Skip to main content

The Human Term Placenta as a Source of Transplantable Hematopoietic Stem Cells

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

In this chapter we summarize current knowledge on the hematopoietic potential of the human placenta throughout gestation and speculate about the possible use of this tissue at birth for the harvest of hematopoietic stem cells (HSCs) and progenitors. Placental CD34+ cells could be used to augment those harvested from umbilical cord blood (UCB), which are routinely banked and used for stem cell transplantation. The placenta is an organ that develops from embryonic tissue, even before formation of the embryo, and it performs multiple critical transport functions throughout gestation. The discovery, a decade ago, that the placenta harbors HSCs and is an active and important hematopoietic organ in mice and humans dramatically changed our knowledge of the ontogeny of the hematopoietic system, adding a new extra-embryonic site to our models of hematopoietic development. We think that unveiling the hematopoietic potential of the placenta did more than shift our understanding of developmental hematopoiesis; the finding that the full-term placenta also contains sizable numbers of HSCs, which could readily be harvested at birth and combined with those present in the UCB, might also change the way we collect, bank, and transplant neonatal HSCs. Moreover, this finding might also further expand the use of UCB-HSCs for adult allogeneic transplantation by significantly increasing the harvested number of HSCs and thus avoiding the use of multiple units of UCB in single transplants, ex vivo expansion of UCB-HSCs or any other manipulation of this precious, but limited, source of HSCs prior transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wagner JE, Gluckman E. Umbilical cord blood transplantation: the first 20 years. Semin Hematol. 2010;47(1):3–12.

    Article  PubMed  Google Scholar 

  2. Prindull G, Prindull B, Meulen N. Haematopoietic stem cells (CFUc) in human cord blood. Acta Paediatr Scand. 1978;67(4): 413–6.

    Article  CAS  PubMed  Google Scholar 

  3. Ende M, Ende N. Hematopoietic transplantation by means of fetal (cord) blood. A new method. Va Med Mon. 1972;99(3):276–80. Epub 1972/03/01.

    CAS  PubMed  Google Scholar 

  4. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174–8. Epub 1989/10/26.

    Article  CAS  PubMed  Google Scholar 

  5. Wagner JE, Rosenthal J, Sweetman R, Shu XO, Davies SM, Ramsay NK, et al. Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood. 1996;88(3):795–802. Epub 1996/08/01.

    CAS  PubMed  Google Scholar 

  6. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 1996;335(3):157–66. Epub 1996/07/18.

    Article  CAS  PubMed  Google Scholar 

  7. Wagner JE, Kernan NA, Steinbuch M, Broxmeyer HE, Gluckman E. Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet. 1995; 346(8969):214–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122(4): 491–8. Epub 2013/05/16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kurtzberg J. Update on umbilical cord blood transplantation. Curr Opin Pediatr. 2009;21(1):22–9.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, McGlave PB, Miller JS, et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood. 2005;105(3):1343–7.

    Article  CAS  PubMed  Google Scholar 

  11. Barker JN, Scaradavou A, Stevens CE. Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood. 2010;115(9):1843–9. Epub 2009/12/24.

    Article  CAS  PubMed  Google Scholar 

  12. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–22.

    Article  CAS  PubMed  Google Scholar 

  13. Dancis J, Jansen V, Gorstein F, Douglas GW. Hematopoietic cells in mouse placenta. Am J Obstet Gynecol. 1968;100(8):1110–21.

    CAS  PubMed  Google Scholar 

  14. Melchers F. Murine embryonic B lymphocyte development in the placenta. Nature. 1979;277(5693):219–21.

    Article  CAS  PubMed  Google Scholar 

  15. Alvarez-Silva M, Belo-Diabangouaya P, Salaun J, Dieterlen-Lievre F. Mouse placenta is a major hematopoietic organ. Development. 2003;130(22):5437–44.

    Article  CAS  PubMed  Google Scholar 

  16. Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8(3):365–75.

    Article  CAS  PubMed  Google Scholar 

  17. Ottersbach K, Dzierzak E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell. 2005;8(3):377–87.

    Article  CAS  PubMed  Google Scholar 

  18. Barcena A, Muench MO, Kapidzic M, Fisher SJ. A new role for the human placenta as a hematopoietic site throughout gestation. Reprod Sci. 2009;16(2):178–87.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Robin C, Bollerot K, Mendes S, Haak E, Crisan M, Cerisoli F, et al. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell. 2009;5(4):385–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Serikov V, Hounshell C, Larkin S, Green W, Ikeda H, Walters MC, et al. Human term placenta as a source of hematopoietic cells. Exp Biol Med (Maywood). 2009;234(7):813–23.

    Article  CAS  Google Scholar 

  21. Luckett WP. Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am J Anat. 1978;152(1):59–97.

    Article  CAS  PubMed  Google Scholar 

  22. Tavian M, Coulombel L, Lutton D, San Clemente H, Dieterlen-Lièvre F, Péault B. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood. 1996;87:67–72.

    CAS  PubMed  Google Scholar 

  23. Peault B, Tavian M. Hematopoietic stem cell emergence in the human embryo and fetus. Ann N Y Acad Sci. 2003;996:132–40.

    Article  PubMed  Google Scholar 

  24. Tavian M, Hallais MF, Peault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development. 1999;126(4):793–803.

    CAS  PubMed  Google Scholar 

  25. Ivanovs A, Rybtsov S, Welch L, Anderson RA, Turner ML, Medvinsky A. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J Exp Med. 2011;208(12):2417–27. Epub 2011/11/02.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Migliaccio G, Migliaccio AR, Petti S, Maravilio F, Russo G, Lazzoro D, et al. Human embryonic hemopoiesis. Kinetics of progenitors and precursors nderlying the yolk sac—liver transition. J Clin Invest. 1986;78:51–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Golfier F, Bárcena A, Cruz J, Harrison MR, Muench MO. Mid-trimester fetal livers are a rich source of CD34+/++ cells for transplantation. Bone Marrow Transplant. 1999;24:451–61.

    Article  CAS  PubMed  Google Scholar 

  28. Charbord P, Tavian M, Humeau L, Peault B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood. 1996;87(10): 4109–19.

    CAS  PubMed  Google Scholar 

  29. Corbel C, Salaun J, Belo-Diabangouaya P, Dieterlen-Lievre F. Hematopoietic potential of the pre-fusion allantois. Dev Biol. 2007;301(2):478–88.

    Article  CAS  PubMed  Google Scholar 

  30. Zeigler BM, Sugiyama D, Chen M, Guo Y, Downs KM, Speck NA. The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development. 2006;133(21):4183–92.

    Article  CAS  PubMed  Google Scholar 

  31. Hamilton WJ, Boyd JD. The Human Placenta. Cambridge: Heffer and Sons; 1970. 365 p.

    Google Scholar 

  32. Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004;25(2–3):114–26. Epub 2004/02/20.

    Article  CAS  PubMed  Google Scholar 

  33. Benirschke K, Kaufmann P. Pathology of the human placenta. 4th ed. New York: Springer; 2000. p. 81–5.

    Book  Google Scholar 

  34. Barcena A, Muench MO, Kapidzic M, Gormley M, Goldfien GA, Fisher SJ. Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation. Transfusion. 2011;51 Suppl 4:94S–105S.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Antas VI, Al-Drees MA, Prudence AJ, Sugiyama D, Fraser ST. Hemogenic endothelium: a vessel for blood production. Int J Biochem Cell Biol. 2013;45(3):692–5. Epub 2012/12/29.

    Article  CAS  PubMed  Google Scholar 

  36. Zape JP, Zovein AC. Hemogenic endothelium: origins, regulation, and implications for vascular biology. Semin Cell Dev Biol. 2011;22(9):1036–47. Epub 2011/10/18.

    Article  PubMed  Google Scholar 

  37. Rhodes KE, Gekas C, Wang Y, Lux CT, Francis CS, Chan DN, et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell. 2008;2(3):252–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Muench MO, Namikawa R. Disparate regulation of human fetal erythropoiesis by the microenvironments of the liver and bone marrow. Blood Cells Mol Dis. 2001;27(2):377–90.

    Article  CAS  PubMed  Google Scholar 

  39. Van Handel B, Prashad SL, Hassanzadeh-Kiabi N, Huang A, Magnusson M, Atanassova B, et al. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. Blood. 2010;116(17):3321–30.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Solves P, Perales A, Moraga R, Saucedo E, Soler MA, Monleon J. Maternal, neonatal and collection factors influencing the haematopoietic content of cord blood units. Acta Haematol. 2005;113(4): 241–6.

    Article  PubMed  Google Scholar 

  41. M-Reboredo N, Diaz A, Castro A, Villaescusa RG. Collection, processing and cryopreservation of umbilical cord blood for unrelated transplantation. Bone Marrow Transplant. 2000;26(12):1263–70.

    Article  CAS  PubMed  Google Scholar 

  42. Wu JY, Liao C, Xu ZP, Chen JS, Gu SL, Huang YN, et al. Banking and transplantation of umbilical cord blood in Guangzhou, China. Cytotherapy. 2006;8(5):488–97.

    Article  CAS  PubMed  Google Scholar 

  43. Bornstein R, Flores AI, Montalban MA, del Rey MJ, de la Serna J, Gilsanz F. A modified cord blood collection method achieves sufficient cell levels for transplantation in most adult patients. Stem Cells. 2005;23(3):324–34. Epub 2005/03/08.

    Article  PubMed  Google Scholar 

  44. Broxmeyer HE, Cooper S, Hass DM, Hathaway JK, Stehman FB, Hangoc G. Experimental basis of cord blood transplantation. Bone Marrow Transplant. 2009;44(10):627–33. Epub 2009/10/06.

    Article  CAS  PubMed  Google Scholar 

  45. Tsagias N, Koliakos I, Lappa M, Karagiannis V, Koliakos GG. Placenta perfusion has hematopoietic and mesenchymal progenitor stem cell potential. Transfusion. 2011;51(5):976–85. Epub 2011/03/09.

    Article  PubMed  Google Scholar 

  46. Hendrix CW, Flexner C, MacFarland RT, Giandomenico C, Fuchs EJ, Redpath E, et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother. 2000;44(6):1667–73. Epub 2000/05/19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Larochelle A, Krouse A, Metzger M, Orlic D, Donahue RE, Fricker S, et al. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood. 2006;107(9):3772–8. Epub 2006/01/28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010;16(2):232–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329(5997):1345–8. Epub 2010/08/07.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood. 2013;122(17):3074–81. Epub 2013/09/03.

    Article  CAS  PubMed  Google Scholar 

  51. McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy. 2004;6(4):311–7. Epub 2005/09/09.

    Article  CAS  PubMed  Google Scholar 

  52. de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 2012;367(24):2305–15. Epub 2012/12/14.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Poloni A, Leoni P, Buscemi L, Balducci F, Pasquini R, Masia MC, et al. Engraftment capacity of mesenchymal cells following hematopoietic stem cell transplantation in patients receiving reduced-intensity conditioning regimen. Leukemia. 2006;20(2):329–35. Epub 2005/12/13.

    Article  CAS  PubMed  Google Scholar 

  54. Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J, et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia. 2007;21(8):1733–8. Epub 2007/06/02.

    Article  PubMed  Google Scholar 

  55. Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM, et al. Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood. 2007;110(7):2764–7. Epub 2007/07/20.

    Article  CAS  PubMed  Google Scholar 

  56. Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant. 2009;43(6):447–54. Epub 2008/10/29.

    Article  CAS  PubMed  Google Scholar 

  57. Castrechini NM, Murthi P, Gude NM, Erwich JJ, Gronthos S, Zannettino A, et al. Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta. 2010;31(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  58. Hiwase SD, Dyson PG, To LB, Lewis ID. Cotransplantation of placental mesenchymal stromal cells enhances single and double cord blood engraftment in nonobese diabetic/severe combined immune deficient mice. Stem Cells. 2009;27(9):2293–300. Epub 2009/06/23.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the contributions of our colleagues with whom we have collaborated: Jason Farrell, for assistance to procure placental samples; Ashley Beyer and Marina Fomin for assistance with the murine transplant experiments and the staff and faculty at San Francisco General Hospital Women’s Options Center for assistance in the collection of human fetal tissues. We also wish to thank the staff and faculty at the Department of Obstetric, Gynecology and Reproductive Sciences and at the Labor and Delivery Unit from Moffitt Hospital, University of California San Francisco, for their assistance in the collection of term placental samples and UCB.

This work was supported by the National Institutes of Health: R21 HD055328 and P01 DK088760. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Bárcena Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bárcena, A., Muench, M.O., Kapidzic, M., Gormley, M., Fisher, S.J. (2014). The Human Term Placenta as a Source of Transplantable Hematopoietic Stem Cells. In: Atala, A., Murphy, S. (eds) Perinatal Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1118-9_15

Download citation

Publish with us

Policies and ethics