Treatment of Necrotizing Enterocolitis (NEC) with Amniotic Fluid Stem Cells

  • Augusto Zani
  • Mara Cananzi
  • Simon Eaton
  • Paolo De Coppi


Necrotizing enterocolitis (NEC) is a devastating disease of newborn infants, characterized by necrosis of one or more portions of the small and/or large bowel.

Despite extensive research and advancement in medical and surgical treatment over the last six decades, NEC still represents a challenging condition with a mortality rate as high as 40 % especially in very low birth weight infants.

Stem cell therapy has become an option for other intestinal diseases, such as refractory Crohn’s disease, which share some features with NEC.

We first attempted administration of amniotic fluid stem (AFS) cells in a well-established neonatal rat model of NEC. In this study, AFS cells integrated in the bowel wall and improved rat survival and clinical conditions, decreased NEC incidence and macroscopic gut damage, improved intestinal function, decreased bowel inflammation, increased enterocyte proliferation and reduced apoptosis. The beneficial effect was achieved via modulation of stromal cells expressing cyclooxygenase 2 in the lamina propria. Moreover, AFS cells differentially expressed genes of the Wnt/β-catenin pathway, which regulate intestinal epithelial stem cell function and cell migration and growth factors known to maintain gut epithelial integrity and reduce mucosal injury.

The same beneficial effects of the amniotic fluid have been later confirmed by other authors using different experimental models of NEC.

Stem cell therapy may represent a new therapeutic option for children with NEC. Understanding the mechanism of action of AFS cells in experimental NEC may help the development of new cellular or pharmacological therapies for human infants with NEC.


Mesenchymal Stem Cell Lamina Propria Dextran Sodium Sulphate Short Bowel Syndrome Intestinal Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Henry MC, Moss RL. Necrotizing enterocolitis. Annu Rev Med. 2009;60:111–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Lin PW, Stoll BJ. Necrotising enterocolitis. Lancet. 2006;368(9543):1271–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Lin PW, Nasr TR, Stoll BJ. Necrotizing enterocolitis: recent scientific advances in pathophysiology and prevention. Semin Perinatol. 2008;32(2):70–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Leaphart CK, Cavallo J, Gribar SC, et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol. 2007;179:4808–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Sodhi CP, Shi XH, Richardson WM, Grant ZS, Shapiro RA, Prindle Jr T, Branca M, Russo A, Gribar SC, Ma C, Hackam DJ. Toll-like receptor-4 inhibits enterocyte proliferation via impaired beta-catenin signaling in necrotizing enterocolitis. Gastroenterology. 2010;138(1):185–96.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Jilling T, Simon D, Lu J, et al. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol. 2006;177:3273–82.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Petrosyan M, Guner YS, Williams M, Grishin A, Ford HR. Current concepts regarding the pathogenesis of necrotizing enterocolitis. Pediatr Surg Int. 2009;25(4):309–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Bokodi G, Derzbach L, Bányász I, Tulassay T, Vásárhelyi B. Association of interferon gamma T +874A and interleukin 12 p40 promoter CTCTAA/GC polymorphism with the need for respiratory support and perinatal complications in low birthweight neonates. Arch Dis Child Fetal Neonatal Ed. 2007;9(1):F25–9.CrossRefGoogle Scholar
  9. 9.
    Bányász I, Bokodi G, Vásárhelyi B, Treszl A, Derzbach L, Szabó A, Tulassay T, Vannay A. Genetic polymorphisms for vascular endothelial growth factor in perinatal complications. Eur Cytokine Netw. 2006;17(4):266–70.PubMedGoogle Scholar
  10. 10.
    Moonen RM, Paulussen AD, Souren NY, Kessels AG, Rubio-Gozalbo ME, Villamor E. Carbamoyl phosphate synthetase polymorphisms as a risk factor for necrotizing enterocolitis. Pediatr Res. 2007;62(2):188–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Epelman M, Daneman A, Navarro OM, Morag I, Moore AM, Kim JH, Faingold R, Taylor G, Gerstle JT. Necrotizing enterocolitis: review of state-of-the-art imaging findings with pathologic correlation. Radiographics. 2007;27(2):285–305.PubMedCrossRefGoogle Scholar
  12. 12.
    Thompson AM, Bizzarro MJ. Necrotizing enterocolitis in newborns: pathogenesis, prevention and management. Drugs. 2008;68(9):1227–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Schnabl KL, Van Aerde JE, Thomson AB, Clandinin MT. Necrotizing enterocolitis: a multifactorial disease with no cure. World J Gastroenterol. 2008;14(14):2142–61.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Chung DH, Ethridge RT, Kim S, Owens-Stovall S, Hernandez A, Kelly DR, Evers BM. Molecular mechanisms contributing to necrotizing enterocolitis. Ann Surg. 2001;233(6):835–42.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hsueh W, Caplan MS, Qu XW, Tan XD, De Plaen IG, Gonzalez-Crussi F. Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol. 2003;6(1):6–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Chan KL, Ng SP, Chan KW, Wo YH, Tam PK. Pathogenesis of neonatal necrotizing enterocolitis: a study of the role of intraluminal pressure, age and bacterial concentration. Pediatr Surg Int. 2003;19(8):573–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Barlow B, Santulli TV. Importance of multiple episodes of hypoxia or cold stress on the development of enterocolitis in an animal model. Surgery. 1975;77(5):687–90.PubMedGoogle Scholar
  18. 18.
    Barlow B, Santulli TV, Heird WC, Pitt J, Blanc WA, Schullinger JN. An experimental study of acute neonatal enterocolitis-the importance of breast milk. J Pediatr Surg. 1974;9(5):587–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Grishin AV, Wang J, Potoka DA, Hackam DJ, Upperman JS, Boyle P, Zamora R, Ford HR. Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. J Immunol. 2006;176(1):580–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Zamora R, Bryan NS, Boyle P, Wong C, Milsom AB, Jaffe R, Feelisch M, Ford HR. Nitrosative stress in an animal model of necrotizing enterocolitis. Free Radic Biol Med. 2005;39(11):1428–37.PubMedCrossRefGoogle Scholar
  21. 21.
    Feng J, El-Assal ON, Besner GE. Heparin-binding epidermal growth factor-like growth factor reduces intestinal apoptosis in neonatal rats with necrotizing enterocolitis. J Pediatr Surg. 2006;41(4):742–7. discussion 742-7.PubMedCrossRefGoogle Scholar
  22. 22.
    Zani A, Cordischi L, Cananzi M, De Coppi P, Smith VV, Eaton S, Pierro A. Assessment of a neonatal rat model of necrotizing enterocolitis. Eur J Pediatr Surg. 2008;18(6):423–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Sodhi C, Richardson W, Gribar S, et al. The development of animal models for the study of necrotizing enterocolitis. Dis Model Mech. 2008;1:94–8.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    De Plaen IG, Liu SX, Tian R, Neequaye I, May MJ, Han XB, Hsueh W, Jilling T, Lu J, Caplan MS. Inhibition of nuclear factor-kappaB ameliorates bowel injury and prolongs survival in a neonatal rat model of necrotizing enterocolitis. Pediatr Res. 2007;61(6):716–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Drakos PE, Nagler A, Or R. Case of Crohn’s disease in bone marrow transplantation. Am J Hematol. 1993;43(2):157–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Okamoto R, Yajima T, Yamazaki M, Kanai T, Mukai M, Okamoto S, Ikeda Y, Hibi T, Inazawa J, Watanabe M. Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med. 2002;8(9):1011–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Komori M, Tsuji S, Tsujii M, Murata H, Iijima H, Yasumaru M, Nishida T, Irie T, Kawano S, Hori M. Involvement of bone marrow-derived cells in healing of experimental colitis in rats. Wound Repair Regen. 2005;13(1):109–18.PubMedCrossRefGoogle Scholar
  28. 28.
    Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Brittan M, Chance V, Elia G, Poulsom R, Alison MR, MacDonald TT, Wright NA. A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology. 2005;128(7):1984–95.PubMedCrossRefGoogle Scholar
  30. 30.
    Khalil PN, Weiler V, Nelson PJ, Khalil MN, Moosmann S, Mutschler WE, Siebeck M, Huss R. Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology. 2007;132(3):944–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Bamba S, Lee CY, Brittan M, Preston SL, Direkze NC, Poulsom R, Alison MR, Wright NA, Otto WR. Bone marrow transplantation ameliorates pathology in interleukin-10 knockout colitic mice. J Pathol. 2006;209(2):265–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Tanaka F, Tominaga K, Ochi M, Tanigawa T, Watanabe T, Fujiwara Y, Ohta K, Oshitani N, Higuchi K, Arakawa T. Exogenous administration of mesenchymal stem cells ameliorates dextran sulfate sodium-induced colitis via anti-inflammatory action in damaged tissue in rats. Life Sci. 2008;83(23–24):771–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Hayashi Y, Tsuji S, Tsujii M, Nishida T, Ishii S, Iijima H, Nakamura T, Eguchi H, Miyoshi E, Hayashi N, Kawano S. Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats. J Pharmacol Exp Ther. 2008;326(2):523–31.PubMedCrossRefGoogle Scholar
  34. 34.
    Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S, Rojas M. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L131–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin- induced acute lung injury in mice. J Immunol. 2007;179(3):1855–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Gonzalez-Rey E, Anderson P, González MA, Rico L, Büscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58(7):929–39.PubMedCrossRefGoogle Scholar
  38. 38.
    Tayman C, Uckan D, Kilic E, Ulus AT, Tonbul A, Murat Hirfanoglu I, Helvacioglu F, Haltas H, Koseoglu B, Tatli MM. Mesenchymal stem cell therapy in necrotizing enterocolitis: a rat study. Pediatr Res. 2011;70(5):489–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Zani A, Cananzi M, Fascetti-Leon F, Lauriti G, Smith VV, Bollini S, Ghionzoli M, D'Arrigo A, Pozzobon M, Piccoli M, Hicks A, Wells J, Siow B, Sebire NJ, Bishop C, Leon A, Atala A, Lythgoe MF, Pierro A, Eaton S, De Coppi P. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut. 2014;63(2):300–9.PubMedGoogle Scholar
  40. 40.
    Schirbel A, Fiocchi C. Inflammatory bowel disease: established and evolving considerations on its etiopathogenesis and therapy. J Dig Dis. 2010;11(5):266–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Brown SL, Riehl TE, Walker MR, Geske MJ, Doherty JM, Stenson WF, Stappenbeck TS. Myd88- dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest. 2007;117(1):258–69.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Bleich A, Hopf S, Hedrich HJ, van Lith HA, Li F, Balfour Sartor R, Mähler M. Genetic dissection of granulomatous enterocolitis and arthritis in the intramural peptidoglycan-polysaccharide- treated rat model of IBD. Inflamm Bowel Dis. 2009;15(12):1794–802.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Mizoguchi A, Mizoguchi E. Animal models of IBD: linkage to human disease. Curr Opin Pharmacol. 2010;10(5):578–87.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online. 2009;18 Suppl 1:17–27.PubMedCrossRefGoogle Scholar
  45. 45.
    Cananzi M, De Coppi P. CD117(+) amniotic fluid stem cells: state of the art and future perspectives. Organogenesis. 2012;8(3):77–88.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Bollini S, Pozzobon M, Nobles M, Riegler J, Dong X, Piccoli M, et al. In vitro and in vivo cardiomyogenic differentiation of amniotic fluid stem cells. Stem Cell Rev. 2011a;7:364–80.Google Scholar
  48. 48.
    Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26:2902–11.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Ditadi A, de Coppi P, Picone O, Gautreau L, Smati R, Six E, et al. Human and murine amniotic fluid c-Kit+ Lin- cells display hematopoietic activity. Blood. 2009;113:3953–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Piccoli M, Franzin C, Bertin E, Urbani L, Blaauw B, Repele A, et al. Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells. 2012;30:1675–84.PubMedCrossRefGoogle Scholar
  51. 51.
    Bollini S, Cheung KK, Riegler J, Dong X, Smart N, Ghionzoli M, et al. Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev. 2011;20:1985–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One. 2010;5:e9357.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, Varimezova R, et al. Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol. 2012;23:661–73.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev. 2012;21:1911–23.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Ghionzoli M, Cananzi M, Zani A, Rossi CA, Leon FF, Pierro A, Eaton S, De Coppi P. Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy. Pediatr Surg Int. 2010;26(1):79–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Good M, Siggers RH, Sodhi CP, et al. Amniotic fluid inhibits Toll-like receptor 4 signaling in the fetal and neonatal intestinal epithelium. Proc Natl Acad Sci U S A. 2012;109:11330–5.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Ford HR. Mechanism of nitric oxide-mediated intestinal barrier failure: insight into the pathogenesis of necrotizing enterocolitis. J Pediatr Surg. 2006;41(2):294–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Dempke W, Rie C, Grothey A, Schmoll HJ. Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol. 2001;127(7):411–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Joseph RR, Yazer E, Hanakawa Y, Stadnyk AW. Prostaglandins and activation of AC/cAMP prevents anoikis in IEC-18. Apoptosis. 2005;1(6):1221–33.CrossRefGoogle Scholar
  60. 60.
    Tessner TG, Muhale F, Riehl TE, et al. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through mechanism involving AKT activation and bax translocation. J Clin Invest. 2004;114:1676–85.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Ajuebor MN, Singh A, Wallace JL. Cyclooxygenase-2-derived prostaglandin D(2) is an early anti- inflammatory signal in experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2000;279(1):G238–44.PubMedGoogle Scholar
  62. 62.
    Gilroy DW, Colville-Nash PR, Willis D, et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med. 1999;5:698–701.PubMedCrossRefGoogle Scholar
  63. 63.
    Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, Tang J, Rosenstein RB, Wittes J, Corle D, Hess TM, Woloj GM, Boisserie F, Anderson WF, Viner JL, Bagheri D, Burn J, Chung DC, Dewar T, Foley TR, Hoffman N, Macrae F, Pruitt RE, Saltzman JR, Salzberg B, Sylwestrowicz T, Gordon GB, Hawk ET, APC Study Investigators. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med. 2006;355(9):873–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Hackam DJ, Upperman JS, Grishin A, Ford HR. Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg. 2005;14(1):49–57.PubMedCrossRefGoogle Scholar
  65. 65.
    Guthrie SO, Gordon PV, Thomas V, Thorp JA, Peabody J, Clark RH. Necrotizing enterocolitis among neonates in the United States. J Perinatol. 2003;23(4):278–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Lugo B, Ford HR, Grishin A. Molecular signaling in necrotizing enterocolitis: regulation of intestinal COX-2 expression. J Pediatr Surg. 2007;42(7):1165–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Khailova L, Mount Patrick SK, Arganbright KM, Halpern MD, Kinouchi T, Dvorak B. Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2010;299(5):G1118–27.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Ciorba M, Riehl TE, Rao S, et al. Lactobacillus probiotic protects intestinal epithelium from radiation injury in TLR-2/cyclooxygenase-2 dependent manner. Gut. 2012;61:829–38.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Riehl TE, Foster L, Stenson WF. Hyaluronic acid is radioprotective in the intestine through a TLR4 and COX-2 mediated mechanism. Am J Physiol Gastrointest Liver Physiol. 2012;302:G309–16.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN. Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol. 2006;38(10):1654–61.PubMedCrossRefGoogle Scholar
  71. 71.
    Walker MR, Brown SL, Riehl TE, Stenson WF, Stappenbeck TS. Growth factor regulation of prostaglandin-endoperoxide synthase 2 (Ptgs2) expression in colonic mesenchymal stem cells. J Biol Chem. 2010;285(7):5026–39.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    McElroy SJ, Hobbs S, Kallen M, Tejera N, Rosen MJ, Grishin A, Matta P, Schneider C, Upperman J, Ford H, Polk DB, Weitkamp JH. Transactivation of EGFR by LPS induces COX-2 expression in enterocytes. PLoS One. 2012;7(5):e38373.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Coursodon CF, Dvorak B. Epidermal growth factor and necrotizing enterocolitis. Curr Opin Pediatr. 2012;24(2):160–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Radulescu A, Zhang HY, Yu X, Olson JK, Darbyshire AK, Chen Y, Besner GE. Heparin-binding epidermal growth factor-like growth factor overexpression in transgenic mice increases resistance to necrotizing enterocolitis. J Pediatr Surg. 2010;45(10):1933–9.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Stenson WF. Preventing necrotising enterocolitis with amniotic fluid stem cells. Gut. 2014;63(2):218–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Augusto Zani
    • 1
  • Mara Cananzi
    • 1
  • Simon Eaton
    • 1
  • Paolo De Coppi
    • 2
  1. 1.Pediatric SurgeryUniversity College London Institute of Child HealthLondonUK
  2. 2.Surgery UnitUniversity College London Institute of Child Health and Great Ormond Street HospitalLondonUK

Personalised recommendations