Abstract
We consider the following version of the inverse problem of Dynamics: given a monoparametric family of planar curves, find the force field, conservative or not, which determines a material point to move on the curves of that family.
We present the partial differential equations which are satisfied by the potential and we clarify the role of the energy function.
Due to the nonuniqueness of the solution of the PDEs, it is natural to look for force fields in certain classes of functions (e.g., polynomial, homogeneous, or satisfying also another PDE).
In connection with the inverse problem of Dynamics, programmed motion is studied imposing the supplementary condition that the orbits lie in a preassigned region of the plane.
Applications in Celestial Mechanics, Geometrical Optics and Fluid Dynamics are given.
Keywords
- Inverse problem
- Conservative systems
- Galactic potentials
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Anisiu, M.-C., Pál, Á.: Special families of orbits for the Hénon-Heiles type potential. Rom. Astron. J. 9, 179–185 (1999)
Anisiu, M.-C.: The Equations of the Inverse Problem of Dynamics. House of the Book of Science, Cluj-Napoca (2003) (in Romanian)
Anisiu, M.-C.: PDEs in the inverse problem of Dynamics. In: Barbu, V., et al. (eds.) Analysis and Optimization of Differential Systems, pp. 13–20. Kluwer Academic, Boston (2003)
Anisiu, M.-C.: An alternative point of view on the equations of the inverse problem of dynamics. Inverse Probl. 20, 1865–1872 (2004)
Anisiu, M.-C., Bozis, G.: Programmed motion for a class of families of planar orbits. Inverse Probl. 16, 19–32 (2000)
Antonov, V.A., Timoshkova, E.I.: Simple trajectories in a rotationally symmetric gravitational field. Astron. Rep. 37, 138–144 (1993)
Boccaletti, D., Pucacco, G.: Theory of Orbits I. Springer, Berlin/Heidelberg (1996)
Borghero, F., Bozis, G.: Isoenergetic families of planar orbits generated by homogeneous potentials. Meccanica 37, 545–554 (2002)
Borghero, F., Bozis, G.: A two-dimensional inverse problem of geometrical optics. J. Phys. A Math. Gen. 38, 175–184 (2005)
Bozis, G.: Inverse problem with two parametric families of planar orbits. Celest. Mech. Dyn. Astron. 60, 161–172 (1994)
Bozis, G.: Szebehely inverse problem for finite symmetrical material concentrations. Astron. Astrophys. 134, 360–364 (1984)
Bozis, G.: Family boundary curves for autonomous dynamical systems. Celest. Mech. 31, 129–142 (1983)
Bozis, G.: The inverse problem of dynamics: basic facts. Inverse Probl. 11, 687–708 (1995)
Bozis, G., Anisiu, M.-C.: Families of straight lines in planar potentials. Rom. Astron. J. 11, 27–43 (2001)
Bozis, G., Anisiu, M.-C.: A solvable version of the inverse problem of dynamics. Inverse Probl. 21, 487–497 (2005)
Bozis, G., Anisiu, M.-C.: Programmed motion in the presence of homogeneity. Astron. Nachr. 330, 791–796 (2009)
Bozis, G., Anisiu, M.-C., Blaga, C.: Inhomogeneous potentials producing homogeneous orbits. Astron. Nachr. 318, 313–318 (1997)
Bozis, G., Borghero, F.: An inverse problem in fluid dynamics. In: Monaco, R., et al. (eds.) Waves and Stability in Continuous Media - WASCOM 2001, pp. 89–94. World Scientific Publishing, Singapore (2002)
Bozis, G., Grigoriadou, S.: Families of planar orbits generated by homogeneous potentials. Celest. Mech. Dyn. Astron. 57, 461–472 (1993)
Bozis, G., Ichtiaroglou, S.: Boundary curves for families of planar orbits. Celest. Mech. Dyn. Astron. 58, 371–385 (1994)
Broucke, R., Lass, H.: On Szebehely’s equation for the potential of a prescribed family of orbits. Celest. Mech. 16, 215–225 (1977)
Caranicolas, N.D.: Potentials for the central parts of a barred galaxy. Astron. Astrophys. 332, 88–92 (1998)
Caranicolas, N.D., Innanen, K.A.: Periodic motion in perturbed elliptic oscillators. Astron. J. 103, 1308–1312 (1992)
Carrasco, D., Vidal, C.: Periodic solutions, stability and non-integrability in a generalized Hénon-Heiles Hamiltonian system. J. Nonlinear Math. Phys. 20, 199–213 (2013)
Contopoulos, G., Bozis, G.: Complex force fields and complex orbits. J. Inverse Ill-Posed Probl. 8, 1–14 (2000)
Contopoulos, G., Zikides, M.: Periodic orbits and ergodic components of a resonant dynamical system. Astron. Astrophys. 90, 198–203 (1980)
Dainelli, U.: Sul movimento per una linea qualunque. Giorn. Mat. 18, 271–300 (1880)
Érdi, B., Bozis, G.: On the adelphic potentials compatible with a set of planar orbits. Celest. Mech. Dyn. Astron. 60, 421–430 (1994)
Galiullin, A.S.: Inverse Problems. Mir, Moscow (1984)
Gonzáles-Gascón, F., Gonzáles-Lopéz, A., Pascual-Broncano, P.J.: On Szebehely’s equation and its connection with Dainelli’s-Whittaker’s equations. Celest. Mech. 33, 85–97 (1984)
Grigoriadou, S.: The inverse problem of dynamics and Darboux’s integrability criterion. Inverse Probl. 15, 1621–1637 (1999)
Hénon, M., Heiles, C.: The applicability of the third integral of motion, some numerical experiments. Astron. J. 69, 73–79 (1964)
Howard, J.E., Meiss, J.D.: Straight line orbits in Hamiltonian flows. Celest. Mech. Dyn. Astron. 105, 337–352 (2009)
Ichtiaroglou, S., Meletlidou, E.: On monoparametric families of orbits sufficient for integrability of planar potentials with linear or quadratic invariants. J. Phys. A: Math. Gen. 23, 3673–3679 (1990)
Kostov, N.A., Gerdjikov, V.S., Mioc, V.: Exact solutions for a class of integrable Hénon-Heiles-type systems. J. Math. Phys. 51, 022702.1–022702.13 (2010)
Luneburg, R.K.: Mathematical Theory of Optics. University of California Press, Berkeley/Los Angeles (1964)
van der Merwe, P.du T.: Solvable forms of a generalized Hénon-Heiles system. Phys. Lett. A 156, 216–220 (1991)
Miller, R.H., Smith, B.F.: Dynamics of a stellar bar. Astrophys. J. 227, 785–797 (1979)
Mioc, V., Paşca, D., Stoica, C.: Collision and escape orbits in a generalized Hénon-Heiles model. Nonlinear Anal. Real 11, 920–931 (2010)
Molnár, S.: Applications of Szebehely’s equation. Celest. Mech. 29, 81–88 (1981)
Pál, Á., Anisiu, M.-C.: On the two-dimensional inverse problem of dynamics. Astron. Nachr. 317, 205–209 (1996)
Puel, F.: Formulation intrinseque de l’équation de Szebehely. Celest. Mech. 32, 209–212 (1984)
Serrin, J.: Mathematical Principles of Classical Fluid Mechanics. In: Flugge, S. (ed.) Fluid Dynamics I. Encyclopaedia of Physics, vol. 8/1, pp. 125–350, Springer, Berlin/Heidelberg (1959)
Szebehely, V.: On the determination of the potential by satellite observations. In: Proverbio, G. (ed.) Proceedings of the International Meeting on Earth’s Rotation by Satellite Observation, pp. 31–35. The University of Cagliari, Bologna (1974)
Szebehely, V., Lundberg, J., McGahee, W.J.: Potential in the central bar structure. Astrophys. J. 239, 880–881 (1980)
Whittaker, E.T.: Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1904)
Zotos, E.E.: Using new dynamical indicators to distinguish between order and chaos in a galactic potential producing exact periodic orbits and chaotic components. Astron. Astrophys. Trans. 4, 635–654 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this chapter
Cite this chapter
Anisiu, MC. (2014). The Planar Inverse Problem of Dynamics. In: Pardalos, P., Rassias, T. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1124-0_1
Download citation
DOI: https://doi.org/10.1007/978-1-4939-1124-0_1
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-1123-3
Online ISBN: 978-1-4939-1124-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)