Skip to main content

Amniotic Fluid Stem Cell Therapy for Lung Disease

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

Amniotic fluid stem cells (AFSC), a unique multipotent stem cell population, have demonstrated significant experimental promise for the treatment of lung injury and disease as well as for de novo tissue engineering. Furthermore, the translation of experimental models, to clinical endpoints in the lung, present a litany of distinct challenges that AFSC have demonstrated the potential to address. With a minimum of 40 phenotypically distinct cell populations, limited regenerative capacity, 23 architecturally and physiologically diverse functional regions and the etiology of many lung diseases and disorders poorly understood, the respiratory system itself is perhaps one of the most challenging systems to treat. This chapter examines some of the challenges posed by the respiratory system, AFSC-based therapy for the treatment lung disease, and the future prospects of this stem cell population within the context of the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol. 2010;90:73–158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Shi W, Bellusci S, Warburton D. Lung development and adult lung diseases. Chest. 2007;132:651–6.

    Article  PubMed  Google Scholar 

  3. Sweet DG, Halliday HL. Modeling and remodeling of the lung in neonatal chronic lung disease: implications for therapy. Treat Respir Med. 2005;4:347–59.

    Article  CAS  PubMed  Google Scholar 

  4. Warrell DA, Cox TM, Firth JD, Weatherall D, Benz EJ. Oxford textbook of medicine. New York: Oxford University Press; 2003.

    Google Scholar 

  5. Blaisdell CJ, Gail DB, Nabel EG. National heart, lung, and blood institute perspective: lung progenitor and stem cells—gaps in knowledge and future opportunities. Stem Cells. 2009;27:2263–70.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Liu X, Engelhardt JF. The glandular stem/progenitor cell niche in airway development and repair. Proc Am Thorac Soc. 2008;5:682–8.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Garcia O, Carraro G, Navarro S, Bertoncello I, McQualter J, Driscoll B, Jesudason E, Warburton D. Cell-based therapies for lung disease. Br Med Bull. 2012;101:147–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sen N, Weprin S, Peter Y. Discrimination between lung homeostatic and injury-induced epithelial progenitor subsets by cell-density properties. Stem Cells Dev. 2013;22:2036–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hegab AE, Nickerson DW, Ha VL, Darmawan DO, Gomperts BN. Repair and regeneration of tracheal surface epithelium and submucosal glands in a mouse model of hypoxic-ischemic injury. Respirology. 2012;17:1101–13.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol. 2004;286:L643–9.

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds SD, Giangreco A, Power JH, Stripp BR. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol. 2000;156:269–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol. 2001;24:671–81.

    Article  CAS  PubMed  Google Scholar 

  13. Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol. 2002;161:173–82.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Driscoll B, Kikuchi A, Lau AN, Lee J, Reddy R, Jesudason E, Kim CF, Warburton D. Isolation and characterization of distal lung progenitor cells. Methods Mol Biol. 2012;879:109–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BLM. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123:3025–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rawlins EL, Hogan BL. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol. 2008;295:L231–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bowden DH. Cell turnover in the lung. Am Rev Respir Dis. 1983;128:S46–8.

    CAS  PubMed  Google Scholar 

  18. Rakower J, Balchum OJ, Dressler SH. Pulmonary and circulatory function of the reexpanded pneumothorax lung. Chest. 1956;30: 649–58.

    Article  Google Scholar 

  19. Ueda K, Tanaka T, Hayashi M, Li TS, Kaneoka T, Tanaka N, Hamano K. Compensation of pulmonary function after upper lobectomy versus lower lobectomy. J Thorac Cardiovasc Surg. 2011;142:762–7.

    Article  PubMed  Google Scholar 

  20. Weiss DJ, Bates JH, Gilbert T, Liles WC, Lutzko C, Rajagopal J, Prockop DJ. Conference report: stem cells and cell therapies in lung biology and diseases University of Vermont, July 2011. Ann Am Thorac Soc. 2013;10:S25–44.

    Article  PubMed  Google Scholar 

  21. Weiss DJ. Stem cells, cell therapies and bioengineering in lung biology and diseases: comprehensive review of the recent literature 2010–2012. Ann Am Thorac Soc. 2013;10(5):S45–97.

    Article  PubMed  Google Scholar 

  22. Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, Sanada F, Zheng H, Ogorek B, Rondon-Clavo C, Ferreira-Martins J, Matsuda A, Arranto C, Goichberg P, Giordano G, Haley KJ, Bardelli S, Rayatzadeh H, Liu X, Quaini F, Liao R, Leri A, Perrella MA, Loscalzo J, Anversa P. Evidence for human lung stem cells. N Engl J Med. 2011;364:1795–806.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hegab AE, Kubo H, Fujino N, Suzuki T, He M, Kato H, Yamaya M. Isolation and characterization of murine multipotent lung stem cells. Stem Cells Dev. 2010;19:523–36.

    Article  CAS  PubMed  Google Scholar 

  24. Buckley S, Shi W, Carraro G, Sedrakyan S, Sacco SD, Driscoll B, Perin L, Filippo RD, Warburton D. The milieu of damaged alveolar epithelial type 2 cells stimulates alveolar wound repair by endogenous and exogenous progenitors. Am J Respir Cell Mol Biol. 2011;45:1212–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Garcia O, Carraro G, Turcatel G, Hall M, Sedrakyan S, Roche T, Buckley S, Driscoll B, Perin L, Warburton D. Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via ccl2 modulation in bronchoalveolar lavage. PLoS One. 2013;8(8):e71679.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, Turcatel G, Langhe SPD, Driscoll B, Bellusci S, Minoo P, Atala A, Filippo RED, Warburton D. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26:2902–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Perin L, Sedrakyan S, Da Sacco S, De Filippo R. Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol. 2008;86:85–99.

    Article  CAS  PubMed  Google Scholar 

  28. Perin L, Sedrakyan S, Giuliani S, Sacco SD, Carraro G, Shiri L, Lemley KV, Rosol M, Wu S, Atala A, Warburton D, Filippo RED. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One. 2010;5:e9357.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sedrakyan S, Sacco SD, Milanesi A, Shiri L, Petrosyan A, Varimezova R, Warburton D, Lemley KV, Filippo RED, Perin L. Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol. 2012;23:661–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Moschidou D, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H, Nowakowska B, Phoolchund A, Lay K, Ramasamy TS, Cananzi M, Nettersheim D, Sullivan M, Frost J, Moore G, Vermeesch JR, Fisk NM, Thrasher AJ, Atala A, Adjaye J, Schorle H, Coppi PD, Guillot PV. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther. 2012;20:1953–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Da Sacco S, Sedrakyan S, Boldrin F, Giuliani S, Parnigotto P, Habibian R, Warburton D, De Filippo RE, Perin L. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol. 2010;183:1193–200.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Coppi PD, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  PubMed  Google Scholar 

  33. Siddiqui M, Atala A. Amniotic fluid-derived pluripotent cells, Handbook of stem cells, vol. 2. Burlington: Elsevier; 2004. p. 175–9.

    Google Scholar 

  34. Delo DM, De Coppi P, Bartsch Jr G, Atala A. Amniotic fluid and placental stem cells. Methods Enzymol. 2006;419:426–38.

    Article  CAS  PubMed  Google Scholar 

  35. Pederiva F, Ghionzoli M, Pierro A, De Coppi P, Tovar JA. Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transplant. 2013;22(9):1683–94.

    Article  CAS  PubMed  Google Scholar 

  36. Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, Porzionato A, Macchi V, Salmaso R, Scarpa M, Cozzi E, Fassina A, Navaglia F, Maran C, Onisto M, Caenazzo L, De Coppi P, De Caro R, Chiandetti L, Zaramella P. Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia. Pediatr Pulmonol. 2013;48(11):1070–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Warburton MD, MMM, FRCP, FRCS, FRCPCH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garcia, O., Warburton, D. (2014). Amniotic Fluid Stem Cell Therapy for Lung Disease. In: Atala, A., Murphy, S. (eds) Perinatal Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1118-9_6

Download citation

Publish with us

Policies and ethics