Skip to main content

Photoprotective Mechanisms: Carotenoids

  • Chapter
  • First Online:
Plastid Biology

Part of the book series: Advances in Plant Biology ((AIPB,volume 5))

Abstract

Environmental light can frequently be detrimental to the photosynthetic machinery of plants. This chapter provides an up-to-date overview of the targets of the photo-oxidative damage caused by light and the multiple functions of photosynthetic carotenoids that minimize it. Recently acquired knowledge on the localisation and distribution of carotenoids in the photosynthetic apparatus of plants is presented. Mechanisms that control the light harvesting process in the photosynthetic antenna of higher plants, via protective energy dissipation, are compared and discussed. The role of functional genomics approaches to the study of the multiple functions of carotenoids are highlighted. The significance of carotenoid structure and the physico-chemical properties that enable fine control over the photosynthetic light harvesting processes are analysed and discussed in order to explain the variety of their types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

CT :

Charge-transfer

DTT:

Dithiothreitol

EL:

Excess light

LHC:

Light harvesting complex

NPQ:

Non-photochemical quenching

PAM:

Pulse amplitude modulated

PQ:

Plastoquinone

PSII:

Photosystem II

qE:

Energy-dependent quenching

Ql:

Photoinhibitory quenching

qP:

Photochemical quenching

qZ:

Zea-dependent quenching

RC:

Reaction center

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

szl1 :

Suppressor of zeaxanthinless1

VDE:

Violaxanthin de-epoxidase

ZE:

Zeaxanthin epoxidase

References

  1. Adams Iii WW, Demmig-Adams B, Rosenstiel TN, Brightwell AK, Ebbert V (2002) Photosynthesis and photoprotection in overwintering plants. Plant Biol 4:545–557

    Google Scholar 

  2. Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    PubMed  CAS  Google Scholar 

  3. Alboresi A, Dall’Osto L, Aprile A, Carillo P, Roncaglia E, Cattivelli L, Bassi R (2011) Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC Plant Biol 11:62

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Alter P, Dreissen A, Luo FL, Matsubara S (2012) Acclimatory responses of Arabidopsis to fluctuating light environment: comparison of different sunfleck regimes and accessions. Photosynth Res 113:221–237

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Anderson MD, Prasad TK, Stewart CR (1995) Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol 109:1247–1257

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Andersson J, Wentworth M, Walters RG, Howard CA, Ruban AV, Horton P, Jansson S (2003) Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II—effects on photosynthesis, grana stacking and fitness. Plant J 35:350–361

    PubMed  CAS  Google Scholar 

  7. Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D (2009) A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell 21:2036–2044

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Aro EM, McCaffery S, Anderson JM (1994) Recovery from photoinhibition in peas (Pisum sativum L.) acclimated to varying growth irradiances (role of D1 protein turnover). Plant Physiol 104:1033–1041

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  10. Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR (2008) Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J Biol Chem 283:3550–3558

    PubMed  CAS  Google Scholar 

  11. Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801

    PubMed  CAS  Google Scholar 

  12. Bailey S, Horton P, Walters RG (2004) Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218:793–802

    PubMed  CAS  Google Scholar 

  13. Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958

    PubMed  CAS  Google Scholar 

  14. Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M, Niyogi KK (2004) Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas. J Biol Chem 279: 6337–6344

    PubMed  CAS  Google Scholar 

  15. Bassi R, Caffarri S (2000) Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls. Photosynth Res 64:243–256

    PubMed  CAS  Google Scholar 

  16. Bassi R, Croce R, Cugini D, Sandona D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci U S A 96:10056–10061

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Bellafiore S, Bameche F, Peltier G, Rochaix JD (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    PubMed  CAS  Google Scholar 

  18. Ben Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    PubMed  CAS  Google Scholar 

  19. Berera R, van Grondelle R, Kennis JT (2009) Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth Res 101:105–118

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Bergantino E, Segalla A, Brunetta A, Teardo E, Rigoni F, Giacometti GM, Szabo I (2003) Light- and pH-dependent structural changes in the PsbS subunit of photosystem II. Proc Natl Acad Sci U S A 100:15265–15270

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction J Biol Chem 284:15255–15266

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Betterle N, Ballottari M, Hienerwadel R, Dall’Osto L, Bassi R (2010) Dynamics of zeaxanthin binding to the Photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Arch Biochem Biophys 504:67–77

    PubMed  CAS  Google Scholar 

  23. Bilger W, Bjoerkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    PubMed  CAS  Google Scholar 

  24. Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci U S A 106:12311–12316

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Bonente G, Howes BD, Caffarri S, Smulevich G, Bassi R (2007) Interactions between the photosystem II subunit psbs and xanthophylls studied in vivo and in vitro. J Biol Chem 283:8434–8445

    PubMed  Google Scholar 

  26. Briantais JM, Vernotte C, Picaud M, Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    PubMed  CAS  Google Scholar 

  27. Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P, Scholes JD (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci U S A 96:1135–1139

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Busch M, Seuter A, Hain R (2002) Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol 128:439–453

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Caffarri S, Croce R, Breton J, Bassi R (2001) The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J Biol Chem 276:35924–35933

    PubMed  CAS  Google Scholar 

  30. Caffarri S, Passarini F, Bassi R, Croce R (2007) A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of photosystem II. FEBS Lett 581:4704–4710

    PubMed  CAS  Google Scholar 

  31. Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall’Osto L (2012) The Arabidopsis szl1 mutant reveals a critical role of?-carotene in photosystem I photoprotection. Plant Physiol 159:1745–1758

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Chow WS, Melis A, Anderson JM (1990) Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci U S A 87:7502–7506

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Cleland RE, Grace SC (1999) Voltammetric detection of superoxide production by photosystem II. FEBS Lett 457:348–352

    PubMed  CAS  Google Scholar 

  34. Connelly JP, Muller MG, Bassi R, Croce R, Holzwarth AR (1997) Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry 36:281–287

    PubMed  CAS  Google Scholar 

  35. Croce R, Remelli R, Varotto C, Breton J, Bassi R (1999) The neoxanthin binding site of the major light harvesting complex (LHC II) from higher plants. FEBS Lett 456:1–6

    PubMed  CAS  Google Scholar 

  36. Croce R, Weiss S, Bassi R (1999) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274:29613–29623

    PubMed  CAS  Google Scholar 

  37. Croce R, Cinque G, Holzwarth AR, Bassi R (2000) The soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants. Photosynth Res 64:221–231

    PubMed  CAS  Google Scholar 

  38. Croce R, Muller MG, Bassi R, Holzwarth AR (2001) Carotenoid-to-chlorophyll energy transfer in recombinant major light- harvesting complex (LHCII) of higher plants. I. femtosecond transient absorption measurements. Biophys J 80:901–915

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Croce R, Canino g, Ros F, Bassi R (2002) Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry 41:7334–7343

    PubMed  CAS  Google Scholar 

  40. Croce R, Morosinotto T, Castelletti S, Breton J, Bassi R (2002) The Lhca antenna complexes of higher plants photosystem I. Biochim Biophys Acta (Bioenergetics) 1556:29–40

    CAS  Google Scholar 

  41. Croce R, Muller MG, Caffarri S, Bassi R, Holzwarth AR (2003) Energy transfer pathways in the minor antenna complex CP29 of photosystem II: a femtosecond study of carotenoid to chlorophyll transfer on mutant and WT complexes. Biophys J 84:2517–2532

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Dainese P, Bassi R (1991) Subunit stoichiometry of the chloroplast photosystem- II antenna system and aggregation state of the component chlorophyll-a/b binding proteins. J Biol Chem 266:8136–8142

    PubMed  CAS  Google Scholar 

  43. Dainese P, Hoyer-Hansen G, Bassi R (1990) The resolution of chlorophyll a/b binding proteins by a preparative method based on flat bed isoelectric focusing. Photochem Photobiol 51:693–703

    CAS  Google Scholar 

  44. Dalcorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    PubMed  CAS  Google Scholar 

  45. Dall’Osto L, Caffarri S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17:1217–1232

    PubMed  PubMed Central  Google Scholar 

  46. Dall’Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol 6:32

    PubMed  PubMed Central  Google Scholar 

  47. Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R (2007) Different roles of a- and b-branch xanthophylls in photosystem assembly and photoprotection. J Biol Chem 282:35056–35068

    PubMed  Google Scholar 

  48. Dall’Osto L, Cazzaniga S, North H, Marion-Poll A, Bassi R (2007) The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photoxidative stress. Plant Cell 19:1048–1064

    PubMed  PubMed Central  Google Scholar 

  49. Dall’Osto L, Cazzaniga S, Havaux M, Bassi R (2010) Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Mol Plant 3:576–593

    PubMed  Google Scholar 

  50. Dall’Osto L, Holt NE, Kaligotla S, Fuciman M, Cazzaniga S, Carbonera D, Frank HA, Alric J, Bassi R (2012) Zeaxanthin protects plant photosynthesis by modulating chlorophyll triplet yield in specific light-harvesting antenna subunits. J Biol Chem 287:41820–41834

    PubMed  PubMed Central  Google Scholar 

  51. Damkjaer J, Kereiche S, Johnson MP, Kovacs L, kiss az, Boekema EJ, Ruban AV, Horton P, Jansson S (2009) The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell 21:3245–3256

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    PubMed  CAS  Google Scholar 

  53. de Bianchi S, Dall’Osto L, Tognon G, Morosinotto T, Bassi R (2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20:1012–1028

    PubMed  CAS  PubMed Central  Google Scholar 

  54. de Bianchi S, Betterle N, Kouril R, Cazzaniga S, Boekema E, Bassi R, Dall’Osto L (2011) Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell 23:2659–2679

    PubMed  CAS  PubMed Central  Google Scholar 

  55. de Carbonnel M et al (2010) The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152:1391–1405

    PubMed  PubMed Central  Google Scholar 

  56. de Weerd FL, van Stokkum IHM, Van Amerongen H, Dekker JP, van Grondelle R (2002) Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of photosystem II. Biophys J 82:1586–1597

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    CAS  Google Scholar 

  58. Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626

    CAS  Google Scholar 

  59. Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M, Bassi R (2002) Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem 277:22750–22758

    PubMed  CAS  Google Scholar 

  60. Duffy CD, Ruban AV (2012) A theoretical investigation of xanthophyll-protein hydrogen bonding in the photosystem II antenna. J Phys Chem B 116:4310–4318

    PubMed  CAS  Google Scholar 

  61. Färber A, Young AJ, Ruban AV, Horton P, Jahns P (1997) Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants. Plant Physiol 115:1609–1618

    PubMed  PubMed Central  Google Scholar 

  62. Fiore A, Dall’Osto L, Fraser PD, Bassi R, Giuliano G (2006) Elucidation of the beta-carotene hydroxylation pathway in Arabidopsis thaliana. FEBS Lett 580:4718–4722

    PubMed  CAS  Google Scholar 

  63. Formaggio E, Cinque G, Bassi R (2001) Functional architecture of the major light-harvesting complex from higher plants. J Mol Biol 314:1157–1166

    PubMed  CAS  Google Scholar 

  64. Frigerio S et al (2007) Photosynthetic antenna size in higher plants is controlled by the plastoquinone redox state at the post-transcriptional rather than transcriptional level. J Biol Chem 282:29457–29469

    PubMed  CAS  Google Scholar 

  65. Gastaldelli M, Canino g, Croce R, Bassi R (2003) Xanthophyll binding sites of the CP29 (Lhcb4) subunit of higher plant photosystem II investigated by domain swapping and mutation analysis. J Biol Chem 278:19190–19198

    PubMed  CAS  Google Scholar 

  66. Gibasiewicz K, Croce R, Morosinotto T, Ihalainen JA, van Stokkum IH, Dekker JP, Bassi R, van Grondelle R (2005) Excitation energy transfer pathways in Lhca4. Biophys J 88:1959–1969

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209

    CAS  Google Scholar 

  68. Gilmore AM, Ball MC (2000) Protection and storage of chlorophyll in overwintering evergreens. Proc Natl Acad Sci U S A 97:11098–11101

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Gilmore AM, Hazlett TL, Govindjee (1995) Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci U S A 92:2273–2277

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Gobets B et al (2001) Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study. J Phys Chem B 105:10132–10139

    CAS  Google Scholar 

  71. Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J 69:289–301

    PubMed  CAS  Google Scholar 

  72. Gradinaru CC, van Stokkum IHM, Pascal AA, van Grondelle R, Van Amerongen H (2000) Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. A multicolor, femtosecond pump—probe study. J Phys Chem B 104:9330–9342

    CAS  Google Scholar 

  73. Gruszecki WI, Strzalka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740:108–115

    PubMed  CAS  Google Scholar 

  74. Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiations at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953–966

    CAS  Google Scholar 

  75. Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci U S A 96:8762–8767

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Havaux M, Dall’Osto L, Cuine S, Giuliano G, Bassi R (2004) The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J Biol Chem 279:13878–13888

    PubMed  CAS  Google Scholar 

  77. Havaux M, Eymery F, Porfirova S, Rey P, Dormann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana Plant Cell 17:3451–3469

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Havaux M, Dall’Osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506–1520

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Holt NE, Kennis JTM, Dall’Osto L, Bassi R, Fleming GR (2003) Carotenoid to chlorophyll energy transfer in light harvesting complex II from Arabidopsis thaliana probed by femtosecond fluorescence upconversion. Chem Phys Lett 379:305–313

    CAS  Google Scholar 

  80. Holt NE, Fleming GR, Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43:8281–8289

    PubMed  CAS  Google Scholar 

  81. Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    PubMed  CAS  Google Scholar 

  82. Holzwarth AR (1986) Fluorescence lifetimes in photosynthetic systems. Photochem Photobiol 43:707–725

    CAS  Google Scholar 

  83. Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292:1–4

    PubMed  CAS  Google Scholar 

  84. Horton P, Ruban AV, Walters RG (1994) Regulation of light harvesting in green plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol 106:415–420

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    PubMed  CAS  Google Scholar 

  86. Horton P, Ruban A, Wentworth M (2000) Allosteric regulation of the light-harvesting system of photosystem II. Philos Trans R Soc Lond B Biol Sci 355:1361–1370

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Javorfi T, Garab G, Naqvi KR (2000) Reinvestigation of the triplet-minus-singlet spectrum of chloroplasts. Spectrochim Acta A Mol Biomol Spectrosc 56A:211–214

    PubMed  CAS  Google Scholar 

  88. Johnson MP, Ruban AV (2011) Restoration of rapidly-reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced DeltapH. J Biol Chem 286:19973–19981

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Johnson MP, Havaux M, Triantaphylides C, Ksas B, Pascal AA, Robert B, Davison PA, Ruban AV, Horton P (2007) Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism. J Biol Chem 282:22605–22618

    PubMed  CAS  Google Scholar 

  90. Johnson MP, Zia A, Horton P, Ruban AV (2010) Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII. J Chem Phys 373:23–32

    CAS  Google Scholar 

  91. Johnson MP, Goral TK, Duffy CD, Brain AP, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Johnson MP, Zia A, Ruban AV (2012) Elevated DpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta 235:193–204

    PubMed  CAS  Google Scholar 

  93. Joliot PA, Finazzi G (2010) Proton equilibration in the chloroplast modulates multiphasic kinetics of nonphotochemical quenching of fluorescence in plants. Proc Natl Acad Sci U S A 107:12728–12733

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    PubMed  CAS  Google Scholar 

  95. Kalituho L, Rech J, Jahns P (2007) The roles of specific xanthophylls in light utilization. Planta 225:423–439

    PubMed  CAS  Google Scholar 

  96. Kennis JTM, Gobets B, van Stokkum IHM, Dekker JP, van Grondelle R, Fleming GR (2001) Light harvesting by chlorophylls and carotenoids in the photosystem I core complex of Synechococcus elongatus: a fluorescence upconversion study. J Phys Chem B 105:4485–4494

    Google Scholar 

  97. Kim J, DellaPenna D (2006) Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci U S A 103:3474–3479

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Kim J, Smith JJ, Tian L, DellaPenna D (2009) The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol 50:463–479

    PubMed  CAS  Google Scholar 

  99. Kimura M et al (2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochem Photobiol 77:226–233

    PubMed  CAS  Google Scholar 

  100. Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Kouril R, Dekker JP, Boekema EJ (2011) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta doi:10.1016/j.bbabio.2011.05.024

    Google Scholar 

  102. Kovacs L, Damkjaer J, Kereiche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Krasnovsky AA (1982) Delayed fluorescence and phosphorescence of plant pigments. Photochem Photobiol 36:733–741

    Google Scholar 

  104. Krause GH (1988) Photoinhibiton of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    CAS  Google Scholar 

  105. Kulheim C, Agren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297:91–93

    PubMed  Google Scholar 

  106. Kuntz M (2004) Plastid terminal oxidase and its biological significance. Planta 218:896–899

    PubMed  CAS  Google Scholar 

  107. Lam E, Ortiz W, Malkin R (1984) Chlorophyll a/b proteins of photosystem I. FEBS Lett 168:10–14

    CAS  Google Scholar 

  108. Lavaud J, Rousseau B, van Gorkom HJ, Etienne AL (2002) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Li Z et al (2009) Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21:1798–1812

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Li XP, Bjorkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    PubMed  CAS  Google Scholar 

  111. Li XP, Gilmore AM, Niyogi KK (2002) Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J Biol Chem 277:33590–33597

    PubMed  CAS  Google Scholar 

  112. Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    PubMed  CAS  Google Scholar 

  113. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428:287–292

    PubMed  CAS  Google Scholar 

  114. Lokstein H, Tian L, Polle JE, DellaPenna D (2002) Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in photosystem II antenna size and stability. Biochim Biophys Acta 1553:309–319

    PubMed  CAS  Google Scholar 

  115. MacPherson AN, Gillbro T (1998) Solvent dependence of the ultrafast S-2-S-1 internal conversion rate of beta-carotene. J Phys Chem A 102:5049–5058

    CAS  Google Scholar 

  116. Marin A, Passarini F, van Stokkum IH, van Grondelle R, Croce R (2011) Minor complexes at work: light-harvesting by carotenoids in the photosystem II antenna complexes CP24 and CP26. Biophys J 100:2829–2838

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Mathis P, Butler WL, Satoh K (1979) Carotenoid triplet state and chlorophyll fluorescence quenching in chloroplasts and sub chloroplasts particles. Photochem Photobiol 30:603–614

    CAS  Google Scholar 

  118. Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    CAS  Google Scholar 

  119. Milborrow BV (2001) The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. J Exp Bot 52:1145–1164

    PubMed  CAS  Google Scholar 

  120. Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    PubMed  CAS  Google Scholar 

  121. Miloslavina Y, de Bianchi S, Dall’Osto L, Bassi R, Holzwarth AR (2011) Quenching in Arabidopsis thaliana mutants lacking monomeric antenna proteins of photosystem II. J Biol Chem 286:36830–36840

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Morosinotto T, Baronio R, Bassi R (2002) Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. J Biol Chem 277:36913–36920

    PubMed  CAS  Google Scholar 

  123. Morosinotto T, Caffarri S, Dall’Osto L, Bassi R (2003) Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiologia Plantarum 119:347–354

    CAS  Google Scholar 

  124. Morosinotto T, Mozzo M, Bassi R, Croce R (2005) Pigment-pigment interactions in the higher plants photosystem I antenna complex Lhca4. A mutagenesis study (submitted)

    Google Scholar 

  125. Moya I, Silvestri M, Vallon O, Cinque G, Bassi R (2001) Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40:12552–12561

    PubMed  CAS  Google Scholar 

  126. Mozzo M, Dall’Osto L, Hienerwadel R, Bassi R, Croce R (2008) Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching. J Biol Chem 283:6184–6192

    PubMed  CAS  Google Scholar 

  127. Muller-Moule P, Conklin PL, Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128:970–7

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Muller-Moule P, Havaux M, Niyogi KK (2003) Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol 133:748–760

    PubMed  PubMed Central  Google Scholar 

  129. Muller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. Chemphyschem 11:1289–1296

    PubMed  Google Scholar 

  130. Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    PubMed  CAS  Google Scholar 

  131. Murchie EH, Hubbart S, Peng S, Horton P (2005) Acclimation of photosynthesis to high irradiance in rice: gene expression and interactions with leaf development. J Exp Bot 56:449–460

    PubMed  CAS  Google Scholar 

  132. Nelson N, Ben Shem A (2004) The complex architecture of oxygenic photosynthesis. Nature 5:1–12

    Google Scholar 

  133. Nilkens M, Kress E, Lambrev P, Miloslavina Y, Muller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta 1797:466–475

    PubMed  CAS  Google Scholar 

  134. Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Niyogi KK, Shih C, Soon Chow W, Pogson BJ, Dellapenna D, Bjorkman O (2001) Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67:139–145

    PubMed  CAS  Google Scholar 

  136. North HM, De Almeida A, Boutin JP, Frey A, To A, Botran L, Sotta B, Marion-Poll A (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrate that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J 50:810–824

    PubMed  CAS  Google Scholar 

  137. Okada K, Kawaide H, Kuzuyama T, Seto H, Curtis IS, Kamiya Y (2002) Antisense and chemical suppression of the nonmevalonate pathway affects ent-kaurene biosynthesis in Arabidopsis. Planta 215:339–344

    PubMed  CAS  Google Scholar 

  138. op den Camp RG et al (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Google Scholar 

  139. Öquist G, Chow WS, Anderson JM (1992) Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem-II. Planta 186:450–460

    PubMed  Google Scholar 

  140. Pagano A, Cinque G, Bassi R (1998) In vitro reconstitution of the recombinant photosystem II light-harvesting complex CP24 and its spectroscopic characterization. J Biol Chem 273:17154–17165

    PubMed  CAS  Google Scholar 

  141. Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, Chang W (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 18:309–315

    PubMed  CAS  Google Scholar 

  142. Pascal AA et al (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    PubMed  CAS  Google Scholar 

  143. Passarini F, Wientjes E, Hienerwadel R, Croce R (2009) Molecular basis of light harvesting and photoprotection in CP24: unique features of the most recent antenna complex. J Biol Chem 284:29536–29546

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Paulsen H (1995) Chlorophyll a/b-binding proteins. Photochem Photobiol 62:367–382

    CAS  Google Scholar 

  145. Paulsen H, Hobe S (1992) Pigment-binding properties of mutant light-harvesting chlorophyll-a/b-binding protein. Eur J Biochem 205:71–76

    PubMed  CAS  Google Scholar 

  146. Perez-Bueno ML, Johnson MP, Zia A, Ruban AV, Horton P (2008) The Lhcb protein and xanthophyll composition of the light harvesting antenna controls the DeltapH-dependency of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett 582:1477–1482

    PubMed  CAS  Google Scholar 

  147. Pesaresi P, Sandona D, Giuffra E, Bassi R (1997) A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Lett 402:151–156

    PubMed  CAS  Google Scholar 

  148. Peterman EJ, Dukker FM, van Grondelle R, Van Amerongen H (1995) Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J 69:2670–2678

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Peterman EJ, Gradinaru CC, Calkoen F, Borst JC, van Grondelle R, van Amerongen H (1997) Xanthophylls in light-harvesting complex II of higher plants: light harvesting and triplet quenching. Biochemistry 36:12208–12215

    PubMed  CAS  Google Scholar 

  150. Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628

    CAS  Google Scholar 

  151. Pierre Y, Breyton C, Lemoine Y, Robert B, Vernotte C, Popot JL (1997) On the presence and role of a molecule of chlorophyll a in cytochrome b6 f. complex. J Biol Chem 272:21901–21908

    PubMed  CAS  Google Scholar 

  152. Pogson B, Rissler HM (2000) Genetic manipulation of carotenoid biosynthesis and photoprotection. Phil Trans R Soc Lond B 355:1395–1403

    CAS  Google Scholar 

  153. Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8:1627–1639

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Pogson BJ, Niyogi KK, Bjorkman O, DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci U S A 95: 13324–13329

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Polivka T, Herek JL, Zigmantas D, Akerlund HE, Sundstrom V (1999) Direct observation of the (forbidden) S1 state in carotenoids. Proc Natl Acad Sci U S A 96:4914–4917

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Polivka T, Zigmantas D, Sundstrom V, Formaggio E, Cinque G, Bassi R (2002) Carotenoid S(1) state in a recombinant light-harvesting complex of photosystem II. Biochemistry 41:439–450

    PubMed  CAS  Google Scholar 

  157. Pospisil P, Arato A, Krieger-Liszkay A, Rutherford AW (2004) Hydroxyl radical generation by photosystem II. Biochemistry 43:6783–6792

    PubMed  CAS  Google Scholar 

  158. Reinhold C, Niczyporuk S, Beran KC, Jahns P (2008) Short-term down-regulation of zeaxanthin epoxidation in Arabidopsis thaliana in response to photo-oxidative stress conditions. Biochim Biophys Acta 1777:462–469

    PubMed  CAS  Google Scholar 

  159. Rey P, Becuwe N, Barrault MB, Rumeau D, Havaux M, Biteau B, Toledano MB (2007) The Arabidopsis thaliana sulfiredoxin is a plastidic cysteine-sulfinic acid reductase involved in the photooxidative stress response. Plant J 49:505–514

    PubMed  CAS  Google Scholar 

  160. Rock CD, Zeevaart JA (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci U S A 88:7496–7499

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    PubMed  CAS  Google Scholar 

  163. Ruban AV, Horton P (1999) The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. Plant Physiol 119: 531–542

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Ruban AV, Johnson MP (2010) Xanthophylls as modulators of membrane protein function. Arch Biochem Biophys 504:78–85

    PubMed  CAS  Google Scholar 

  165. Ruban AV, Murchie EH (2012) Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim Biophys Acta 1817:977–982

    PubMed  CAS  Google Scholar 

  166. Ruban AV, Horton P, Young AJ (1993) Aggregation of higher plant xanthophylls: difference in absorption spectra and in the dependency on solvent polarity. J Photochem Photobiol B 21:229–234

    CAS  Google Scholar 

  167. Ruban AV, Young AJ, Pascal AA, Horton P (1994) The effects of illumination on the xanthophyll composition of the photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiol 104:227–234

    PubMed  CAS  PubMed Central  Google Scholar 

  168. Ruban AV, Lee PJ, Wentworth M, Young AJ, Horton P (1999) Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. J Biol Chem 274:10458–65

    PubMed  CAS  Google Scholar 

  169. Ruban AV, Wentworth M, Horton P (2001) Kinetic analysis of nonphotochemical quenching of chlorophyll fluorescence. 1. Isolated chloroplasts. Biochemistry 40:9896–9901

    PubMed  CAS  Google Scholar 

  170. Ruban AV et al (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    PubMed  CAS  Google Scholar 

  171. Ruban AV, Johnson MP, Duffy CD (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    PubMed  CAS  Google Scholar 

  172. Ruckle ME, DeMarco SM, Larkin RM (2007) Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19:3944–3960

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55:8516–8522

    PubMed  CAS  Google Scholar 

  174. Santabarbara S, Bordignon E, Jennings RC, Carbonera D (2002) Chlorophyll triplet states associated with photosystem II of thylakoids. Biochemistry 41:8184–8194

    PubMed  CAS  Google Scholar 

  175. Schmid VHR, Cammarata KV, Bruns BU, Schmidt GW (1997) In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci U S A 94:7667–7672

    PubMed  CAS  PubMed Central  Google Scholar 

  176. Schodel R, Irrgang KD, Voigt J, Renger G (1999) Quenching of chlorophyll fluorescence by triplets in solubilized light-harvesting complex II (LHCII). Biophys J 76:2238–2248

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Snyder AM, Clark BM, Robert B, Ruban AV, Bungard RA (2004) Carotenoid specificity of light-harvesting complex II binding sites. J Biol Chem 279:5162–5168

    PubMed  CAS  Google Scholar 

  178. Sonoike K (1996) Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant & Cell Physiol 37:239–247

    CAS  Google Scholar 

  179. Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 426:413–418

    PubMed  CAS  Google Scholar 

  180. Strzalka K, Gruszecki WI (1997) Modulation of thylakoid membrane fluidity by exogenously added carotenoids. J Biochem Mol Biol Biophys 1:103–108

    CAS  Google Scholar 

  181. Suetsugu N, Wada M (2007) Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 388:927–935

    PubMed  CAS  Google Scholar 

  182. Sundstrom V (2008) Femtobiology. Annu Rev Phys Chem 59:53–77

    PubMed  Google Scholar 

  183. Teardo E, De Laureto PP, Bergantino E, Dalla VF, Rigoni F, Szabo I, Giacometti GM (2007) Evidences for interaction of PsbS with photosynthetic complexes in maize thylakoids. Biochim Biophys Acta 1767:703–711

    PubMed  CAS  Google Scholar 

  184. Telfer A (2005) Too much light? How b-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4:950–956

    PubMed  CAS  Google Scholar 

  185. Telfer A, De Las Rivas J, Barber J (1991) Beta-Carotene within the isolated photosystem II reaction centre: photooxidation and irreversible bleaching of this chromophore by oxidised P680. Biochim Biophys Acta 1060:106–114

    CAS  Google Scholar 

  186. Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen—detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269:13244–13253

    PubMed  CAS  Google Scholar 

  187. Telfer A, Dhami S, Bishop SM, Phillips D, Barber J (1994) Beta-carotene quenches singlet oxygen formed by isolated photosystem II reaction centers. Biochemistry 33:14469–14474

    PubMed  CAS  Google Scholar 

  188. Triantaphylides C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    PubMed  CAS  Google Scholar 

  189. Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    PubMed  CAS  PubMed Central  Google Scholar 

  190. Van Amerongen H, van Grondelle R (2001) Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 105:604–617

    CAS  Google Scholar 

  191. Verhoeven AS, Adams WW, Demmig-Adams B, Croce R, Bassi R (1999) Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and light stress in Vinca major. Plant Physiol 120:727–737

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447

    PubMed  CAS  Google Scholar 

  193. Walters RG, Ruban AV, Horton P (1996) Identification of proton-active residues in a higher plant light- harvesting complex. Proc Natl Acad Sci U S A 93:14204–14209

    PubMed  CAS  PubMed Central  Google Scholar 

  194. Wehner A, Grasses T, Jahns P (2006) De-epoxidation of violaxanthin in the minor antenna proteins of photosystem II, LHCB4, LHCB5, and LHCB6. J Biol Chem 281:21924–21933

    PubMed  CAS  Google Scholar 

  195. Witt HT (1971) Coupling of quanta, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis. Q Rev Biophys 4:365–477

    PubMed  CAS  Google Scholar 

  196. Woodall AA, Lee SW, Weesie RJ, Jackson MJ, Britton G (1997) Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim Biophys Acta 1336:33–42

    PubMed  CAS  Google Scholar 

  197. Yamamoto HY, Kamite L (1972) The effects of dithiothreitol on violaxanthin deepoxidation and absorbance changes in the 500 nm region. Biochim Biophys Acta 267:538–543

    PubMed  CAS  Google Scholar 

  198. Zhang H, Huang D, Cramer WA (1999) Stoichiometrically bound beta-carotene in the cytochrome b6 f. complex of oxygenic photosynthesis protects against oxygen damage. J Biol Chem 274:1581–1587

    PubMed  CAS  Google Scholar 

  199. Powles S.B., Bjorkman O. (1981) Leaf movement in the shade species Oxalis oregano. II. Role in protection against injury by intense light. Carnegie Institute Washington Yearbook 80, 63–66

    Google Scholar 

  200. Brugnoli E, Björkman O. (1992) Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation.Photosynth Res. 32(1):23–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dall’Osto, L., Bassi, R., Ruban, A. (2014). Photoprotective Mechanisms: Carotenoids. In: Theg, S., Wollman, FA. (eds) Plastid Biology. Advances in Plant Biology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1136-3_15

Download citation

Publish with us

Policies and ethics