Skip to main content

Recent Developments on Primal–Dual Splitting Methods with Applications to Convex Minimization

  • Chapter
  • First Online:
Mathematics Without Boundaries

Abstract

This chapter presents a survey on primal–dual splitting methods for solving monotone inclusion problems involving maximally monotone operators, linear compositions of parallel sums of maximally monotone operators, and single-valued Lipschitzian or cocoercive monotone operators. The primal–dual algorithms have the remarkable property that the operators involved are evaluated separately in each iteration, either by forward steps in the case of the single-valued ones or by backward steps for the set-valued ones, by using the corresponding resolvents. In the hypothesis that strong monotonicity assumptions for some of the involved operators are fulfilled, accelerated algorithmic schemes are presented and analyzed from the point of view of their convergence. Finally, we discuss the employment of the primal–dual methods in the context of solving convex optimization problems arising in the fields of image denoising and deblurring, support vector machine learning, location theory, portfolio optimization and clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attouch, H., Théra, M.: A general duality principle for the sum of two operators. J. Convex Anal. 3(1), 1–24 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Tal, A., Teboulle, M.: Expected utility, penalty functions and duality in stochastic nonlinear programming. Manag. Sci. 32(11), 1445–1466 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Teboulle, M.: An old-new concept of risk measures: the optimized certainty equivalent. Math. Financ. 17(3), 449–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  7. Boţ, R.I.: Conjugate Duality in Convex Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin (2010)

    Google Scholar 

  8. Boţ, R.I., Frătean, A.R.: Looking for appropriate qualification conditions for subdifferential formulae and dual representations for convex risk measures. Math. Methods Oper. Res. 74(2), 191–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boţ, R.I., Hendrich, C.: Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization (2012). J. Math. Imaging Vis. 49(3), 551–568 (2014) arXiv:1211.1706v1 [math.OC]

    Google Scholar 

  10. Boţ, R.I., Hendrich, C.: A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators (2012). SIAM J. Optim. 23(4), 2541–2565 (2013) arXiv:1212.0326 [math.OC]

    Google Scholar 

  11. Boţ, R.I., Hendrich, C.: Convex risk minimization via proximal splitting methods (2013). arXiv:1304.7694 [math.OC]

    Google Scholar 

  12. Boţ, R.I., Lorenz, N.: Optimization problems in statistical learning: Duality and optimality conditions. Eur. J. Oper. Res. 213(2), 395–404 (2011)

    Article  MATH  Google Scholar 

  13. Boţ, R.I., Csetnek, E.R., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximally monotone operators. SIAM J. Optim. (2012 to appear). SIAM J. Optim. 23(4), 2011–2036 (2013) arXiv:1206.5953 [math.OC]

    Google Scholar 

  14. Boţ, R.I., Heinrich, A., Wanka, G.: Employing different loss functions for the classification of images via supervised learning. Preprint, Chemnitz University of Technology, Faculty of Mathematics (2012). Central Eur. J. Math. 12(2), 381–394 (2014)

    Google Scholar 

  15. Boţ, R.I., Csetnek, E.R., Heinrich, A., Heinrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems (2013). Math. Program. doi:10.1007/s10107-014-0766-0 arXiv:1303.2875 [math.OC]

    Google Scholar 

  16. Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  18. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chi, E.C., Lange, K.: Splitting methods for convex clustering (2013). arXiv:1304.0499 [stat.ML]

    Google Scholar 

  20. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16(3), 727–748 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2), 307–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Condat., L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Google Scholar 

  24. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc 82(2), 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  26. Hocking, T., Vert, J., Bach, F., Joulin, A.: Clusterpath: an algorithm for clustering using convex fusion penalties. In: ICML (2011)

    Google Scholar 

  27. Lal, T.N., Chapelle, O., Schölkopf, B.: Combining a Filter Method with SVMs. Studies in Fuzziness and Soft Computing, vol. 207, pp. 439–445. Springer, Heidelberg (2006)

    Google Scholar 

  28. Lindsten, F., Ohlsson, H., Ljung L.: Just relax and come clustering! A convexication of k-means clustering. Technical Report, Linköpings universitet (2011)

    Google Scholar 

  29. Mordukhovich, B.S., Nam, N.M., Salinas, J.: Solving a generalized Heron problem by means of convex analysis. Am. Math. Mon 119(2), 87–99 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mordukhovich, B.S., Nam, N.M., Salinas, J.: Applications of variational analysis to a generalized Heron problem. Appl. Anal. 91(10), 1915–1942 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence Ø(1∕k 2). Doklady AN SSSR (translated as Soviet Math. Docl.) 269, 543–547 (1983)

    Google Scholar 

  33. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math 33(1), 209–216 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  35. Simons, S.: From Hahn-Banach to Monotonicity. Springer, Berlin (2008)

    MATH  Google Scholar 

  36. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Optim. 29(1), 119–138 (1991)

    Article  MATH  Google Scholar 

  37. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Ioan Boţ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boţ, R.I., Csetnek, E.R., Hendrich, C. (2014). Recent Developments on Primal–Dual Splitting Methods with Applications to Convex Minimization. In: Pardalos, P., Rassias, T. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1124-0_3

Download citation

Publish with us

Policies and ethics