Skip to main content

Molecular Chaperone Functions in Plastids

  • Chapter
  • First Online:
Plastid Biology

Part of the book series: Advances in Plant Biology ((AIPB,volume 5))

  • 1605 Accesses

Abstract

Molecular chaperones play essential roles in a wide variety of cellular processes, from de-novo protein folding to protein disaggregation under stress conditions, unfolding and re-folding of misfolded proteins, protein degradation, protein transport and proteome remodeling during development. Almost all cell compartments contain chaperone activity to some extent, hence it is not surprising that a large number of chaperones also play essential roles in the plastid compartment. Here, the focus of chaperone activity is on protein targeting (protein import and assembly of complexes in target membranes) as well as protection from specific chloroplast-derived stresses. Moreover, chaperones play important roles in de-novo folding of plastid-encoded proteins, in the folding of soluble proteins after import and processing of the transit peptides, and in protein degradation. The four major groups of molecular chaperones, the chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families of chaperones, are all present in plastids but many cofactors and co-chaperones have not yet been identified. Although chaperone function is generally conserved, it seems that plastid-localized chaperones have evolved some specific functions and mechanisms. Current research on plastid-localized chaperones focuses therefore on the specificities of chaperone function in the context of their plastid environment and requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABRE:

Abscisic acid responsive element

APG:

Albino and pale green

CDJ:

Chloroplast DnaJ-like protein

CGE:

Chloroplast GrpE homolog

CPN:

Chaperonin

ER:

Endoplasmic reticulum

HEP:

Hsp70 escort protein

HSP:

Heat shock protein

PS:

Photosystem

TAC:

Transcriptionally active chromosome

VIPP1:

Vesicle-inducing proteins in plastids 1

ZFHD1:

Zinc-finger homeodomain 1

References

  1. Adam Z et al (2001) Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol 125:1912–1918

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Adamiec M, Lucinski R, Jackowski G (2011) The irradiance dependent transcriptional regulation of AtCLPB3 expression. Plant Sci 181:449–456

    PubMed  CAS  Google Scholar 

  3. Akita M, Nielsen E, Keegstra K (1997) Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J Cell Biol 136:983–94

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Alfano C, McMacken R (1989) Ordered assembly of nucleoprotein structures at the bacteriophage lambda replication origin during the initiation of DNA replication. J Biol Chem 264:10699–10708

    PubMed  CAS  Google Scholar 

  5. Apuya NR, Yadegari R, Fischer RL, Harada JJ, Zimmerman JL, Goldberg RB (2001) The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene. Plant Physiol 126:717–30

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Aseeva E, Ossenbühl F, Eichacker LA, Wanner G, Soll J, Vothknecht UC (2004) Complex formation of Vipp1 depends on its alpha-helical PspA-like domain. J Biol Chem 279:35535–35541

    PubMed  CAS  Google Scholar 

  7. Balczun C, Bunse A, Schwarz C, Piotrowski M, Kuck U (2006) Chloroplast heat shock protein Cpn60 from Chlamydomonas reinhardtii exhibits a novel function as a group II intron-specific RNA-binding protein. FEBS Lett 580:4527–4532

    PubMed  CAS  Google Scholar 

  8. Baneyx F, Bertsch U, Kalbach CE, van der Vies SM, Soll J, Gatenby AA (1995) Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60. J Biol Chem 270:10695–10702

    PubMed  CAS  Google Scholar 

  9. Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756

    PubMed  CAS  Google Scholar 

  10. Becker T, Hritz J, Vogel M, Caliebe A, Bukau B, Soll J, Schleiff E (2004) Toc12, a novel subunit of the intermembrane space preprotein translocon of chloroplasts. Mol Biol Cell 15:5130–5144

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    PubMed  CAS  Google Scholar 

  12. Bertsch U, Soll J, Seetharam R, Viitanen PV (1992) Identification, characterization, and DNA sequence of a functional “double” groES-like chaperonin from chloroplasts of higher plants. Proc Natl Acad Sci U S A 89:8696–8700

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Bonk M, Tadros M, Vandekerckhove J, Al-Babili S, Beyer P (1996) Purification and characterization of chaperonin 60 and heat-shock protein 70 from chromoplasts of Narcissus pseudonarcissus. Plant Physiol 111:931–939

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    PubMed  CAS  Google Scholar 

  15. Brehmer D, Rudiger S, Gassler CS, Klostermeier D, Packschies L, Reinstein J, Mayer MP, Bukau B (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat Struct Biol 8:427–432

    PubMed  CAS  Google Scholar 

  16. Bruch EM, Rosano GL, Ceccarelli EA (2012) Chloroplastic Hsp100 chaperones ClpC2 and ClpD interact in vitro with a transit peptide only when it is located at the N-terminus of a protein. BMC Plant Biol 12:57

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    PubMed  CAS  Google Scholar 

  18. Cao D, Froehlich JE, Zhang H, Cheng CL (2003) The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. Plant J 33:107–118

    PubMed  CAS  Google Scholar 

  19. Chen GG, Jagendorf AT (1994) Chloroplast molecular chaperone-assisted refolding and reconstitution of an active multisubunit coupling factor CF1 core. Proc Natl Acad Sci U S A 91:11497–11501

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Chen KY, Li HM (2007) Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts. Plant J 49:149–158

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Chen KM, Holmstrom M, Raksajit W, Suorsa M, Piippo M, Aro EM (2010) Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biol 10:43

    PubMed  PubMed Central  Google Scholar 

  22. Chen KM, Piippo M, Holmstrom M, Nurmi M, Pakula E, Suorsa M, Aro EM (2011) A chloroplast-targeted DnaJ protein AtJ8 is negatively regulated by light and has rapid turnover in darkness. J Plant Physiol 168:1780–1783

    PubMed  CAS  Google Scholar 

  23. Chiu CC, Chen LJ, Li HM (2010) Pea chloroplast DnaJ-J8 and Toc12 are encoded by the same gene and localized in the stroma. Plant Physiol 154:1172–1182

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Chou ML, Fitzpatrick LM, Tu SL, Budziszewski G, Potter-Lewis S, Akita M, Levin JZ, Keegstra K, Li HM (2003) Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J 22:2970–2980

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Chou ML, Chu CC, Chen LJ, Akita M, Li HM (2006) Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J Cell Biol 175:893–900

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Chow IT, Barnett ME, Zolkiewski M, Baneyx F (2005) The N-terminal domain of Escherichia coli ClpB enhances chaperone function. FEBS Letters 579:4242–4248

    PubMed  CAS  Google Scholar 

  27. Chu CC, Li HM (2012) The amino-terminal domain of chloroplast Hsp93 is important for its membrane association and functions in vivo. Plant Physiol 158:1656–1665

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Clarke AK, Eriksson MJ (1996) The cyanobacterium Synechococcus sp. PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants. Plant Mol Biol 31:721–730

    PubMed  CAS  Google Scholar 

  29. Cloney LP, Wu HB, Hemmingsen SM (1992) Expression of plant chaperonin-60 genes in Escherichia coli. J Biol Chem 267:23327–23332

    PubMed  CAS  Google Scholar 

  30. Constan D, Froehlich JE, Rangarajan S, Keegstra K (2004) A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis. Plant Physiol 136:3605–3615

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Craig EA, Huang P, Aron R, Andrew A (2006) The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 156:1–21

    PubMed  CAS  Google Scholar 

  32. da Costa e Silva O et al (2004) The Etched1 gene of Zea mays (L.) encodes a zinc ribbon protein that belongs to the transcriptionally active chromosome (TAC) of plastids and is similar to the transcription factor TFIIS. Plant J 38:923–939

    Google Scholar 

  33. Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, Azem A, Viitanen PV (2000) Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 275:11829–11835

    PubMed  CAS  Google Scholar 

  34. Dorn KV et al (2010) Chloroplast DnaJ-like proteins 3 and 4 (CDJ3/4) from Chlamydomonas reinhardtii contain redox-active Fe-S clusters and interact with stromal HSP70B. Biochem J 427:205–215

    PubMed  CAS  Google Scholar 

  35. Doyle SM, Wickner S (2009) Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 34:40–48

    PubMed  CAS  Google Scholar 

  36. Doyle SM, Hoskins JR, Wickner S (2007) Collaboration between the ClpB AAA + remodeling protein and the DnaK chaperone system. Proc Natl Acad Sci U S A 104:11138–11144

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Drzymalla C, Schroda M, Beck CF (1996) Light-inducible gene HSP70B encodes a chloroplast-localized heat shock protein in Chlamydomonas reinhardtii. Plant Mol Biol 31:1185–1194

    PubMed  CAS  Google Scholar 

  38. Duppre E, Rupprecht E, Schneider D (2011) Specific and promiscuous functions of multiple DnaJ proteins in Synechocystis sp. PCC 6803. Microbiology 157:1269–1278

    PubMed  Google Scholar 

  39. Emelyanov VV (2002) Phylogenetic relationships of organellar Hsp90 homologs reveal fundamental differences to organellar Hsp70 and Hsp60 evolution. Gene 299:125–133

    PubMed  CAS  Google Scholar 

  40. Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312

    PubMed  CAS  Google Scholar 

  41. Ferreira S, Hjerno K, Larsen M, Wingsle G, Larsen P, Fey S, Roepstorff P, Salome Pais M (2006) Proteome profiling of Populus euphratica Oliv. upon heat stress. Ann Bot 98:361–377

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Flores-Perez U, Jarvis P (2012) Molecular chaperone involvement in chloroplast protein import. Biochim Biophys Acta 1833(2):332–340

    PubMed  Google Scholar 

  43. Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ (2010) Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol 152:1219–1250

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    PubMed  CAS  Google Scholar 

  45. Fuhrmann E, Bultema JB, Kahmann U, Rupprecht E, Boekema EJ, Schneider D (2009) The vesicle-inducing protein 1 from Synechocystis sp. PCC 6803 organizes into diverse higher-ordered ring structures. Mol Biol Cell 20:4620–4628

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Georgopoulos C (2006) Toothpicks, serendipity and the emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) chaperone machines. Genetics 174:1699–1707

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    PubMed  CAS  Google Scholar 

  48. Glover JR, Tkach JM (2001) Crowbars and ratchets: hsp100 chaperones as tools in reversing protein aggregation. Biochem Cell Biol 79:557–568

    PubMed  CAS  Google Scholar 

  49. Göhre V, Ossenbuhl F, Crevecoeur M, Eichacker LA, Rochaix JD (2006) One of two alb3 proteins is essential for the assembly of the photosystems and for cell survival in Chlamydomonas. Plant Cell 18:1454–1466

    PubMed  PubMed Central  Google Scholar 

  50. Gurley WB (2000) HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12:457–460

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Halperin T, Adam Z (1996) Degradation of mistargeted OEE33 in the chloroplast stroma. Plant Mol Biol 30:925–933

    PubMed  CAS  Google Scholar 

  52. Halperin T, Ostersetzer O, Adam Z (2001) ATP-dependent association between subunits of Clp protease in pea chloroplasts. Planta 213:614–619

    PubMed  CAS  Google Scholar 

  53. Han W, Christen P (2003) Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J Biol Chem 278:19038–19043

    PubMed  CAS  Google Scholar 

  54. Harrison C (2003) GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8:218–224

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435

    PubMed  CAS  Google Scholar 

  56. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    PubMed  CAS  Google Scholar 

  57. Hartl FU (2011) Chaperone-assisted protein folding: the path to discovery from a personal perspective. Nat Med 17:1206–1210

    PubMed  CAS  Google Scholar 

  58. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    PubMed  CAS  Google Scholar 

  59. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    PubMed  CAS  Google Scholar 

  60. Haslberger T, Weibezahn J, Zahn R, Lee S, Tsai FT, Bukau B, Mogk A (2007) M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol Cell 25:247–260

    PubMed  CAS  Google Scholar 

  61. Haslberger T, Zdanowicz A, Brand I, Kirstein J, Turgay K, Mogk A, Bukau B (2008) Protein disaggregation by the AAA + chaperone ClpB involves partial threading of looped polypeptide segments. Nat Struct Mol Biol 15:641–650

    PubMed  CAS  Google Scholar 

  62. Heide H, Nordhues A, Drepper F, Nick S, Schulz-Raffelt M, Haehnel W, Schroda M (2009) Application of quantitative immunoprecipitation combined with knockdown and cross-linking to Chlamydomonas reveals the presence of vesicle-inducing protein in plastids 1 in a common complex with chloroplast HSP90C. Proteomics 9:3079–3089

    PubMed  CAS  Google Scholar 

  63. Heins L, Mehrle A, Hemmler R, Wagner R, Kuchler M, Hormann F, Sveshnikov D, Soll J (2002) The preprotein conducting channel at the inner envelope membrane of plastids. EMBO J 21:2616–2625

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Hill JE, Hemmingsen SM (2001) Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperon 6:190–200

    CAS  Google Scholar 

  65. Hoppe G, Chai YC, Crabb JW, Sears J (2004) Protein s-glutathionylation in retinal pigment epithelium converts heat shock protein 70 to an active chaperone. Exp Eye Res 78:1085–1092

    PubMed  CAS  Google Scholar 

  66. Horwich AL, Weber-Ban EU, Finley D (1999) Chaperone rings in protein folding and degradation. Proc Natl Acad Sci U S A 96:11033–11040

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    PubMed  CAS  Google Scholar 

  68. Hung GC, Masison DC (2006) N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression. Genetics 173:611–620

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Hunt JF, Weaver AJ, Landry SJ, Gierasch L, Deisenhofer J (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379:37–45

    PubMed  CAS  Google Scholar 

  70. Ivey RA, 3rd, Bruce BD (2000) In vivo and in vitro interaction of DnaK and a chloroplast transit peptide. Cell Stress Chaperon 5:62–71

    CAS  Google Scholar 

  71. Ivey RA, 3rd, Subramanian C, Bruce BD (2000) Identification of a Hsp70 recognition domain within the rubisco small subunit transit peptide. Plant Physiol 122:1289–1299

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta 1823:607–613

    PubMed  CAS  Google Scholar 

  73. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    PubMed  CAS  Google Scholar 

  74. Kang PJ, Ostermann J, Shilling J, Neupert W, Craig EA, Pfanner N (1990) Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348:137–143

    PubMed  CAS  Google Scholar 

  75. Kessler F, Blobel G (1996) Interaction of the protein import and folding machineries of the chloroplast. Proc Natl Acad Sci U S A 93:7684–7689

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Kim YI, Levchenko I, Fraczkowska K, Woodruff RV, Sauer RT, Baker TA (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 8:230–233

    PubMed  CAS  Google Scholar 

  77. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of cDNA for a dehydration-inducible gene that encodes a CLP A, B-like protein in Arabidopsis thaliana L. Biochem Biophys Res Commun 196:1214–1220

    PubMed  CAS  Google Scholar 

  78. Kluth J, Schmidt A, Marz M, Krupinska K, Lorbiecke R (2012) Arabidopsis Zinc Ribbon 3 is the ortholog of yeast mitochondrial HSP70 escort protein HEP1 and belongs to an ancient protein family in mitochondria and plastids. FEBS Lett 586:3071–3076

    PubMed  CAS  Google Scholar 

  79. Ko K, Bornemisza O, Kourtz L, Ko ZW, Plaxton WC, Cashmore AR (1992) Isolation and characterization of a cDNA clone encoding a cognate 70-kDa heat shock protein of the chloroplast envelope. J Biol Chem 267:2986–2993

    PubMed  CAS  Google Scholar 

  80. Koumoto Y, Shimada T, Kondo M, Hara-Nishimura I, Nishimura M (2001) Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J Biol Chem 276:29688–29694

    PubMed  CAS  Google Scholar 

  81. Kourtz L, Ko K (1997) The early stage of chloroplast protein import involves Com70. J Biol Chem 272:2808–2813

    PubMed  CAS  Google Scholar 

  82. Kovacheva S, Bedard J, Patel R, Dudley P, Twell D, Rios G, Koncz C, Jarvis P (2005) In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J 41:412–428

    PubMed  CAS  Google Scholar 

  83. Kovacheva S, Bedard J, Wardle A, Patel R, Jarvis P (2007) Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J 50:364–379

    PubMed  CAS  Google Scholar 

  84. Krieger-Liszkay A, Rutherford AW (1998) Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: relevance to photodamage and phytotoxicity. Biochemistry 37:17339–17344

    PubMed  CAS  Google Scholar 

  85. Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6:238–246

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Kunkel DD (1982) Thylakoid centers: structures associated with the cyanobacterial photosynthetic membrane system. Arch Microbiol 133:97–99

    Google Scholar 

  87. Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683–689

    PubMed  CAS  Google Scholar 

  88. Latijnhouwers M, Xu XM, Moller SG (2010) Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta 232:567–578

    PubMed  CAS  Google Scholar 

  89. Lee YR, Nagao RT, Key JL (1994) A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell 6: 1889–1897

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Lee DW, Lee S, Lee GJ, Lee KH, Kim S, Cheong GW, Hwang I (2006) Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco. Plant Physiol 140:466–483

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Lee S, Choi JM, Tsai FT (2007) Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Mol Cell 25:261–271

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E (2007) The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J 49:115–127

    PubMed  CAS  Google Scholar 

  93. Lee S, Lee DW, Lee Y, Mayer U, Stierhof YD, Lee S, Jurgens G, Hwang I (2009) Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21:3984–4001

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Lemaire SD, Guillon B, Le Marechal P, Keryer E, Miginiac-Maslow M, Decottignies P (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 101:7475–7480

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A 88:2874–2878

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Lin Y, Cheng CL (1997) A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus. Plant Cell 9:21–35

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Liu C, Willmund F, Whitelegge JP, Hawat S, Knapp B, Lodha M, Schroda M (2005) ­J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle-inducing protein in plastids 1. Mol Biol Cell 16:1165–1177

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Liu C, Willmund F, Golecki JR, Cacace S, Hess B, Markert C, Schroda M (2007) The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. Plant J 50:265–277

    PubMed  CAS  Google Scholar 

  99. Liu B et al (2010) Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat Commun 1:79

    PubMed  Google Scholar 

  100. Lubben TH, Donaldson GK, Viitanen PV, Gatenby AA (1989) Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. Plant Cell 1:1223–1230

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Madueno F, Napier JA, Gray JC (1993) Newly imported Rieske iron-sulfur protein associates with both Cpn60 and Hsp70 in the chloroplast stroma. Plant Cell 5:1865–1876

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Marín-Navarro J, Manuell A, Wu J, Mayfield S (2007) Chloroplast translation regulation Photosynth Res 94:359–374

    PubMed  Google Scholar 

  103. Marshall JS, DeRocher AE, Keegstra K, Vierling E (1990) Identification of heat shock protein hsp70 homologues in chloroplasts. Proc Natl Acad Sci U S A 87:374–378

    PubMed  CAS  PubMed Central  Google Scholar 

  104. May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–64

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Michelet L, Zaffagnini M, Vanacker H, Le Marechal P, Marchand C, Schroda M, Lemaire SD, Decottignies P (2008) In vivo targets of S-thiolation in Chlamydomonas reinhardtii. J Biol Chem 283:21571–21578

    PubMed  CAS  Google Scholar 

  107. Miernyk JA (2001) The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones. Cell Stress Chaperon 6:209–218

    CAS  Google Scholar 

  108. Mogk A, Schlieker C, Strub C, Rist W, Weibezahn J, Bukau B (2003) Roles of individual domains and conserved motifs of the AAA + chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J Biol Chem 278:17615–17624

    PubMed  CAS  Google Scholar 

  109. Molik S, Karnauchov I, Weidlich C, Herrmann RG, Klosgen RB (2001) The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts: missing link in the evolution of protein transport pathways in chloroplasts? J Biol Chem 276:42761–42766

    PubMed  CAS  Google Scholar 

  110. Momose T, Ohshima C, Maeda M, Endo T (2007) Structural basis of functional cooperation of Tim15/Zim17 with yeast mitochondrial Hsp70. EMBO Rep 8:664–670

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Mühlhaus T, Weiss J, Hemme D, Sommer F, Schroda M (2011) Quantitative shotgun proteomics using a uniform 15N-labeled standard to monitor proteome dynamics in time course experiments reveals new insights into the heat stress response of Chlamydomonas reinhardtii. Mol Cell Proteomics 10:M110 004739

    Google Scholar 

  112. Musgrove JE, Johnson RA, Ellis RJ (1987) Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits. Eur J Biochem 163:529–534

    PubMed  CAS  Google Scholar 

  113. Myouga F, Motohashi R, Kuromori T, Nagata N, Shinozaki K (2006) An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response. Plant J 48:249–260

    PubMed  CAS  Google Scholar 

  114. Nakabayashi K, Ito M, Kiyosue T, Shinozaki K, Watanabe A (1999) Identification of clp genes expressed in senescing Arabidopsis leaves. Plant Cell Physiol 40:504–514

    PubMed  CAS  Google Scholar 

  115. Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1997) A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J 12:851–861

    PubMed  CAS  Google Scholar 

  116. Nakrieko KA, Mould RM, Smith AG (2004) Fidelity of targeting to chloroplasts is not affected by removal of the phosphorylation site from the transit peptide. Eur J Biochem/FEBS 271:509–516

    CAS  Google Scholar 

  117. Nickelsen J, Rengstl B, Stengel A, Schottkowski M, Soll J, Ankele E (2011) Biogenesis of the cyanobacterial thylakoid membrane system-an update. FEMS Microbiol Lett 315:1–5

    PubMed  CAS  Google Scholar 

  118. Nielsen E, Akita M, Davila-Aponte J, Keegstra K (1997) Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J 16:935–946

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Nimura K, Yoshikawa H, Takahashi H (1994) Identification of dnaK multigene family in Synechococcus sp. PCC7942. Biochem Biophys Res Commun 201:466–471

    PubMed  CAS  Google Scholar 

  120. Nishio K, Hirohashi T, Nakai M (1999) Chloroplast chaperonins: evidence for heterogeneous assembly of alpha and beta Cpn60 polypeptides into a chaperonin oligomer. Biochem Biophys Res Commun 266:584–587

    PubMed  CAS  Google Scholar 

  121. Nordhues A, Miller SM, Muhlhaus T, Schroda M (2010) New insights into the roles of molecular chaperones in Chlamydomonas and Volvox. Int Rev Cell Mol Biol 285:75–113

    PubMed  CAS  Google Scholar 

  122. Nordhues A et al (2012) Evidence for a role of VIPP1 in the structural organization of the photosynthetic apparatus in Chlamydomonas. Plant Cell 24:637–659

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Olsen LJ, Keegstra K (1992) The binding of precursor proteins to chloroplasts requires nucleoside triphosphates in the intermembrane space. J Biol Chem 267:433–439

    PubMed  CAS  Google Scholar 

  124. Orme W, Walker AR, Gupta R, Gray JC (2001) A novel plastid-targeted J-domain protein in Arabidopsis thaliana. Plant Mol Biol 46:615–626

    PubMed  CAS  Google Scholar 

  125. Osorio H, Carvalho E, del Valle M, Gunther Sillero MA, Moradas-Ferreira P, Sillero A (2003) H2O2, but not menadione, provokes a decrease in the ATP and an increase in the inosine levels in Saccharomyces cerevisiae. An experimental and theoretical approach. Eur J Biochem 270:1578–1589

    PubMed  CAS  Google Scholar 

  126. Ostersetzer O, Adam Z (1996) Effects of light and temperature on expression of ClpC, the regulatory subunit of chloroplastic Clp protease, in pea seedlings. Plant Mol Biol 31:673–676

    PubMed  CAS  Google Scholar 

  127. Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829–4836

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Park S, Rodermel SR (2004) Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc Natl Acad Sci U S A 101:12765–12770

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    PubMed  CAS  Google Scholar 

  130. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    PubMed  CAS  Google Scholar 

  131. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    PubMed  CAS  Google Scholar 

  132. Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12:319–341

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Peltier JB et al (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y, Ytterberg J, Giacomelli L, Pillardy J, van Wijk KJ (2004) Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem 279:4768–4781

    PubMed  CAS  Google Scholar 

  135. Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2011) A chaperonin subunit with unique structures is essential for folding of a specific substrate. PLoS Biol 9:e1001040

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133

    CAS  Google Scholar 

  137. Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 1823:614–623

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    PubMed  CAS  Google Scholar 

  139. Ratnayake RM, Inoue H, Nonami H, Akita M (2008) Alternative processing of Arabidopsis Hsp70 precursors during protein import into chloroplasts. Biosci Biotechnol Biochem 72:2926–2935

    PubMed  CAS  Google Scholar 

  140. Rial DV, Ottado J, Ceccarelli EA (2003) Precursors with altered affinity for Hsp70 in their transit peptides are efficiently imported into chloroplasts. J Biol Chem 278:46473–46481

    PubMed  CAS  Google Scholar 

  141. Rial DV, Arakaki AK, Almará AM, Orellano EG, Ceccarelli EA (2006) Chloroplast Hsp70s are not involved in the import of ferredoxin-NADP + reductase precursor. Physiologia Plantarum 128:618–632

    CAS  Google Scholar 

  142. Rosano GL, Bruch EM, Ceccarelli EA (2011) Insights into the Clp/HSP100 chaperone system from chloroplasts of Arabidopsis thaliana. J Biol Chem 286:29671–29680

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Rupprecht E, Gathmann S, Fuhrmann E, Schneider D (2007) Three different DnaK proteins are functionally expressed in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 153:1828–1841

    PubMed  CAS  Google Scholar 

  145. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. ­Nature 396:336–342

    PubMed  CAS  Google Scholar 

  146. Rutschow H, Ytterberg AJ, Friso G, Nilsson R, van Wijk KJ (2008) Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis. Plant Physiol 148:156–175

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Salvucci ME (2008) Association of Rubisco activase with chaperonin-60β: a possible mechanism for protecting photosynthesis during heat stress. J Exp Bot 59:1923–1933

    PubMed  CAS  Google Scholar 

  148. Sangster TA, Salathia N, Undurraga S, Milo R, Schellenberg K, Lindquist S, Queitsch C (2008) HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci U S A 105:2963–2968

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Sanjuan Szklarz LK et al (2005) Inactivation of the mitochondrial heat shock protein zim17 leads to aggregation of matrix hsp70s followed by pleiotropic effects on morphology and protein biogenesis. J Mol Biol 351:206–218

    PubMed  CAS  Google Scholar 

  150. Sato T, Minagawa S, Kojima E, Okamoto N, Nakamoto H (2010) HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Mol Microbiol 76:576–589

    PubMed  CAS  Google Scholar 

  151. Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289–296

    PubMed  CAS  Google Scholar 

  152. Schirmer EC, Homann OR, Kowal AS, Lindquist S (2004) Dominant gain-of-function mutations in Hsp104p reveal crucial roles for the middle region. Mol Biol Cell 15:2061–2072

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Schlicher T, Soll J (1996) Molecular chaperones are present in the thylakoid lumen of pea chloroplasts. FEBS Lett 379:302–304

    PubMed  CAS  Google Scholar 

  154. Schlicher T, Soll J (1997) Chloroplastic isoforms of DnaJ and GrpE in pea. Plant Mol Biol 33:181–185

    PubMed  CAS  Google Scholar 

  155. Schmid AB et al (2012) The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO J 31:1506–1517

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Schmitz G, Schmidt M, Feierabend J (1996) Characterization of a plastid-specific HSP90 homologue: identification of a cDNA sequence, phylogenetic descendence and analysis of its mRNA and protein expression. Plant Mol Biol 30:479–492

    PubMed  CAS  Google Scholar 

  157. Schmitz G, Schmidt M, Feierabend J (1996) Comparison of the expression of a plastidic chaperonin 60 in different plant tissues and under photosynthetic and non-photosynthetic conditions. Planta 200:326–336

    PubMed  CAS  Google Scholar 

  158. Schmollinger S, Strenkert D, Offeddu V, Nordhues A, Sommer F, Schroda M (2012) A Protocol for the identification of protein-protein interactions based on 15N metabolic labeling, immunoprecipitation, quantitative mass spectrometry and affinity modulation. J Vis Exp 67:e4083

    Google Scholar 

  159. Schnell DJ, Kessler F, Blobel G (1994) Isolation of components of the chloroplast protein import machinery. Science 266:1007–1012

    PubMed  CAS  Google Scholar 

  160. Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82:221–240

    PubMed  CAS  Google Scholar 

  161. Schroda M, Mühlhaus T (2009) A ‘foldosome’ in the chloroplast? Plant Signal Behav 4:301–303

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Schroda M, Kropat J, Oster U, Rudiger W, Vallon O, Wollman FA, Beck CF (2001) Possible role for molecular chaperones in assembly and repair of photosystem II. Biochem Soc Trans 29: 413–418

    PubMed  CAS  Google Scholar 

  164. Schroda M, Vallon O, Whitelegge JP, Beck CF, Wollman FA (2001) The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing. Plant Cell 13:2823–2839

    PubMed  CAS  PubMed Central  Google Scholar 

  165. Schroda M, Vallon O (2008) Chaperones and proteases. In: Stern DB (ed) The Chlamydomonas sourcebook. Organellar and metabolic processes, 2nd edn, vol 2. Elsevier, San Diego, pp 671–729

    Google Scholar 

  166. Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    PubMed  CAS  Google Scholar 

  167. Shanklin J, DeWitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell 7:1713–1722

    PubMed  CAS  PubMed Central  Google Scholar 

  168. Sharkia R, Bonshtien AL, Mizrahi I, Weiss C, Niv A, Lustig A, Viitanen PV, Azem A (2003) On the oligomeric state of chloroplast chaperonin 10 and chaperonin 20. Biochim Biophys Acta 1651:76–84

    PubMed  CAS  Google Scholar 

  169. Sharma SK, Christen P, Goloubinoff P (2009) Disaggregating chaperones: an unfolding story. Curr Protein Pept Sci 10:432–446

    PubMed  CAS  Google Scholar 

  170. Shi LX, Theg SM (2010) A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22:205–220

    PubMed  CAS  PubMed Central  Google Scholar 

  171. Shorter J, Lindquist S (2004) Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304:1793–1797

    PubMed  CAS  Google Scholar 

  172. Sichting M, Mokranjac D, Azem A, Neupert W, Hell K (2005) Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1. EMBO J 24:1046–1056

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    PubMed  CAS  Google Scholar 

  174. Singh A, Grover A (2010) Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine. Plant Mol Biol 74:395–404

    PubMed  CAS  Google Scholar 

  175. Singh A, Singh U, Mittal D, Grover A (2010) Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genomics 11:95

    PubMed  PubMed Central  Google Scholar 

  176. Sjogren LL, MacDonald TM, Sutinen S, Clarke AK (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol 136:4114–4126

    PubMed  PubMed Central  Google Scholar 

  177. Song H, Zhao R, Fan P, Wang X, Chen X, Li Y (2009) Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta 229:955–964

    PubMed  CAS  Google Scholar 

  178. Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14:598–604

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    PubMed  CAS  PubMed Central  Google Scholar 

  180. Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22:1516–1531

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800

    PubMed  CAS  PubMed Central  Google Scholar 

  182. Suzuki K, Nakanishi H, Bower J, Yoder DW, Osteryoung KW, Miyagishima SY (2009) Plastid chaperonin proteins Cpn60 alpha and Cpn60 beta are required for plastid division in Arabidopsis thaliana. BMC Plant Biol 9:38

    PubMed  PubMed Central  Google Scholar 

  183. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    PubMed  CAS  Google Scholar 

  184. Tanaka Y, Nishiyama Y, Murata N (2000) Acclimation of the photosynthetic machinery to high temperature in Chlamydomonas reinhardtii requires synthesis de novo of proteins encoded by the nuclear and chloroplast genomes. Plant Physiol 124:441–449

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Tessarz P, Mogk A, Bukau B (2008) Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Mol Microbiol 68:87–97

    PubMed  CAS  Google Scholar 

  186. Thompson MD, Paavola CD, Lenvik TR, Gantt JS (1995) Chlamydomonas transcripts encoding three divergent plastid chaperonins are heat-inducible. Plant Mol Biol 27:1031–5

    PubMed  CAS  Google Scholar 

  187. Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Mircrobiol 30:567–581

    CAS  Google Scholar 

  188. Tran LS et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    PubMed  CAS  PubMed Central  Google Scholar 

  189. Tran LS et al (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63

    PubMed  CAS  Google Scholar 

  190. Tsai YC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M (2012) Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem 287:20471–20481

    PubMed  CAS  PubMed Central  Google Scholar 

  191. Tsugeki R, Nishimura M (1993) Interaction of homologues of Hsp70 and Cpn60 with ferredoxin-NADP + reductase upon its import into chloroplasts. FEBS Lett 320:198–202

    PubMed  CAS  Google Scholar 

  192. Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11:777–788

    PubMed  CAS  Google Scholar 

  193. Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, Martin B, Greene LE, Eisenberg E (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378:632–635

    PubMed  CAS  Google Scholar 

  194. Uniacke J, Zerges W (2009) Chloroplast protein targeting involves localized translation in Chlamydomonas. Proc Natl Acad Sci U S A 106:1439–1444

    PubMed  CAS  PubMed Central  Google Scholar 

  195. van de Meene AM, Hohmann-Marriott MF, Vermaas WF, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270

    Google Scholar 

  196. VanBogelen RA, Kelley PM, Neidhardt FC (1987) Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 169:26–32

    PubMed  CAS  PubMed Central  Google Scholar 

  197. Viitanen PV, Bacot K, Dickson R, Webb T (1998) Purification of recombinant plant and animal GroES homologs: chloroplast and mitochondrial chaperonin 10. Methods Enzymol 290:218–230

    PubMed  CAS  Google Scholar 

  198. Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H, Osteryoung KW (2003) ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15:1918–1933

    PubMed  CAS  PubMed Central  Google Scholar 

  199. von Gromoff ED, Treier U, Beck CF (1989) Three light-inducible heat shock genes of Chlamydomonas reinhardtii. Mol Cell Biol 9:3911–3918

    PubMed  CAS  PubMed Central  Google Scholar 

  200. Wall D, Zylicz M, Georgopoulos C (1994) The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J Biol Chem 269:5446–5451

    PubMed  CAS  Google Scholar 

  201. Wang H, Goffreda M, Leustek T (1993) Characteristics of an Hsp70 homolog localized in higher plant chloroplasts that is similar to DnaK, the Hsp70 of prokaryotes. Plant Physiol 102:843–850

    PubMed  CAS  PubMed Central  Google Scholar 

  202. Watanabe S, Kobayashi T, Saito M, Sato M, Nimura-Matsune K, Chibazakura T, Taketani S, Nakamoto H, Yoshikawa H (2007) Studies on the role of HtpG in the tetrapyrrole biosynthesis pathway of the cyanobacterium Synechococcus elongatus PCC 7942. Biochem Biophys Res Commun 352:36–41

    PubMed  CAS  Google Scholar 

  203. Weaver LM, Froehlich JE, Amasino RM (1999) Chloroplast-targeted ERD1 protein declines but its mRNA increases during senescence in Arabidopsis. Plant Physiol 119:1209–1216

    PubMed  CAS  PubMed Central  Google Scholar 

  204. Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90-a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    PubMed  CAS  Google Scholar 

  205. Wegele H, Wandinger SK, Schmid AB, Reinstein J, Buchner J (2006) Substrate transfer from the chaperone Hsp70 to Hsp90. J Mol Biol 356:802–811

    PubMed  CAS  Google Scholar 

  206. Weibezahn J et al (2004) Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653–665

    PubMed  CAS  Google Scholar 

  207. Weiss C, Bonshtien A, Farchi-Pisanty O, Vitlin A, Azem A (2009) Cpn20: siamese twins of the chaperonin world. Plant Mol Biol 69:227–238

    PubMed  CAS  Google Scholar 

  208. Wendler P, Shorter J, Plisson C, Cashikar AG, Lindquist S, Saibil HR (2007) Atypical AAA + subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 131:1366–1377

    PubMed  CAS  PubMed Central  Google Scholar 

  209. Wickner S, Hoskins J, McKenney K (1991) Monomerization of RepA dimers by heat shock proteins activates binding to DNA replication origin. Proc Natl Acad Sci U S A 88:7903–7907

    PubMed  CAS  PubMed Central  Google Scholar 

  210. Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893

    PubMed  CAS  Google Scholar 

  211. Willmund F, Schroda M (2005) HEAT SHOCK PROTEIN 90C is a bona fide Hsp90 that interacts with plastidic HSP70B in Chlamydomonas reinhardtii. Plant Physiol 138:2310–2322

    PubMed  CAS  PubMed Central  Google Scholar 

  212. Willmund F, Muhlhaus T, Wojciechowska M, Schroda M (2007) The NH2-terminal domain of the chloroplast GrpE homolog CGE1 is required for dimerization and cochaperone function in vivo. J Biol Chem 282:11317–11328

    PubMed  CAS  Google Scholar 

  213. Willmund F, Dorn KV, Schulz-Raffelt M, Schroda M (2008) The chloroplast DnaJ homolog CDJ1 of Chlamydomonas reinhardtii is part of a multichaperone complex containing HSP70B, CGE1, and HSP90C. Plant Physiol 148:2070–2082

    PubMed  CAS  PubMed Central  Google Scholar 

  214. Willmund F, Hinnenberger M, Nick S, Schulz-Raffelt M, Muhlhaus T, Schroda M (2008) Assistance for a chaperone: Chlamydomonas HEP2 activates plastidic HSP70B for cochaperone binding. J Biol Chem 283:16363–16373

    PubMed  CAS  Google Scholar 

  215. Winter J, Linke K, Jatzek A, Jakob U (2005) Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17:381–392

    PubMed  CAS  Google Scholar 

  216. Wu C, Seibert FS, Ko K (1994) Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. J Biol Chem 269:32264–32271

    PubMed  CAS  Google Scholar 

  217. Yang JY, Sun Y, Sun AQ, Yi SY, Qin J, Li MH, Liu J (2006) The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Plant Mol Biol 62:385–395

    PubMed  CAS  Google Scholar 

  218. Yeyati PL, Bancewicz RM, Maule J, van Heyningen V (2007) Hsp90 selectively modulates phenotype in vertebrate development. PLoS Genet 3:e43

    PubMed  PubMed Central  Google Scholar 

  219. Yokthongwattana K, Chrost B, Behrman S, Casper-Lindley C, Melis A (2001) Photosystem II damage and repair cycle in the green alga Dunaliella salina: involvement of a chloroplast-localized HSP70. Plant Cell Physiol 42:1389–1397

    PubMed  CAS  Google Scholar 

  220. Zaltsman A, Ori N, Adam Z (2005) Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem II repair in Arabidopsis. Plant Cell 17:2782–2790

    PubMed  CAS  PubMed Central  Google Scholar 

  221. Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK (2002) Characterization of Chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol Plant 114:92–101

    PubMed  CAS  Google Scholar 

  222. Zietkiewicz S, Krzewska J, Liberek K (2004) Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J Biol Chem 279:44376–44383

    PubMed  CAS  Google Scholar 

  223. Zybailov B, Friso G, Kim J, Rudella A, Rodriguez VR, Asakura Y, Sun Q, van Wijk KJ (2009) Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Mol Cell Proteomics 8:1789–1810

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trösch, R., Schroda, M., Willmund, F. (2014). Molecular Chaperone Functions in Plastids. In: Theg, S., Wollman, FA. (eds) Plastid Biology. Advances in Plant Biology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1136-3_13

Download citation

Publish with us

Policies and ethics