Skip to main content

Direct Reprogramming of Amniotic Cells into Endothelial Cells

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

Organ regeneration promises unlimited access to replacement tissues. The current paradigm of organ regeneration requires transplantation of adult tissue-restricted stem and progenitor cells to repair the damaged organ. However, healing injured organs often leads to fibrosis with little recovery of function. An alternative approach is to harness the regenerative activity of microvascular endothelial cells (ECs) to support endogenous organ repair. Recent work demonstrates that organ regeneration can be directed by paracrine mediators, called “Angiocrine Factors,” elaborated by tissue-specific ECs to support stem and progenitor cells to directly induce organ regeneration without maladaptive fibrosis. Yet, the regenerative function and the repertoire of angiocrine factors elaborated by ECs depend upon the organ from which they originate.

New technologies have emerged to transcriptionally reprogram amniotic fluid cells (ACs) into generic “unspecified” ECs that acquire tissue-specific function promises a ready source of transplantable ECs to be used for organ regeneration. Generic AC-derived ECs can be induced to acquire organ-specific functions by a process of “in vivo education” wherein extravascular cues trigger transcriptional programs within engrafted ECs enabling them to acquire tissue-specific functions and to deploy angiocrine growth factors that drive organ repair without aberrant pro-fibrotic remodeling. Identifying tissue-specific transcription factors regulating tissue specification of EC is at the frontier of this new approach for organ regeneration.

The chapter is expected to overturn the scientific conceptualization of a monofunctional, inert, microvasculature by revealing a dynamic, tissue-specified role for ECs in organ repair that will enable therapeutic use of “educated,” tissue-specified ECs that home to their native injured organs and supply tissue-specific angiocrine signals to orchestrate organ regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A cell specified autonomously will develop into a specific fate based upon cell-intrinsic properties that are cytoplasmic determinants with no regard to the environment the cell is in.

    A cell specified conditionally will develop into a specific fate based upon cell-extrinsic process that relies on cues and other surrounding cells or morphogen gradients.

    A cell specified syncytially will develop into a specific fate based upon a hybrid of the autonomous and conditional method involves the action of morphogen gradients within the syncytium that can influence nuclei in a concentration-dependent manner.

    A cell determined will develop into a specific cell types followed by differentiation.

References

  1. Aird WC. Spatial and temporal dynamics of the endothelium. J Thromb Haemost. 2005;3(7):1392–406.

    CAS  PubMed  Google Scholar 

  2. Couvelard A, et al. Structural and functional differentiation of sinusoidal endothelial cells during liver organogenesis in humans. Blood. 1996;87(11):4568–80.

    CAS  PubMed  Google Scholar 

  3. Wang CH, et al. The critical role of ECM proteins within the human MSC niche in endothelial differentiation. Biomaterials. 2013;34(17):4223–34.

    CAS  PubMed  Google Scholar 

  4. Pick M, et al. Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells. 2007; 25(9):2206–14.

    CAS  PubMed  Google Scholar 

  5. Zhang G, et al. Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation. FEBS Lett. 2008; 582(19):2957–64.

    CAS  PubMed  Google Scholar 

  6. Tan A, et al. The implications of human stem cell differentiation to endothelial cell via fluid shear stress in cardiovascular regenerative medicine: a review. Curr Pharm Des. 2010;16(34):3848–61.

    CAS  PubMed  Google Scholar 

  7. Karlsson LK, et al. Human dermal fibroblasts: a potential cell source for endothelialization of vascular grafts. Ann Vasc Surg. 2009;23(5):663–74.

    PubMed  Google Scholar 

  8. Junker JP, et al. Differentiation of human dermal fibroblasts towards endothelial cells. Differentiation. 2013;85(3):67–77.

    CAS  PubMed  Google Scholar 

  9. Ginsberg M, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFbeta suppression. Cell. 2012;151(3):559–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. James D, et al. Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol. 2010;28(2):161–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Prusa AR, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 2002;8(11): RA253–7.

    PubMed  Google Scholar 

  12. De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    PubMed  Google Scholar 

  13. Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010;10(2):138–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Butler JM, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell. 2010;6(3):251–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kobayashi H, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2010;12(11):1046–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Ding BS, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature. 2010; 468(7321):310–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Wakayama T, et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 1998;394(6691):369–74.

    CAS  PubMed  Google Scholar 

  18. Zhou Q, Boulanger L, Renard JP. A simplified method for the reconstruction of fully competent mouse zygotes from adult somatic donor nuclei. Cloning. 2000;2(1):35–44.

    CAS  PubMed  Google Scholar 

  19. Ogura A, et al. Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol Reprod Dev. 2000;57(1):55–9.

    CAS  PubMed  Google Scholar 

  20. Freberg CT, et al. Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell. 2007;18(5):1543–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Taranger CK, et al. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell. 2005;16(12):5719–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Xu YN, et al. ES cell extract-induced expression of pluripotent factors in somatic cells. Anat Rec (Hoboken). 2009;292(8):1229–34.

    CAS  Google Scholar 

  23. Al-Nedawi K, et al. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A. 2009;106(10):3794–9.

    PubMed Central  PubMed  Google Scholar 

  24. De Carvalho DD, You JS, Jones PA. DNA methylation and cellular reprogramming. Trends Cell Biol. 2010;20(10):609–17.

    PubMed Central  PubMed  Google Scholar 

  25. le Noble F, et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development. 2004;131(2):361–75.

    PubMed  Google Scholar 

  26. Moyon D, et al. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development. 2001;128(17):3359–70.

    CAS  PubMed  Google Scholar 

  27. Garcia-Martinez V, Alvarez IS, Schoenwolf GC. Locations of the ectodermal and nonectodermal subdivisions of the epiblast at stages 3 and 4 of avian gastrulation and neurulation. J Exp Zool. 1993;267(4):431–46.

    CAS  PubMed  Google Scholar 

  28. Kinder SJ, et al. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development. 1999;126(21): 4691–701.

    CAS  PubMed  Google Scholar 

  29. Kennedy M, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386(6624): 488–93.

    CAS  PubMed  Google Scholar 

  30. Van Handel B, et al. Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium. Cell. 2012;150(3): 590–605.

    PubMed Central  PubMed  Google Scholar 

  31. Lancrin C, et al. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature. 2009; 457(7231):892–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhang L, Yang SH, Sharrocks AD. Rev7/MAD2B links c-Jun N-terminal protein kinase pathway signaling to activation of the transcription factor Elk-1. Mol Cell Biol. 2007;27(8):2861–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Mazzarella L, et al. Embryonic stem cell-derived hemangioblasts remain epigenetically plastic and require PRC1 to prevent neural gene expression. Blood. 2011;117(1):83–7.

    CAS  PubMed  Google Scholar 

  34. Othman-Hassan K, et al. Arterial identity of endothelial cells is controlled by local cues. Dev Biol. 2001;237(2):398–409.

    CAS  PubMed  Google Scholar 

  35. Nolan DJ, et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell. 2013;26(2):204–19.

    CAS  PubMed  Google Scholar 

  36. Poulos MG, et al. Endothelial jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 2013;4(5):1022–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Ding BS, et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell. 2011;147(3):539–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Tapscott SJ, et al. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science. 1988;242(4877):405–11.

    CAS  PubMed  Google Scholar 

  39. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51(6): 987–1000.

    CAS  PubMed  Google Scholar 

  40. Graf T. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell. 2011;9(6):504–16.

    CAS  PubMed  Google Scholar 

  41. Worsdorfer P, et al. Roadmap to cellular reprogramming—manipulating transcriptional networks with DNA, RNA, proteins and small molecules. Curr Mol Med. 2013;13(5):868–78.

    CAS  PubMed  Google Scholar 

  42. Levenberg S, et al. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2002;99(7):4391–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell. 2008;132(4):567–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Young RA. Control of the embryonic stem cell state. Cell. 2011;144(6):940–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Efroni S, et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell. 2008;2(5):437–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Gory S, et al. Requirement of a GT box (Sp1 site) and two Ets binding sites for vascular endothelial cadherin gene transcription. J Biol Chem. 1998;273(12):6750–5.

    CAS  PubMed  Google Scholar 

  47. Gory S, et al. The vascular endothelial-cadherin promoter directs endothelial-specific expression in transgenic mice. Blood. 1999;93(1):184–92.

    CAS  PubMed  Google Scholar 

  48. Iljin K, et al. Role of ETS factors in the activity and endothelial cell specificity of the mouse Tie gene promoter. FASEB J. 1999;13(2):377–86.

    CAS  PubMed  Google Scholar 

  49. Kappel A, et al. Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood. 1999;93(12):4284–92.

    CAS  PubMed  Google Scholar 

  50. Asada S, et al. Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 2007;19(3): 519–27.

    CAS  PubMed  Google Scholar 

  51. Meadows SM, Myers CT, Krieg PA. Regulation of endothelial cell development by ETS transcription factors. Semin Cell Dev Biol. 2011;22(9):976–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Sumanas S, Lin S. Ets1-related protein is a key regulator of vasculogenesis in zebrafish. PLoS Biol. 2006;4(1):e10.

    PubMed Central  PubMed  Google Scholar 

  53. Sumanas S, et al. Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation. Blood. 2008;111(9):4500–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Brown LA, et al. Insights into early vasculogenesis revealed by expression of the ETS-domain transcription factor Fli-1 in wild-type and mutant zebrafish embryos. Mech Dev. 2000;90(2):237–52.

    CAS  PubMed  Google Scholar 

  55. Ohtani K, et al. Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells. Circ Res. 2011;109(11):1219–29.

    CAS  PubMed  Google Scholar 

  56. Wang R, et al. FBW7 regulates endothelial functions by targeting KLF2 for ubiquitination and degradation. Cell Res. 2013;23(6): 803–19.

    PubMed Central  PubMed  Google Scholar 

  57. Zhao Y, Sun Y. The FBW7-KLF2 axis regulates endothelial functions. Cell Res. 2013;23(6):741–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Clarke RL, et al. The expression of Sox17 identifies and regulates haemogenic endothelium. Nat Cell Biol. 2013;15(5):502–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Howard L, et al. Profiling of transcriptional and epigenetic changes during directed endothelial differentiation of human embryonic stem cells identifies FOXA2 as a marker of early mesoderm commitment. Stem Cell Res Ther. 2013;4(2):36.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Meadows SM, Salanga MC, Krieg PA. Kruppel-like factor 2 cooperates with the ETS family protein ERG to activate Flk1 expression during vascular development. Development. 2009;136(7): 1115–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. De Val S, et al. Mef2c is activated directly by Ets transcription factors through an evolutionarily conserved endothelial cell-specific enhancer. Dev Biol. 2004;275(2):424–34.

    PubMed  Google Scholar 

  62. Stainier DY, et al. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development. 1995;121(10):3141–50.

    CAS  PubMed  Google Scholar 

  63. Oliver G, Srinivasan RS. Endothelial cell plasticity: how to become and remain a lymphatic endothelial cell. Development. 2010;137(3):363–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Wang Y, Oliver G. Current views on the function of the lymphatic vasculature in health and disease. Genes Dev. 2010;24(19): 2115–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Pepper MS, Skobe M. Lymphatic endothelium: morphological, molecular and functional properties. J Cell Biol. 2003;163(2): 209–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Karkkainen MJ, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5(1):74–80.

    CAS  PubMed  Google Scholar 

  67. Iljin K, et al. VEGFR3 gene structure, regulatory region, and sequence polymorphisms. FASEB J. 2001;15(6):1028–36.

    CAS  PubMed  Google Scholar 

  68. Taniguchi K, et al. Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol. 2007;27(12):4541–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Shawber CJ, et al. Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest. 2007;117(11):3369–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Cermenati S, et al. Sox18 genetically interacts with VegfC to regulate lymphangiogenesis in zebrafish. Arterioscler Thromb Vasc Biol. 2013;33(6):1238–47.

    CAS  PubMed  Google Scholar 

  71. Francois M, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456(7222):643–7.

    CAS  PubMed  Google Scholar 

  72. Srinivasan RS, et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 2010;24(7): 696–707.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Harada K, et al. Identification of targets of Prox1 during in vitro vascular differentiation from embryonic stem cells: functional roles of HoxD8 in lymphangiogenesis. J Cell Sci. 2009;122(Pt 21):3923–30.

    CAS  PubMed  Google Scholar 

  74. Holderfield MT, Hughes CC. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res. 2008;102(6):637–52.

    CAS  PubMed  Google Scholar 

  75. Baird A, Durkin T. Inhibition of endothelial cell proliferation by type beta-transforming growth factor: interactions with acidic and basic fibroblast growth factors. Biochem Biophys Res Commun. 1986;138(1):476–82.

    CAS  PubMed  Google Scholar 

  76. Frater-Schroder M, et al. Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun. 1986;137(1):295–302.

    CAS  PubMed  Google Scholar 

  77. Li C, et al. Angiogenesis in breast cancer: the role of transforming growth factor beta and CD105. Microsc Res Tech. 2001;52(4): 437–49.

    CAS  PubMed  Google Scholar 

  78. Takehara K. Growth regulation of skin fibroblasts. J Dermatol Sci. 2000;24 Suppl 1:S70–7.

    CAS  PubMed  Google Scholar 

  79. Iruela-Arispe ML, Sage EH. Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-beta 1. J Cell Biochem. 1993;52(4):414–30.

    CAS  PubMed  Google Scholar 

  80. RayChaudhury A, D’Amore PA. Endothelial cell regulation by transforming growth factor-beta. J Cell Biochem. 1991;47(3): 224–9.

    CAS  PubMed  Google Scholar 

  81. Sutton AB, et al. The response of endothelial cells to TGF beta-1 is dependent upon cell shape, proliferative state and the nature of the substratum. J Cell Sci. 1991;99(Pt 4):777–87.

    CAS  PubMed  Google Scholar 

  82. Bonyadi M, et al. Mapping of a major genetic modifier of embryonic lethality in TGF beta 1 knockout mice. Nat Genet. 1997;15(2):207–11.

    CAS  PubMed  Google Scholar 

  83. Dickson MC, et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development. 1995;121(6):1845–54.

    CAS  PubMed  Google Scholar 

  84. Azuma H. Genetic and molecular pathogenesis of hereditary hemorrhagic telangiectasia. J Med Invest. 2000;47(3–4):81–90.

    CAS  PubMed  Google Scholar 

  85. Rossant J, Howard L. Signaling pathways in vascular development. Annu Rev Cell Dev Biol. 2002;18:541–73.

    CAS  PubMed  Google Scholar 

  86. Goumans MJ, et al. Transforming growth factor-beta signalling in extraembryonic mesoderm is required for yolk sac vasculogenesis in mice. Development. 1999;126(16):3473–83.

    CAS  PubMed  Google Scholar 

  87. Letterio JJ, et al. Maternal rescue of transforming growth factor-beta 1 null mice. Science. 1994;264(5167):1936–8.

    CAS  PubMed  Google Scholar 

  88. Larsson J, et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J. 2001;20(7):1663–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Oshima M, Oshima H, Taketo MM. TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol. 1996;179(1):297–302.

    CAS  PubMed  Google Scholar 

  90. Li DY, et al. Defective angiogenesis in mice lacking endoglin. Science. 1999;284(5419):1534–7.

    CAS  PubMed  Google Scholar 

  91. Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem. 1999;274(2):584–94.

    CAS  PubMed  Google Scholar 

  92. Letamendia A, et al. Role of endoglin in cellular responses to transforming growth factor-beta. A comparative study with betaglycan. J Biol Chem. 1998;273(49):33011–9.

    CAS  PubMed  Google Scholar 

  93. Li F, et al. Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium. 2004;11(3–4):199–206.

    CAS  PubMed  Google Scholar 

  94. Czuwara-Ladykowska J, et al. Ets1 is an effector of the transforming growth factor beta (TGF-beta ) signaling pathway and an antagonist of the profibrotic effects of TGF-beta. J Biol Chem. 2002;277(23):20399–408.

    CAS  PubMed  Google Scholar 

  95. Iwasaka-Yagi C, Abe M, Sato Y. TGF-beta attenuates the transactivation activity of Ets-1 despite its induction via the inhibition of DNA binding. Tohoku J Exp Med. 2001;193(4):311–8.

    CAS  PubMed  Google Scholar 

  96. Mandriota SJ, Menoud PA, Pepper MS. Transforming growth factor beta 1 down-regulates vascular endothelial growth factor receptor 2/flk-1 expression in vascular endothelial cells. J Biol Chem. 1996;271(19):11500–5.

    CAS  PubMed  Google Scholar 

  97. Trounson A. The production and directed differentiation of human embryonic stem cells. Endocr Rev. 2006;27(2):208–19.

    PubMed  Google Scholar 

  98. Brons IG, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448(7150):191–5.

    CAS  PubMed  Google Scholar 

  99. Stainier DY. A glimpse into the molecular entrails of endoderm formation. Genes Dev. 2002;16(8):893–907.

    CAS  PubMed  Google Scholar 

  100. Zorn AM, Wells JM. Molecular basis of vertebrate endoderm development. Int Rev Cytol. 2007;259:49–111.

    CAS  PubMed  Google Scholar 

  101. Xu RH, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol. 2002;20(12):1261–4.

    CAS  PubMed  Google Scholar 

  102. Bernardo AS, et al. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell. 2011;9(2):144–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. D’Amour KA, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12): 1534–41.

    PubMed  Google Scholar 

  104. Drukker M, et al. Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nat Biotechnol. 2012;30(6):531–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Winnier G, et al. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995;9(17):2105–16.

    CAS  PubMed  Google Scholar 

  106. Fujiwara T, Dunn NR, Hogan BL. Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc Natl Acad Sci U S A. 2001;98(24):13739–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Sirbu IO, Duester G. Retinoic-acid signalling in node ectoderm and posterior neural plate directs left-right patterning of somitic mesoderm. Nat Cell Biol. 2006;8(3):271–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Yasunaga M, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol. 2005;23(12):1542–50.

    CAS  PubMed  Google Scholar 

  109. Wang L, et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity. 2004;21(1):31–41.

    CAS  PubMed  Google Scholar 

  110. Levenberg S, et al. Endothelial potential of human embryonic stem cells. Blood. 2007;110(3):806–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Choi KD, et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells. 2009;27(3): 559–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Taura D, et al. Induction and isolation of vascular cells from human induced pluripotent stem cells—brief report. Arterioscler Thromb Vasc Biol. 2009;29(7):1100–3.

    CAS  PubMed  Google Scholar 

  113. Lohle M, et al. Differentiation efficiency of induced pluripotent stem cells depends on the number of reprogramming factors. Stem Cells. 2012;30(3):570–9.

    PubMed  Google Scholar 

  114. Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010;28(3):585–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Trento C, Dazzi F. Mesenchymal stem cells and innate tolerance: biology and clinical applications. Swiss Med Wkly. 2010;140: w13121.

    PubMed  Google Scholar 

  116. Tamagawa T, et al. Induced in-vitro differentiation of neural-like cells from human amnion-derived fibroblast-like cells. Hum Cell. 2008;21(2):38–45.

    PubMed  Google Scholar 

  117. Tamagawa T, et al. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell. 2007;20(3):77–84.

    PubMed  Google Scholar 

  118. Alviano F, et al. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol. 2007;7:11.

    PubMed Central  PubMed  Google Scholar 

  119. Janeczek Portalska K, et al. Endothelial differentiation of mesenchymal stromal cells. PLoS One. 2012;7(10):e46842.

    PubMed Central  PubMed  Google Scholar 

  120. Spees JL, et al. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci U S A. 2003;100(5): 2397–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Yue WM, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem Cells Dev. 2008;17(4):785–93.

    CAS  PubMed  Google Scholar 

  122. Greco SJ, et al. An interdisciplinary approach and characterization of neuronal cells transdifferentiated from human mesenchymal stem cells. Stem Cells Dev. 2007;16(5):811–26.

    CAS  PubMed  Google Scholar 

  123. Bartholomew A, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–8.

    PubMed  Google Scholar 

  124. Di Nicola M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.

    PubMed  Google Scholar 

  125. Krampera M, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9.

    CAS  PubMed  Google Scholar 

  126. Le Blanc K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.

    PubMed  Google Scholar 

  127. Jones S, et al. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol. 2007;179(5):2824–31.

    CAS  PubMed  Google Scholar 

  128. Poggi A, et al. Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J Immunol. 2005;175(10):6352–60.

    CAS  PubMed  Google Scholar 

  129. Traggiai E, et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells. 2008;26(2):562–9.

    CAS  PubMed  Google Scholar 

  130. Ramasamy R, et al. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83(1):71–6.

    PubMed  Google Scholar 

  131. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.

    CAS  PubMed  Google Scholar 

  132. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    CAS  PubMed  Google Scholar 

  133. Jones EA, et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum. 2008;58(6):1731–40.

    CAS  PubMed  Google Scholar 

  134. Buhring HJ, et al. Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci. 2007;1106:262–71.

    PubMed  Google Scholar 

  135. da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(Pt 11):2204–13.

    Google Scholar 

  136. Prockop DJ. “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther. 2007;82(3):241–3.

    CAS  PubMed  Google Scholar 

  137. Kubo H, et al. Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes Cells. 2009;14(3):407–24.

    CAS  PubMed  Google Scholar 

  138. Pricola KL, et al. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem. 2009;108(3):577–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Krause DS, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–77.

    CAS  PubMed  Google Scholar 

  140. Brazelton TR, et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000;290(5497):1775–9.

    CAS  PubMed  Google Scholar 

  141. Sanchez-Ramos J, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247–56.

    CAS  PubMed  Google Scholar 

  142. Ferrari G, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279(5356):1528–30.

    CAS  PubMed  Google Scholar 

  143. Gussoni E, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 1999;401(6751):390–4.

    CAS  PubMed  Google Scholar 

  144. Theise ND, et al. Liver from bone marrow in humans. Hepatology. 2000;32(1):11–6.

    CAS  PubMed  Google Scholar 

  145. Petersen BE, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284(5417):1168–70.

    CAS  PubMed  Google Scholar 

  146. Theise ND, et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology. 2000;31(1):235–40.

    CAS  PubMed  Google Scholar 

  147. Asahara T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–8.

    CAS  PubMed  Google Scholar 

  148. Lin Y, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105(1):71–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Jackson KA, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107(11):1395–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):877–91.

    PubMed  Google Scholar 

  151. Tamagawa T, Ishiwata I, Saito S. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell. 2004;17(3):125–30.

    PubMed  Google Scholar 

  152. Miki T, et al. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23(10):1549–59.

    CAS  PubMed  Google Scholar 

  153. Luckett WP. The development of primordial and definitive amniotic cavities in early Rhesus monkey and human embryos. Am J Anat. 1975;144(2):149–67.

    CAS  PubMed  Google Scholar 

  154. Badwaik NK, Rasweiler JJT, Oliveira SF. Formation of reticulated endoderm, Reichert’s membrane, and amniogenesis in blastocysts of captive-bred, short-tailed fruit bats, Carollia perspicillata. Anat Rec. 1997;247(1):85–101.

    CAS  PubMed  Google Scholar 

  155. Pasquier JC, Doret M. [Fetal membranes: embryological development, structure and the physiopathology of the preterm premature rupture of membranes]. J Gynecol Obstet Biol Reprod (Paris). 2008;37(6):579–88.

    Google Scholar 

  156. Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta. 2009;30(1):2–10.

    CAS  PubMed  Google Scholar 

  157. Jones GN, et al. Ontological differences in first compared to third trimester human fetal placental chorionic stem cells. PLoS One. 2012;7(9):e43395.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. In ‘t Anker PS, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7): 1338–45.

    PubMed  Google Scholar 

  159. Hoehn H, Salk D. Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol. 1982;26: 11–34.

    CAS  PubMed  Google Scholar 

  160. Gosden CM. Amniotic fluid cell types and culture. Br Med Bull. 1983;39(4):348–54.

    CAS  PubMed  Google Scholar 

  161. Bossolasco P, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res. 2006;16(4):329–36.

    CAS  PubMed  Google Scholar 

  162. Warrier S, Haridas N, Bhonde R. Inherent propensity of amnion-derived mesenchymal stem cells towards endothelial lineage: vascularization from an avascular tissue. Placenta. 2012;33(10):850–8.

    CAS  PubMed  Google Scholar 

  163. Tsai MS, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19(6):1450–6.

    PubMed  Google Scholar 

  164. Arnhold S, et al. Amniotic-fluid stem cells: growth dynamics and differentiation potential after a CD-117-based selection procedure. Stem Cells Int. 2011;2011:715341.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Ieda M, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Efe JA, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol. 2011;13(3): 215–22.

    CAS  PubMed  Google Scholar 

  167. Kim J, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011;108(19):7838–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. De Val S, et al. Combinatorial regulation of endothelial gene expression by ETS and forkhead transcription factors. Cell. 2008;135(6):1053–64.

    PubMed Central  PubMed  Google Scholar 

  169. Sakurai Y, et al. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci U S A. 2005;102(4):1076–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Jezierski A, et al. Probing stemness and neural commitment in human amniotic fluid cells. Stem Cell Rev. 2010;6(2): 199–214.

    CAS  PubMed  Google Scholar 

  171. Da Sacco S, et al. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol. 2010;183(3):1193–200.

    PubMed Central  PubMed  Google Scholar 

  172. Zhang P, et al. Endothelial differentiation of amniotic fluid-derived stem cells: synergism of biochemical and shear force stimuli. Stem Cells Dev. 2009;18(9):1299–308.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. James D, Rabbany S, Rafii S. Hitting the mother lode of tumor angiogenesis. Nat Biotechnol. 2008;26(7):769–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Naldini L, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A. 1996;93(21): 11382–8.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Material and Methods

Appendix: Material and Methods

1.1 Cell Culture

Culture Condition for Amniotic Cells (AFCs):

  • Amniotic Media (AM): Amnio-Max + Supplement (GIBCO) with 1X Pen/Strep (Invitrogen)

Differentiation of AFCs:

  • Transfected AFCs with lentiviral vectors

  • Culture media supplemented with Endothelial Growth Media (EM) in Medium 199 (Thermo Scientific), 15 % Fetal Bovine Serum (Omega Scientific), 20 mg/mL endothelial cell supplement (Hallway), 1 % antibiotics (Hallway), 20 units/mL heparin (Sigma), and where indicated, 5 mM SB431542 (Tocris)

  • Gelatin powder (J.T. Baker, Phillipsburg, NJ), 0.2 % in sterile water and stored at 4 °C

  • HEPES: 1 M HEPES made in sterile water, pH adjusted to 7.55 at room temperature

  • Bovine serum albumin

  • 500 mL filter system

1.2 Lentiviral Vectors and Transduction

Human amniotic fluid cells (AFCs) from second trimester amniocentesis are forced ectopic expression of transient Etv2/ER71 with concomitant Fli1/Erg1 using cloned human ER71, Erg-2, and Fli1 cDNAs into lentiviral vectors and TGFβ inhibitor, SB431542 [10]. Successful transduction specifies AFCs directly reprogrammed into naïve endothelial cells (ECs) [9].

Functionality of reprogrammed ECs assessed in vitro and in vivo models whether these ECs have acquired full angiogenic potential. A matrigel tube formation assay performed on 21-day-old ER71/Fli1 transduced ECs that were concurrently under TGFβ inhibition. Notably, ECs expressing ER71 and ER71/Fli1, but not naïve AFCs, were capable of forming tubes in vitro comparable to tubulogenesis observed by HUVECs. A second in vitro assay was then performed on ECs to demonstrate another EC attribute—Acetylated-LDL (Ac-LDL) uptake. Incubation of 21-day-old ECs with Ac-LDL showed significant accumulation of this lipoprotein similar to Ac-LDL uptake seen in HUVECs. GFP-labeled 21-day-old ECs were loaded into matrigel plugs supplemented with VEGF-A and FGF-2, and injected into immunocompromised NOD-SCIDIL2Rg−/− (NSG) mice for 2 weeks. Following intravital labeling of the vasculature by Isolectin, matrigel plugs were then removed for analysis. Although naïve AFCs failed to form any capillaries, 21-day-old ECs formed numerous functional vessels that anastomosed with host vasculature. Taken together, these data verify the notion that ER71 and Fli1, acting in concert with TGF-b inhibition, can reprogram mid-gestational AFCs into functionally viable VEGF-A-dependent proliferative ECs that are capable of developing bona fide functional blood vessels.

Multiple cDNAs: ER71, Erg-2, and Fli1: Clone into the pCCL-PGK lentivirus vector.

  • A triple Flag-tag: Subclone into the ER71 and Erg-2 constructs at the amino terminus, via Quick-Change Site Directed Mutagenesis Kit (Stratagene), then re-subclone Flag-tag ER71 into the pLVX-Tight-Puro vector (Clontech) and co-transduce with pLVX-Tet-Off vector

  • Lentiviruses: Generate by cotransfecting 15 mg of our gene of interest lentiviral ECtor, 3 mg of pENV/VSV-G, 5 mg of pRRE, and 2.5 mg of pRSV-REV in 293 T cells (passage 8–10; subconfluent, 100 mm dish) by the calcium precipitation method

  • Harvesting Supernatants: Collect supernatants within 40 to 64 h after transfection [174], then concentrate by Lenti-X concentrator (Clontech) and obtain viral titers determined by using the Lenti-X p24 Rapid Titer kit (Clontech).

  • Recommended use to transduce AFCs: MOI = 1

1.3 Matrigel™ Plug and In Vitro Assays

Mix AFCs infected with ETS factors transduced with GFP-lentivirus with Matrigel (BD), 100 ng/mL of VEGF-A, and 50 ng/mL of FGF-2, and subcutaneously implant at the flanks of NOD-SCID gamma (NSG) mice (Jackson Laboratories, Bar Harbor, ME). After 2 weeks, inject isolectin conjugated with Alexa 568 (Invitrogen) (2 mg/kg) and sacrifice to harvest the tissue. Fix the tissue in 4 % paraformaldehyde, followed by 48 h saturation in 30 % sucrose. Prepare 20 μm cryosections and counterstain with Hoechst 33342. Enumerate the number of isolectin-positive functional vessels.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shido, K., Scandura, J.M., Rafii, S., Pulijaal, V.R. (2014). Direct Reprogramming of Amniotic Cells into Endothelial Cells. In: Atala, A., Murphy, S. (eds) Perinatal Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1118-9_7

Download citation

Publish with us

Policies and ethics