Skip to main content

A Global View of the Proteome Perturbations by Hsp90 Inhibitors

  • Chapter
  • First Online:
The Molecular Chaperones Interaction Networks in Protein Folding and Degradation

Part of the book series: Interactomics and Systems Biology ((INTERACTOM,volume 1))

Abstract

Heat shock protein 90 (Hsp90) is a highly efficient molecular chaperone and a major hub in the protein network that maintains cellular homeostasis and function. The qualitative and quantitative changes and rewiring of this protein network in tumor cells make them vastly dependent on Hsp90, which therefore becomes a key target to fight cancer. The inhibition of Hsp90 creates a profound transformation in the cell proteome. In this chapter, we review and analyze the most recent efforts that take advantage of the druggability of Hsp90 in order to understand the global changes at the proteome level that this inhibition produces. The considerable impact that the targeting of Hsp90 has on the structure of these protein networks is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oppermann H, Levinson W, Bishop JM (1981) A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc Natl Acad Sci U S A 78:1067–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Brugge JS, Erikson E, Erikson RL (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25:363–372

    Article  CAS  PubMed  Google Scholar 

  3. Echeverría PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS ONE 6:e26044

    Article  PubMed Central  PubMed  Google Scholar 

  4. Jakob U, Lilie H, Meyer I, Buchner J (1995) Transient interaction of hsp90 with early unfolding intermediates of citrate synthase - implications for heat shock in vivo. J Biol Chem 270:7288–7294

    Article  CAS  PubMed  Google Scholar 

  5. Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S (1989) Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Finka A, Goloubinoff P (2013) Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 18:591–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sorger PK, Pelham HR (1987) The glucose-regulated protein grp94 is related to heat shock protein hsp90. J Mol Biol 194:341–344

    Article  CAS  PubMed  Google Scholar 

  9. Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312

    Article  CAS  PubMed  Google Scholar 

  10. Richter K, Muschler P, Hainzl O, Buchner J (2001) Coordinated ATP hydrolysis by the Hsp90 dimer. J Biol Chem 276:33689–33696

    Article  CAS  PubMed  Google Scholar 

  11. Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293

    Article  CAS  PubMed  Google Scholar 

  12. Massey AJ (2010) ATPases as drug targets: insights from heat shock proteins 70 and 90. J Med Chem 53:7280–7286

    Article  CAS  PubMed  Google Scholar 

  13. Wang T, Echeverria PC, Picard D (2013) Overview of molecular chaperones in health and disease. Inhibitors of molecular chaperones as therapeutic agents; Machajewski TD, Gao Z, Eds.; RSC Publishing: Cambridge

    Google Scholar 

  14. McClellan AJ, Frydman J (2001) Molecular chaperones and the art of recognizing a lost cause. Nat Cell Biol 3:E51–E53

    Article  CAS  PubMed  Google Scholar 

  15. Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105

    Article  CAS  PubMed  Google Scholar 

  16. Murata S, Chiba T, Tanaka K (2003) CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int J Biochem Cell Biol 35:572–578

    Article  CAS  PubMed  Google Scholar 

  17. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801

    Article  CAS  PubMed  Google Scholar 

  19. Yeyati PL, Bancewicz RM, Maule J, van Heyningen V (2007) Hsp90 selectively modulates phenotype in vertebrate development. PLoS Genet 3:e43

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sawarkar R, Sievers C, Paro R (2012) Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149:807–818

    Article  CAS  PubMed  Google Scholar 

  21. Bishop SC, Burlison JA, Blagg BS (2007) Hsp90: a novel target for the disruption of multiple signaling cascades. Curr Cancer Drug Targets 7:369–388

    Article  CAS  PubMed  Google Scholar 

  22. Sato N, Yamamoto T, Sekine Y, Yumioka T, Junicho A, Fuse H, Matsuda T (2003) Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem Biophys Res Commun 300:847–852

    Article  CAS  PubMed  Google Scholar 

  23. Kunisawa J, Shastri N (2006) Hsp90α chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity 24:523–534

    Article  CAS  PubMed  Google Scholar 

  24. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  25. Tang YC, Williams BR, Siegel JJ, Amon A (2011) Identification of aneuploidy-selective antiproliferation compounds. Cell 144:499–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Oromendia AB, Dodgson SE, Amon A (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26:2696–2708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. da Silva VC, Ramos CH (2012) The network interaction of the human cytosolic 90 kDa heat shock protein Hsp90: a target for cancer therapeutics. J Proteomics 75:2790–2802

    Article  CAS  PubMed  Google Scholar 

  28. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  29. Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I, Workman P (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19:4125–4133

    Article  CAS  PubMed  Google Scholar 

  30. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

  31. Maloney A, Clarke PA, Naaby-Hansen S, Stein R, Koopman JO, Akpan A, Yang A, Zvelebil M, Cramer R, Stimson L, Aherne W, Banerji U, Judson I, Sharp S, Powers M, deBilly E, Salmons J, Walton M, Burlingame A, Waterfield M, Workman P (2007) Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 67:3239–3253

    Article  CAS  PubMed  Google Scholar 

  32. Yao JQ, Liu QH, Chen X, Yang Q, Xu ZY, Hu F, Wang L, Li JM (2010) Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin inhibits the proliferation of ARPE-19 cells. J Biomed Sci 17:30

    Article  PubMed Central  PubMed  Google Scholar 

  33. Schumacher JA, Crockett DK, Elenitoba-Johnson KS, Lim MS (2007) Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics 7:2603–2616

    Article  CAS  PubMed  Google Scholar 

  34. Song D, Chaerkady R, Tan AC, Garcia-Garcia E, Nalli A, Suarez-Gauthier A, Lopez-Rios F, Zhang XF, Solomon A, Tong J, Read M, Fritz C, Jimeno A, Pandey A, Hidalgo M (2008) Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol Cancer Ther 7:3275–3284

    Article  CAS  PubMed  Google Scholar 

  35. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  36. Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, Wu N, de Stanchina E, White J, Gross SS, Ma Y, Varticovski L, Melnick A, Chiosis G (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A 106:8368–8373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes Dagama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, Vu LP, Zhao X, Zatorska D, Taldone T, Smith-Jones P, Alpaugh M, Gross SS, Pillarsetty N, Ku T, Lewis JS, Larson SM, Levine R, Erdjument-Bromage H, Guzman ML, Nimer SD, Melnick A, Neckers L, Chiosis G (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Haupt A, Joberty G, Bantscheff M, Frohlich H, Stehr H, Schweiger MR, Fischer A, Kerick M, Boerno ST, Dahl A, Lappe M, Lehrach H, Gonzalez C, Drewes G, Lange BM (2012) Hsp90 inhibition differentially destabilises MAP kinase and TGF-β signalling components in cancer cells revealed by kinase-targeted chemoproteomics. BMC Cancer 12:38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sharma K, Vabulas RM, Macek B, Pinkert S, Cox J, Mann M, Hartl FU (2012) Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response. Mol Cell Proteomics 11:M111.014654

    Google Scholar 

  40. Wu Z, Moghaddas Gholami A, Kuster B (2012) Systematic identification of the Hsp90 candidate regulated proteome. Mol Cell Proteomics 11:M111.016675

    Google Scholar 

  41. Fierro-Monti I, Echeverria P, Racle J, Hernandez C, Picard D, Quadroni M (2013) Dynamic impacts of the inhibition of the molecular chaperone Hsp90 on the T-cell proteome have implications for anti-cancer therapy. PLoS ONE 8:e80425

    Google Scholar 

  42. Fierro-Monti I, Racle J, Hernandez C, Waridel P, Hatzimanikatis V, Quadroni M (2013) A novel pulse-chase SILAC strategy measures changes in protein decay and synthesis rates induced by perturbation of proteostasis with an Hsp90 inhibitor. PLoS ONE 8:e80423

    Google Scholar 

  43. Jez JM, Chen JC, Rastelli G, Stroud RM, Santi DV (2003) Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem Biol 10:361–368

    Article  CAS  PubMed  Google Scholar 

  44. Pacey S, Wilson RH, Walton M, Eatock MM, Hardcastle A, Zetterlund A, Arkenau HT, Moreno-Farre J, Banerji U, Roels B, Peachey H, Aherne W, de Bono JS, Raynaud F, Workman P, Judson I (2011) A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin Cancer Res 17:1561–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Page TJ, Sikder D, Yang L, Pluta L, Wolfinger RD, Kodadek T, Thomas RS (2006) Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol Biosyst 2:627–639

    Article  CAS  PubMed  Google Scholar 

  46. Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, Waegele B, Schmidt T, Doudieu ON, Stumpflen V, Mewes HW (2008) CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 36:D646–D650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP, Salas A, Ogretmen B (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6:1603–1624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wright TM, Brannon AR, Gordan JD, Mikels AJ, Mitchell C, Chen S, Espinosa I, van de Rijn M, Pruthi R, Wallen E, Edwards L, Nusse R, Rathmell WK (2009) Ror2, a developmentally regulated kinase, promotes tumor growth potential in renal cell carcinoma. Oncogene 28:2513–2523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Enomoto M, Hayakawa S, Itsukushima S, Ren DY, Matsuo M, Tamada K, Oneyama C, Okada M, Takumi T, Nishita M, Minami Y (2009) Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene 28:3197–3208

    Article  CAS  PubMed  Google Scholar 

  50. Luque A, Carpizo DR, Iruela-Arispe ML (2003) ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem 278:23656–23665

    Article  CAS  PubMed  Google Scholar 

  51. Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J, Amariglio N, Henriksson R, Rechavi G, Hedman H, Wides R, Yarden Y (2004) LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J 23:3270–3281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KL 3rd, Sweeney C (2004) The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 279:47050–47056

    Article  CAS  PubMed  Google Scholar 

  53. Segatto O, Anastasi S, Alema S (2011) Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors. J Cell Sci 124:1785–1793

    Article  CAS  PubMed  Google Scholar 

  54. Kao YR, Shih JY, Wen WC, Ko YP, Chen BM, Chan YL, Chu YW, Yang PC, Wu CW, Roffler SR (2003) Tumor-associated antigen L6 and the invasion of human lung cancer cells. Clin Cancer Res 9:2807–2816

    CAS  PubMed  Google Scholar 

  55. Nagao Y, French BA, Cai Y, French SW, Wan YJ (1998) Inhibition of PPAR alpha/RXR alpha-mediated direct hyperplasia pathways during griseofulvin-induced hepatocarcinogenesis. J Cell Biochem 69:189–200

    Article  CAS  PubMed  Google Scholar 

  56. Li MY, Yuan H, Ma LT, Kong AW, Hsin MK, Yip JH, Underwood MJ, Chen GG (2010) Roles of peroxisome proliferator-activated receptor-alpha and -gamma in the development of non-small cell lung cancer. Am J Respir Cell Mol Biol 43:674–683

    Article  CAS  PubMed  Google Scholar 

  57. Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S, Kumaraswamy S, Balasis M, Greedy B, Armitage ES, Lawrence N, Bhalla K (2005) Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65:10536–10544

    Article  CAS  PubMed  Google Scholar 

  58. Goloudina AR, Demidov ON, Garrido C (2012) Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 325:117–124

    Article  CAS  PubMed  Google Scholar 

  59. Chen G, Bradford WD, Seidel CW, Li R (2012) Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482:246–250

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Schwanhausser B, Gossen M, Dittmar G, Selbach M (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–209

    Article  PubMed  Google Scholar 

  61. Duerfeldt AS, Blagg BS (2010) Hsp90 inhibition: elimination of shock and stress. Bioorg Med Chem Lett 20:4983–4987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Manfredo Quadroni (University of Lausanne, Lausanne, Switzerland) for providing the common quantitative proteomic data for all the datasets analyzed in this chapter, and Tai Wang (University of Geneva, Picard Lab) for helping in the preparation of Figs. 6.1 and 6.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo C. Echeverria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Echeverria, P., Picard, D. (2014). A Global View of the Proteome Perturbations by Hsp90 Inhibitors. In: Houry, W. (eds) The Molecular Chaperones Interaction Networks in Protein Folding and Degradation. Interactomics and Systems Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1130-1_6

Download citation

Publish with us

Policies and ethics