH. Increasing the depth of mass spectrometry-based glycomic coverage by additional dimensions of sulfoglycomics and target analysis of permethylated glycans. Anal Bioanal Chem. 2013;405(21):6683–95.

    CAS  PubMed  Google Scholar 

  • Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res. 1984;131(2):209–17.

    CAS  Google Scholar 

  • Dell A. F.A.B.-mass spectrometry of carbohydrates. Adv Carbohydr Chem Biochem. 1987;45:19–72.

    CAS  PubMed  Google Scholar 

  • Dell A, Morris HR, Greer F, Redfern JM, Rogers ME, Weisshaar G, Hiyama J, Renwick AG. Fast-atom-bombardment mass spectrometry of sulphated oligosaccharides from ovine lutropin. Carbohydr Res. 1991;209:33–50.

    CAS  PubMed  Google Scholar 

  • Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature. 2001;409(6821):733–9.

    CAS  PubMed  Google Scholar 

  • Doherty M, McManus CA, Duke R, Rudd PM. High-throughput quantitative N-glycan analysis of glycoproteins. Methods Mol Biol. 2012;899:293–313.

    CAS  PubMed  Google Scholar 

  • Doherty M, Bones J, McLoughlin N, Telford JE, Harmon B, Defelippis MR, Rudd PM. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture. Anal Biochem. 2013;442(1):10–8.

    CAS  PubMed  Google Scholar 

  • Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988;5:397–409.

    CAS  Google Scholar 

  • Egge H, Peter-Katalinic J. Fast atom bombardment mass spectrometry for structural elucidation of glycoconjugates. Mass Spectrom Rev. 1987;6(3):331–93.

    CAS  Google Scholar 

  • Fan YY, Yu SY, Ito H, Kameyama A, Sato T, Lin CH, Yu LC, Narimatsu H, Khoo KH. Identification of further elongation and branching of dimeric type 1 chain on lactosylceramides from colonic adenocarcinoma by tandem mass spectrometry sequencing analyses. J Biol Chem. 2008;283(24):16455–68.

    CAS  PubMed  Google Scholar 

  • Fernandes B, Sagman U, Auger M, Demetrio M, Dennis JW. Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res. 1991;51(2):718–23.

    CAS  PubMed  Google Scholar 

  • Fiete D, Srivastava V, Hindsgaul O, Baenziger JU. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha that mediates rapid clearance of lutropin. Cell. 1991;67(6):1103–10.

    CAS  PubMed  Google Scholar 

  • Fiete D, Beranek M, Baenziger JU. Molecular basis for protein-specific transfer of N-acetylgalactosamine to N-linked glycans by the glycosyltransferases beta1,4-N-acetylgalactosaminyl transferase 3 (beta4GalNAc-T3) and beta4GalNAc-T4. J Biol Chem. 2012a;287(34):29194–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fiete D, Beranek M, Baenziger JU. Peptide-specific transfer of N-acetylgalactosamine to O-linked glycans by the glycosyltransferases beta1,4-N-acetylgalactosaminyl transferase 3 (beta4GalNAc-T3) and beta4GalNAc-T4. J Biol Chem. 2012b;287(34):29204–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuda M, Dell A, Fukuda MN. Structure of fetal lactosaminoglycan. The carbohydrate moiety of Band 3 isolated from human umbilical cord erythrocytes. J Biol Chem. 1984a;259(8):4782–91.

    CAS  PubMed  Google Scholar 

  • Fukuda M, Dell A, Oates JE, Fukuda MN. Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. J Biol Chem. 1984b;259(13):8260–73.

    CAS  PubMed  Google Scholar 

  • Fukuda MN, Dell A, Oates JE, Fukuda M. Embryonal lactosaminoglycan. The structure of branched lactosaminoglycans with novel disialosyl (sialyl alpha 2-9 sialyl) terminals isolated from PA1 human embryonal carcinoma cells. J Biol Chem. 1985;260(11):6623–31.

    CAS  PubMed  Google Scholar 

  • Fukuda M, Lauffenburger M, Sasaki H, Rogers ME, Dell A. Structures of novel sialylated O-linked oligosaccharides isolated from human erythrocyte glycophorins. J Biol Chem. 1987;262(25):11952–7.

    CAS  PubMed  Google Scholar 

  • Galuska SP, Geyer R, Muhlenhoff M, Geyer H. Characterization of oligo- and polysialic acids by MALDI-TOF-MS. Anal Chem. 2007;79(18):7161–9.

    CAS  PubMed  Google Scholar 

  • Galuska SP, Geyer H, Bleckmann C, Rohrich RC, Maass K, Bergfeld AK, Muhlenhoff M, Geyer R. Mass spectrometric fragmentation analysis of oligosialic and polysialic acids. Anal Chem. 2010;82(5):2059–66.

    CAS  PubMed  Google Scholar 

  • Galuska SP, Rollenhagen M, Kaup M, Eggers K, Oltmann-Norden I, Schiff M, Hartmann M, Weinhold B, Hildebrandt H, Geyer R, Muhlenhoff M and Geyer H. Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci USA 2010a:107(22):10250–10255. Galuska SP, Geyer H, Mink W, Kaese P, Kuhnhardt S, Schafer B, Muhlenhoff M, Freiberger F, Gerardy-Schahn R, Geyer R. Glycomic strategy for efficient linkage analysis of di-, oligo- and polysialic acids. J Proteomics. 2012;75(17):5266–78.

    Google Scholar 

  • Galustian C, Park CG, Chai W, Kiso M, Bruening SA, Kang YS, Steinman RM, Feizi T. High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. Int Immunol. 2004;16(6):853–66.

    CAS  PubMed  Google Scholar 

  • Goldberg D, Bern M, Parry S, Sutton-Smith M, Panico M, Morris HR, Dell A. Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res. 2007;6(10):3995–4005.

    CAS  PubMed  Google Scholar 

  • Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res. 2004;3(3):556–66.

    PubMed  Google Scholar 

  • Hagglund P, Matthiesen R, Elortza F, Hojrup P, Roepstorff P, Jensen ON, Bunkenborg J. An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. J Proteome Res. 2007;6(8):3021–31.

    PubMed  Google Scholar 

  • Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem. 1964;55:205–8.

    CAS  PubMed  Google Scholar 

  • Han L, Costello CE. Mass spectrometry of glycans. Biochemistry (Mosc). 2013;78(7):710–20.

    CAS  Google Scholar 

  • Harvey DJ, Bateman RH, Green MR. High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom. 1997;32(2):167–87.

    CAS  PubMed  Google Scholar 

  • Hayes CA, Karlsson NG, Struwe WB, Lisacek F, Rudd PM, Packer NH, Campbell MP. UniCarb-DB: a database resource for glycomic discovery. Bioinformatics. 2011;27(9):1343–4.

    CAS  PubMed  Google Scholar 

  • Hayes CA, Nemes S, Issa S, Jin C, Karlsson NG. Glycomic work-flow for analysis of mucin O-linked oligosaccharides. Methods Mol Biol. 2012;842:141–63.

    CAS  PubMed  Google Scholar 

  • Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. The One Hour Yeast Proteome. Mol Cell Proteomics. 2014;13(1):339–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Y, Mechref Y. Comparing MALDI-MS, RP-LC-MALDI-MS and RP-LC-ESI-MS glycomic profiles of permethylated N-glycans derived from model glycoproteins and human blood serum. Electrophoresis. 2012;33(12):1768–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hua S, Hu CY, Kim BJ, Totten SM, Oh MJ, Yun N, Nwosu CC, Yoo JS, Lebrilla CB, An HJ. Glyco-analytical multispecific proteolysis (Glyco-AMP): a simple method for detailed and quantitative glycoproteomic characterization. J Proteome Res. 2013a;12(10):4414–23.

    CAS  PubMed  Google Scholar 

  • Hua S, Jeong HN, Dimapasoc LM, Kang I, Han C, Choi JS, Lebrilla CB, An HJ. Isomer-specific LC/MS and LC/MS/MS profiling of the mouse serum N-glycome revealing a number of novel sialylated N-glycans. Anal Chem. 2013b;85(9):4636–43.

    CAS  PubMed  Google Scholar 

  • Ideo H, Seko A, Ohkura T, Matta KL, Yamashita K. High-affinity binding of recombinant human galectin-4 to SO(3)(−)→3Galbeta1→3GalNAc pyranoside. Glycobiology. 2002;12(3):199–208.

    CAS  PubMed  Google Scholar 

  • Irungu J, Go EP, Dalpathado DS, Desaire H. Simplification of mass spectral analysis of acidic glycopeptides using GlycoPep ID. Anal Chem. 2007;79(8):3065–74.

    CAS  PubMed  Google Scholar 

  • Jensen PH, Karlsson NG, Kolarich D, Packer NH. Structural analysis of N- and O-glycans released from glycoproteins. Nat Protoc. 2012;7(7):1299–310.

    CAS  PubMed  Google Scholar 

  • Joenvaara S, Ritamo I, Peltoniemi H, Renkonen R. N-glycoproteomics—an automated workflow approach. Glycobiology. 2008;18(4):339–49.

    CAS  PubMed  Google Scholar 

  • Johansson ME, Sjovall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013;10(6):352–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones KA, Kim PD, Patel BB, Kelsen SG, Braverman A, Swinton DJ, Gafken PR, Jones LA, Lane WS, Neveu JM, Leung HC, Shaffer SA, Leszyk JD, Stanley BA, Fox TE, Stanley A, Hall MJ, Hampel H, South CD, de la Chapelle A, Burt RW, Jones DA, Kopelovich L, Yeung AT. Immunodepletion plasma proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive mass spectrometers. J Proteome Res. 2013;12(10):4351–65.

    CAS  PubMed  Google Scholar 

  • Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K, Takahashi N, Isobe T. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol. 2003;21(6):667–72.

    CAS  PubMed  Google Scholar 

  • Kaji H, Shikanai T, Sasaki-Sawa A, Wen H, Fujita M, Suzuki Y, Sugahara D, Sawaki H, Yamauchi Y, Shinkawa T, Taoka M, Takahashi N, Isobe T, Narimatsu H. Large-scale identification of N-glycosylated proteins of mouse tissues and construction of a glycoprotein database, GlycoProtDB. J Proteome Res. 2012;11(9):4553–66.

    CAS  PubMed  Google Scholar 

  • Kaji H, Ocho M, Togayachi A, Kuno A, Sogabe M, Ohkura T, Nozaki H, Angata T, Chiba Y, Ozaki H, Hirabayashi J, Tanaka Y, Mizokami M, Ikehara Y, Narimatsu H. Glycoproteomic discovery of serological biomarker candidates for HCV/HBV infection-associated liver fibrosis and hepatocellular carcinoma. J Proteome Res. 2013;12(6):2630–40.

    CAS  PubMed  Google Scholar 

  • Kang P, Mechref Y, Novotny MV. High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(5):721–34.

    CAS  PubMed  Google Scholar 

  • Karlsson NG, McGuckin MA. O-Linked glycome and proteome of high-molecular-mass proteins in human ovarian cancer ascites: Identification of sulfation, disialic acid and O-linked fucose. Glycobiology. 2012;22(7):918–29.

    CAS  PubMed  Google Scholar 

  • Kenny DT, Issa SM, Karlsson NG. Sulfate migration in oligosaccharides induced by negative ion mode ion trap collision-induced dissociation. Rapid Commun Mass Spectrom. 2011;25(18):2611–8.

    CAS  PubMed  Google Scholar 

  • Kenny DT, Gaunitz S, Hayes CA, Gustafsson A, Sjoblom M, Holgersson J, Karlsson NG. Mass spectrometric analysis of O-linked oligosaccharides from various recombinant expression systems. Methods Mol Biol. 2013;988:145–67.

    CAS  PubMed  Google Scholar 

  • Khoo KH, Dell A. Assignment of anomeric configurations of pyranose sugars in oligosaccharides using a sensitive FAB-MS strategy. Glycobiology. 1990;1(1):83–91.

    CAS  PubMed  Google Scholar 

  • Khoo KH, Yu SY. Mass spectrometric analysis of sulfated N- and O-glycans. Methods Enzymol. 2010;478:3–26.

    CAS  PubMed  Google Scholar 

  • Khoo KH, Sarda S, Xu X, Caulfield JP, McNeil MR, Homans SW, Morris HR, Dell A. A unique multifucosylated -3GalNAc beta 1– > 4GlcNAc beta 1– > 3Gal alpha 1- motif constitutes the repeating unit of the complex O-glycans derived from the cercarial glycocalyx of Schistosoma mansoni. J Biol Chem. 1995;270(29):17114–23.

    CAS  PubMed  Google Scholar 

  • Kimura N, Ohmori K, Miyazaki K, Izawa M, Matsuzaki Y, Yasuda Y, Takematsu H, Kozutsumi Y, Moriyama A, Kannagi R. Human B-lymphocytes express alpha2-6-sialylated 6-sulfo-N-acetyllactosamine serving as a preferred ligand for CD22/Siglec-2. J Biol Chem. 2007;282(44):32200–7.

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Mitoma J, Hoshino H, Yu SY, Shimojo Y, Suzawa K, Khoo KH, Fukuda M, Nakayama J. Prominent expression of sialyl Lewis X-capped core 2-branched O-glycans on high endothelial venule-like vessels in gastric MALT lymphoma. J Pathol. 2011;224(1):67–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolarich D, Jensen PH, Altmann F, Packer NH. Determination of site-specific glycan heterogeneity on glycoproteins. Nat Protoc. 2012;7(7):1285–98.

    CAS  PubMed  Google Scholar 

  • Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer. 2009;9(12):874–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumagai T, Katoh T, Nix DB, Tiemeyer M, Aoki K. In-Gel beta-Elimination and Aqueous-Organic Partition for Improved O- and Sulfoglycomics. Anal Chem. 2013;85(18):8692–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lapadula AJ, Hatcher PJ, Hanneman AJ, Ashline DJ, Zhang H, Reinhold VN. Congruent strategies for carbohydrate sequencing. 3. OSCAR: an algorithm for assigning oligosaccharide topology from MSn data. Anal Chem. 2005;77(19):6271–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larsen MR, Jensen SS, Jakobsen LA, Heegaard NH. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics. 2007;6(10):1778–87.

    CAS  PubMed  Google Scholar 

  • Lei M, Mechref Y, Novotny MV. Structural analysis of sulfated glycans by sequential double-permethylation using methyl iodide and deuteromethyl iodide. J Am Soc Mass Spectrom. 2009;20(9):1660–71.

    CAS  PubMed  Google Scholar 

  • Lemoine J, Strecker G, Leroy Y, Fournet B, Ricart G. Collisional-activation tandem mass spectrometry of sodium adduct ions of methylated oligosaccharides: sequence analysis and discrimination between alpha-NeuAc-(2–3) and alpha-NeuAc-(2–6) linkages. Carbohydr Res. 1991;221:209–17.

    CAS  PubMed  Google Scholar 

  • Lemoine J, Fournet B, Despeyroux D, Jennings KR, Rosenberg R, de Hoffmann E. Collision-induced dissociation of alkali metal cationized and permethylated oligosaccharides: Influence of the collision energy and of the collision gas for the assignment of linkage position. J Am Soc Mass Spectrom. 1993;4(3):197–203.

    CAS  PubMed  Google Scholar 

  • Levery SB. Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol. 2005;405:300–69.

    CAS  PubMed  Google Scholar 

  • Leymarie N, Zaia J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem. 2012;84(7):3040–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liedtke S, Geyer H, Wuhrer M, Geyer R, Frank G, Gerardy-Schahn R, Zahringer U, Schachner M. Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology. 2001;11(5):373–84.

    CAS  PubMed  Google Scholar 

  • Lin Z, Lubman DM. Permethylated N-glycan analysis with mass spectrometry. Methods Mol Biol. 2013;1007:289–300.

    CAS  PubMed  Google Scholar 

  • Lin CW, Chen JM, Wang YM, Wu SW, Tsai IH, Khoo KH. Terminal disialylated multiantennary complex-type N-glycans carried on acutobin define the glycosylation characteristics of the Deinagkistrodon acutus venom. Glycobiology. 2011;21(4):530–42.

    CAS  PubMed  Google Scholar 

  • Marino K, Bones J, Kattla JJ, Rudd PM. A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol. 2010;6(10):713–23.

    CAS  PubMed  Google Scholar 

  • Maxwell E, Tan Y, Tan Y, Hu H, Benson G, Aizikov K, Conley S, Staples GO, Slysz GW, Smith RD, Zaia J. GlycReSoft: a software package for automated recognition of glycans from LC/MS data. PLoS One. 2012;7(9):e45474.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayampurath AM, Wu Y, Segu ZM, Mechref Y, Tang H. Improving confidence in detection and characterization of protein N-glycosylation sites and microheterogeneity. Rapid Commun Mass Spectrom. 2011;25(14):2007–19.

    CAS  PubMed  Google Scholar 

  • McDonald CA, Yang JY, Marathe V, Yen TY, Macher BA. Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics. 2009;8(2):287–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McEver RP. A sulfated address for lymphocyte homing. Nat Immunol. 2005;6(11):1067–9.

    CAS  PubMed  Google Scholar 

  • McGuckin MA, Linden SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011;9(4):265–78.

    CAS  PubMed  Google Scholar 

  • Mechref Y, Novotny MV, Krishnan C. Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry. Anal Chem. 2003;75(18):4895–903.

    CAS  PubMed  Google Scholar 

  • Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H. Quantitative glycomics strategies. Mol Cell Proteomics. 2013;12(4):874–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meisen I, Mormann M, Muthing J. Thin-layer chromatography, overlay technique and mass spectrometry: a versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta. 2011;1811(11):875–96.

    CAS  PubMed  Google Scholar 

  • Merkle RK, Cummings RD. Relationship of the terminal sequences to the length of poly-N-acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Immobilized tomato lectin interacts with high affinity with glycopeptides containing long poly-N-acetyllactosamine chains. J Biol Chem. 1987;262(17):8179–89.

    CAS  PubMed  Google Scholar 

  • Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Muller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A. Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics. 2012;11(3):O111.013698.

    PubMed Central  PubMed  Google Scholar 

  • Miller E, Fiete D, Blake NM, Beranek M, Oates EL, Mi Y, Roseman DS, Baenziger JU. A necessary and sufficient determinant for protein-selective glycosylation in vivo. J Biol Chem. 2008;283(4):1985–91.

    CAS  PubMed  Google Scholar 

  • Morelle W, Slomianny MC, Diemer H, Schaeffer C, van Dorsselaer A, Michalski JC. Fragmentation characteristics of permethylated oligosaccharides using a matrix-assisted laser desorption/ionization two-stage time-of-flight (TOF/TOF) tandem mass spectrometer. Rapid Commun Mass Spectrom. 2004;18(22):2637–49.

    CAS  PubMed  Google Scholar 

  • Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13(7):448–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morita I, Kizuka Y, Kakuda S, Oka S. Expression and function of the HNK-1 carbohydrate. J Biochem. 2008;143(6):719–24.

    CAS  PubMed  Google Scholar 

  • Nahnsen S, Bielow C, Reinert K, Kohlbacher O. Tools for label-free peptide quantification. Mol Cell Proteomics. 2013;12(3):549–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  • North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell A, Stanley P, Haslam SM. Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem. 2010a;285(8):5759–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  • North SJ, Jang-Lee J, Harrison R, Canis K, Ismail MN, Trollope A, Antonopoulos A, Pang PC, Grassi P, Al-Chalabi S, Etienne AT, Dell A, Haslam SM. Mass spectrometric analysis of mutant mice. Methods Enzymol. 2010b;478:27–77.

    CAS  PubMed  Google Scholar 

  • Novotny MV, Alley Jr WR, Mann BF. Analytical glycobiology at high sensitivity: current approaches and directions. Glycoconj J. 2013;30(2):89–117.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oates JE, Dell A, Fukuda M, Fukuda MN. A rapid mass-spectrometric procedure for probing the non-reducing structures of lactosaminoglycan-containing glycoconjugates. Carbohydr Res. 1985;141(1):149–52.

    CAS  PubMed  Google Scholar 

  • Olivova P, Chen W, Chakraborty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(1):29–40.

    CAS  PubMed  Google Scholar 

  • Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods. 2007;4(9):709–12.

    CAS  PubMed  Google Scholar 

  • Orlando R. Quantitative analysis of glycoprotein glycans. Methods Mol Biol. 2013;951:197–215.

    CAS  PubMed  Google Scholar 

  • Orlando R, Lim JM, Atwood 3rd JA, Angel PM, Fang M, Aoki K, Alvarez-Manilla G, Moremen KW, York WS, Tiemeyer M, Pierce M, Dalton S, Wells L. IDAWG: Metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells. J Proteome Res. 2009;8(8):3816–23.

    CAS  PubMed  Google Scholar 

  • Ozohanics O, Krenyacz J, Ludanyi K, Pollreisz F, Vekey K, Drahos L. GlycoMiner: a new software tool to elucidate glycopeptide composition. Rapid Commun Mass Spectrom. 2008;22(20):3245–54.

    CAS  PubMed  Google Scholar 

  • Palmisano G, Melo-Braga MN, Engholm-Keller K, Parker BL, Larsen MR. Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J Proteome Res. 2012;11(3):1949–57.

    CAS  PubMed  Google Scholar 

  • Pan S, Chen R, Aebersold R, Brentnall TA. Mass spectrometry based glycoproteomics—from a proteomics perspective. Mol Cell Proteomics. 2011;10(1):R110.003251.

    PubMed Central  PubMed  Google Scholar 

  • Patnode ML, Cheng CW, Chou CC, Singer MS, Elin MS, Uchimura K, Crocker PR, Khoo KH, Rosen SD. Galactose 6-o-sulfotransferases are not required for the generation of siglec-f ligands in leukocytes or lung tissue. J Biol Chem. 2013a;288(37):26533–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patnode ML, Yu SY, Cheng CW, Ho MY, Tegesjo L, Sakuma K, Uchimura K, Khoo KH, Kannagi R, Rosen SD. KSGal6ST generates galactose-6-O-sulfate in high endothelial venules but does not contribute to L-selectin-dependent lymphocyte homing. Glycobiology. 2013b;23(3):381–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patrie SM, Roth MJ, Kohler JJ. Introduction to glycosylation and mass spectrometry. Methods Mol Biol. 2013;951:1–17.

    CAS  PubMed  Google Scholar 

  • Peltoniemi H, Natunen S, Ritamo I, Valmu L, Rabina J. Novel data analysis tool for semiquantitative LC-MS-MS2 profiling of N-glycans. Glycoconj J. 2013;30(2):159–70.

    CAS  PubMed  Google Scholar 

  • Powlesland AS, Hitchen PG, Parry S, Graham SA, Barrio MM, Elola MT, Mordoh J, Dell A, Drickamer K, Taylor ME. Targeted glycoproteomic identification of cancer cell glycosylation. Glycobiology. 2009;19(8):899–909.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom. 2007;261(1):1–12.

    CAS  Google Scholar 

  • Ranzinger R, Herget S, von der Lieth CW, Frank M. GlycomeDB—a unified database for carbohydrate structures. Nucleic Acids Res. 2011;39(Database issue):D373–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhold VN, Reinhold BB, Costello CE. Carbohydrate molecular weight profiling, sequence, linkage, and branching data: ES-MS and CID. Anal Chem. 1995;67(11):1772–84.

    CAS  PubMed  Google Scholar 

  • Reinhold V, Zhang H, Hanneman A, Ashline D. Toward a platform for comprehensive glycan sequencing. Mol Cell Proteomics. 2013;12(4):866–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ritamo I, Rabina J, Natunen S, Valmu L. Nanoscale reversed-phase liquid chromatography-mass spectrometry of permethylated N-glycans. Anal Bioanal Chem. 2013;405(8):2469–80.

    CAS  PubMed  Google Scholar 

  • Robbe C, Capon C, Coddeville B, Michalski JC. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J. 2004;384(Pt 2):307–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosen SD. Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol. 2004;22:129–56.

    CAS  PubMed  Google Scholar 

  • Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ, Abrahams JL, Kim YG, Henry GW, Shadick NA, Weinblatt ME, Lee DM, Rudd PM, Dwek RA. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem. 2008;376(1):1–12.

    CAS  PubMed  Google Scholar 

  • Ruhaak LR, Deelder AM, Wuhrer M. Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2009;394(1):163–74.

    CAS  PubMed  Google Scholar 

  • Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397(8):3457–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruhaak LR, Huhn C, Koeleman CA, Deelder AM, Wuhrer M. Robust and high-throughput sample preparation for (semi-)quantitative analysis of N-glycosylation profiles from plasma samples. Methods Mol Biol. 2012;893:371–85.

    CAS  PubMed  Google Scholar 

  • Saba J, Dutta S, Hemenway E, Viner R. Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int J Proteomics. 2012;2012:560391.

    PubMed Central  PubMed  Google Scholar 

  • Sato C. Chain length diversity of sialic acids and its biological significance. Trends Glycosci Glycotechnol. 2004;16(91):331–44.

    CAS  Google Scholar 

  • Sato C, Inoue S, Matsuda T, Kitajima K. Development of a highly sensitive chemical method for detecting alpha2→8-linked oligo/polysialic acid residues in glycoproteins blotted on the membrane. Anal Biochem. 1998;261(2):191–7.

    CAS  PubMed  Google Scholar 

  • Sato C, Inoue S, Matsuda T, Kitajima K. Fluorescent-assisted detection of oligosialyl units in glycoconjugates. Anal Biochem. 1999;266(1):102–9.

    CAS  PubMed  Google Scholar 

  • Sato C, Fukuoka H, Ohta K, Matsuda T, Koshino R, Kobayashi K, Troy 2nd FA, Kitajima K. Frequent occurrence of pre-existing alpha 2→8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins. Prevalence revealed by highly sensitive chemical methods and anti-di-, oligo-, and poly-Sia antibodies specific for defined chain lengths. J Biol Chem. 2000;275(20):15422–31.

    CAS  PubMed  Google Scholar 

  • Segu ZM, Hussein A, Novotny MV, Mechref Y. Assigning N-glycosylation sites of glycoproteins using LC/MSMS in conjunction with endo-M/exoglycosidase mixture. J Proteome Res. 2010;9(7):3598–607.

    CAS  PubMed  Google Scholar 

  • Spina E, Sturiale L, Romeo D, Impallomeni G, Garozzo D, Waidelich D, Glueckmann M. New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates. Rapid Commun Mass Spectrom. 2004;18(4):392–8.

    CAS  PubMed  Google Scholar 

  • Spooncer E, Fukuda M, Klock JC, Oates JE, Dell A. Isolation and characterization of polyfucosylated lactosaminoglycan from human granulocytes. J Biol Chem. 1984;259(8):4792–801.

    CAS  PubMed  Google Scholar 

  • Stavenhagen K, Hinneburg H, Thaysen-Andersen M, Hartmann L, Varon Silva D, Fuchser J, Kaspar S, Rapp E, Seeberger PH, Kolarich D. Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J Mass Spectrom. 2013;48(6):627–39.

    CAS  PubMed  Google Scholar 

  • Steentoft C, Vakhrushev SY, Vester-Christensen MB, Schjoldager KT, Kong Y, Bennett EP, Mandel U, Wandall H, Levery SB, Clausen H. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Methods. 2011;8(11):977–82.

    CAS  PubMed  Google Scholar 

  • Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013;32(10):1478–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stephens E, Maslen SL, Green LG, Williams DH. Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Anal Chem. 2004;76(8):2343–54.

    CAS  PubMed  Google Scholar 

  • Sutton-Smith M, Wong NK, Khoo KH, Wu SW, Yu SY, Patankar MS, Easton R, Lattanzio FA, Morris HR, Dell A, Clark GF. Analysis of protein-linked glycosylation in a sperm-somatic cell adhesion system. Glycobiology. 2007;17(6):553–67.

    CAS  PubMed  Google Scholar 

  • Takahashi N, Kato K. GALXY (glycoanalysis by the three axes of ms and chromatography): a Web application that assists structural analyses of N-glycans. Trends Glycosci Glycotechnol. 2003;15(84):235–51.

    CAS  Google Scholar 

  • Takahashi N, Nakagawa H, Fujikawa K, Kawamura Y, Tomiya N. Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Anal Biochem. 1995;226(1):139–46.

    CAS  PubMed  Google Scholar 

  • Tateno H, Crocker PR, Paulson JC. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6ʹ-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology. 2005;15(11):1125–35.

    CAS  PubMed  Google Scholar 

  • Thomsson KA, Karlsson NG, Hansson GC. Liquid chromatography-electrospray mass spectrometry as a tool for the analysis of sulfated oligosaccharides from mucin glycoproteins. J Chromatogr A. 1999;854(1–2):131–9.

    CAS  PubMed  Google Scholar 

  • Thomsson KA, Karlsson H, Hansson GC. Sequencing of sulfated oligosaccharides from mucins by liquid chromatography and electrospray ionization tandem mass spectrometry. Anal Chem. 2000;72(19):4543–9.

    CAS  PubMed  Google Scholar 

  • Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N. Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem. 1988;171(1):73–90.

    CAS  PubMed  Google Scholar 

  • Tousi F, Bones J, Hancock WS, Hincapie M. Differential chemical derivatization integrated with chromatographic separation for analysis of isomeric sialylated N-glycans: a nano-hydrophilic interaction liquid chromatography-MS platform. Anal Chem. 2013;85(17):8421–8.

    CAS  PubMed  Google Scholar 

  • Townsend RR, Hardy MR, Lee YC. Separation of oligosaccharides using high-performance anion-exchange chromatography with pulsed amperometric detection. Methods Enzymol. 1989;179:65–76.

    CAS  PubMed  Google Scholar 

  • Tsai TH, Tadesse MG, Di Poto C, Pannell LK, Mechref Y, Wang Y, Ressom HW. Multi-profile Bayesian alignment model for LC-MS data analysis with integration of internal standards. Bioinformatics. 2013;29(21):2774–80.

    CAS  PubMed  Google Scholar 

  • Vakhrushev SY, Steentoft C, Vester-Christensen MB, Bennett EP, Clausen H, Levery SB. Enhanced mass spectrometric mapping of the human GalNAc-type O-glycoproteome with SimpleCells. Mol Cell Proteomics. 2013;12(4):932–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viseux N, de Hoffmann E, Domon B. Structural assignment of permethylated oligosaccharide subunits using sequential tandem mass spectrometry. Anal Chem. 1998;70(23):4951–9.

    CAS  PubMed  Google Scholar 

  • Wada Y, Azadi P, Costello CE, Dell A, Dwek RA, Geyer H, Geyer R, Kakehi K, Karlsson NG, Kato K, Kawasaki N, Khoo KH, Kim S, Kondo A, Lattova E, Mechref Y, Miyoshi E, Nakamura K, Narimatsu H, Novotny MV, Packer NH, Perreault H, Peter-Katalinic J, Pohlentz G, Reinhold VN, Rudd PM, Suzuki A, Taniguchi N. Comparison of the methods for profiling glycoprotein glycans–HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology. 2007;17(4):411–22.

    CAS  PubMed  Google Scholar 

  • Wada Y, Dell A, Haslam SM, Tissot B, Canis K, Azadi P, Backstrom M, Costello CE, Hansson GC, Hiki Y, Ishihara M, Ito H, Kakehi K, Karlsson N, Hayes CE, Kato K, Kawasaki N, Khoo KH, Kobayashi K, Kolarich D, Kondo A, Lebrilla C, Nakano M, Narimatsu H, Novak J, Novotny MV, Ohno E, Packer NH, Palaima E, Renfrow MB, Tajiri M, Thomsson KA, Yagi H, Yu SY, Taniguchi N. Comparison of methods for profiling O-glycosylation: Human Proteome Organisation Human Disease Glycomics/Proteome Initiative Multi-Institutional Study of IgA1. Mol Cell Proteomics. 2010;9(4):719–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang SH, Wu SW, Khoo KH. MS-based glycomic strategies for probing the structural details of polylactosaminoglycan chain on N-glycans and glycoproteomic identification of its protein carriers. Proteomics. 2011;11(14):2812–29.

    CAS  PubMed  Google Scholar 

  • Wang SH, Tsai CM, Lin KI, Khoo KH. Advanced mass spectrometry and chemical analyses reveal the presence of terminal disialyl motif on mouse B-cell glycoproteins. Glycobiology. 2013;23(6):677–89.

    CAS  PubMed  Google Scholar 

  • Wheeler SF, Domann P, Harvey DJ. Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of alpha(2→3)- and alpha(2→6)-isomers. Rapid Commun Mass Spectrom. 2009;23(2):303–12.

    CAS  PubMed  Google Scholar 

  • Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol. 2009;27(4):378–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu AM, Khoo KH, Yu SY, Yang Z, Kannagi R, Watkins WM. Glycomic mapping of pseudomucinous human ovarian cyst glycoproteins: identification of Lewis and sialyl Lewis glycotopes. Proteomics. 2007;7(20):3699–717.

    CAS  PubMed  Google Scholar 

  • Wu SW, Liang SY, Pu TH, Chang FY, Khoo KH. Sweet-Heart—an integrated suite of enabling computational tools for automated MS2/MS3 sequencing and identification of glycopeptides. J Proteomics. 2013;84:1–16.

    CAS  PubMed  Google Scholar 

  • Wuhrer M. Glycomics using mass spectrometry. Glycoconj J. 2013;30(1):11–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wuhrer M, Deelder AM. Matrix-assisted laser desorption/ionization in-source decay combined with tandem time-of-flight mass spectrometry of permethylated oligosaccharides: targeted characterization of specific parts of the glycan structure. Rapid Commun Mass Spectrom. 2006;20(6):943–51.

    CAS  PubMed  Google Scholar 

  • Wuhrer M, Catalina MI, Deelder AM, Hokke CH. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;849(1–2):115–28.

    CAS  PubMed  Google Scholar 

  • Wuhrer M, de Boer AR, Deelder AM. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev. 2009a;28(2):192–206.

    CAS  PubMed  Google Scholar 

  • Wuhrer M, Koeleman CA, Deelder AM. Two-dimensional HPLC separation with reverse-phase-nano-LC-MS/MS for the characterization of glycan pools after labeling with 2-aminobenzamide. Methods Mol Biol. 2009b;534:79–91.

    CAS  PubMed  Google Scholar 

  • Wuhrer M, Deelder AM, van der Burgt YE. Mass spectrometric glycan rearrangements. Mass Spectrom Rev. 2011;30(4):664–80.

    CAS  PubMed  Google Scholar 

  • Yagi H, Takahashi N, Yamaguchi Y, Kimura N, Uchimura K, Kannagi R, Kato K. Development of structural analysis of sulfated N-glycans by multidimensional high performance liquid chromatography mapping methods. Glycobiology. 2005;15(10):1051–60.

    CAS  PubMed  Google Scholar 

  • Yin X, Bern M, Xing Q, Ho J, Viner R, Mayr M. Glycoproteomic analysis of the secretome of human endothelial cells. Mol Cell Proteomics. 2013;12(4):956–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu SY, Wu SW, Khoo KH. Distinctive characteristics of MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing of permethylated complex type N-glycans. Glycoconj J. 2006;23(5–6):355–69.

    PubMed  Google Scholar 

  • Yu SY, Khoo KH, Yang Z, Herp A, Wu AM. Glycomic mapping of O- and N-linked glycans from major rat sublingual mucin. Glycoconj J. 2008;25(3):199–212.

    CAS  PubMed  Google Scholar 

  • Yu SY, Wu SW, Hsiao HH, Khoo KH. Enabling techniques and strategic workflow for sulfoglycomics based on mass spectrometry mapping and sequencing of permethylated sulfated glycans. Glycobiology. 2009;19(10):1136–49.

    CAS  PubMed  Google Scholar 

  • Yu CY, Mayampurath A, Hu Y, Zhou S, Mechref Y, Tang H. Automated annotation and quantification of glycans using liquid chromatography-mass spectrometry. Bioinformatics. 2013a;29(13):1706–7.

    CAS  PubMed  Google Scholar 

  • Yu CY, Mayampurath A, Tang H. Software tools for glycan profiling. Methods Mol Biol. 2013b;951:269–76.

    CAS  PubMed  Google Scholar 

  • Yu SY, Chang LY, Cheng CW, Chou CC, Fukuda MN, Khoo KH. Priming mass spectrometry-based sulfoglycomic mapping for identification of terminal sulfated lacdiNAc glycotope. Glycoconj J. 2013c;30(2):183–94.

    CAS  PubMed  Google Scholar 

  • Zaia J. Mass spectrometry and glycomics. OMICS. 2010;14(4):401–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zaia J. Glycosaminoglycan glycomics using mass spectrometry. Mol Cell Proteomics. 2013;12(4):885–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zauner G, Deelder AM, Wuhrer M. Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis. 2011;32(24):3456–66.

    CAS  PubMed  Google Scholar 

  • Zauner G, Kozak RP, Gardner RA, Fernandes DL, Deelder AM, Wuhrer M. Protein O-glycosylation analysis. Biol Chem. 2012;393(8):687–708.

    CAS  PubMed  Google Scholar 

  • Zauner G, Koeleman CA, Deelder AM, Wuhrer M. Nano-HPLC-MS of glycopeptides obtained after nonspecific proteolysis. Methods Mol Biol. 2013;951:113–27.

    CAS  PubMed  Google Scholar 

  • Zhang W, Wang H, Zhang L, Yao J, Yang P. Large-scale assignment of N-glycosylation sites using complementary enzymatic deglycosylation. Talanta. 2011;85(1):499–505.

    CAS  PubMed  Google Scholar 

  • Zhao P, Stalnaker SH, Wells L. Approaches for site mapping and quantification of o-linked glycopeptides. Methods Mol Biol. 2013;951:229–44.

    CAS  PubMed  Google Scholar 

  • Zhu Z, Hua D, Clark DF, Go EP, Desaire H. GlycoPep Detector: a tool for assigning mass spectrometry data of N-linked glycopeptides on the basis of their electron transfer dissociation spectra. Anal Chem. 2013;85(10):5023–32.

    CAS  PubMed  Google Scholar 

  • Zielinska DF, Gnad F, Wisniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141(5):897–907.

    CAS  PubMed  Google Scholar 

  • Zielinska DF, Gnad F, Schropp K, Wisniewski JR, Mann M. Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell. 2012;46(4):542–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author gratefully acknowledge Academia Sinica and Taiwan national Science Council (Grants 99-2311-B-001-021-MY3; 102-2311-B-001-026-MY3) for support on works carried out related to glycomics and glycoproteomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay-Hooi Khoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khoo, KH. (2014). From Mass Spectrometry-Based Glycosylation Analysis to Glycomics and Glycoproteomics. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_7

Download citation

Publish with us

Policies and ethics