Skip to main content

Extended Crystal PDEs

  • Chapter
  • First Online:
  • 1664 Accesses

Abstract

In this paper we show that between partial differential equations (PDEs) and crystallographic groups there is an unforeseen relation. In fact we prove that integral bordism groups of PDEs can be considered extensions of crystallographic subgroups. In this respect we can consider PDEs as extended crystals. Then an algebraic topological obstruction (crystal obstruction), characterizing existence of global smooth solutions for smooth boundary value problems, is obtained. Applications of this new theory to the Ricci flow equation and Navier–Stokes equation are given, which solve some well-known fundamental problems. These results are also extended to singular PDEs (introducing extended crystal singular PDEs). An application to singular magnetohydrodynamics partial differential equations (MHD-PDEs) is given following some our previous results on such equations, and showing existence of (finite times stable smooth) global solutions crossing the critical nuclear energy production zone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recall that given two groups A and B and an homomorphism \(\alpha: B\to Aut(A)\), the semidirect product is a group denoted by \(A\rtimes_\alpha B\), that is the Cartesian product \(A\times B\), with product given by \((a,b).(\bar a,\bar b)=(a.\alpha(b)(\bar a),b.\bar b)\). The semidirect product reduces to the direct product, i.e., \(A\rtimes_\alpha B=A\times B\equiv A\oplus B\), when \(\alpha(b)=1\), for all \(b\in B\). In the following we will omit the symbol α.

  2. 2.

    A discrete subgroup \(H\subset G\) of a topological group G, is cocompact if there is a compact subset \(K\!\!\subset \! G\) such that \(H\!K=G\).

  3. 3.

    Usually one denotes such an extension simply with \(G(d)/{\bf T}\), whether we are not interested to emphasize the notation for \(G\cong G(d)/{\bf T}\).

  4. 4.

    \(\mathbb{Z}G\) is the free \(\mathbb{Z}\)-module generated by the elements of G. The multiplication in G extends uniquely to a \(\mathbb{Z}\)-bilinear product \(\mathbb{Z}G\times\mathbb{Z}G\to \mathbb{Z}G\) so that \(\mathbb{Z}G\) becomes a ring called the integral group ring of G. A G -module A, is just a (left)\(\mathbb{Z}G\)-module on the Abelian group A. This action can be identified by a group homomorphism \(G\to Hom_{group}(A)\).

  5. 5.

    The lattice subgroups of a group G is a lattice under inclusion. The identity \(1\in G\) identifies the minimum \(\{1\}<G\) and the maximum is just G. In the following we will denote also by e = 1 the identity of a group G. The subgroup \({\bf T}\subset G(d)\) is called also the Bieberbach lattice of G(d).

  6. 6.

    For example if \({}^{}E\) is identified by means of an infinite graph, (see, e.g., [100]), then the unit cell is the corresponding fundamental finite graph. Of course d-dimensional chains can be associated to such graphs, so that also the corresponding unit cells can be identified with compact d-chains.

  7. 7.

    Note that a space group is characterized other than by translational and point symmetry, also by the metric-parameters characterizing the unit cell. Thus the number of space groups is necessarily infinite.

  8. 8.

    See also Refs. [1, 4, 6, 7, 32, 45, 91, 95, 97], and works by M. Gromov [25] and E. Ruh [95] on the almost flat manifolds, that are related to such crystallographic groups.

  9. 9.

    Let A, B and C groups and \(B A\), \(B C\), the amalgamated free product \(A_BC\) is generated by the elements of A and C with the common elements from B identified.

  10. 10.

    Let us recall that the index of a subgroup \(H\subset G\), denoted \([G:H]\), is the number of left cosets \(aH=\{ah: h\in H\}\), (resp. right cosets \(Ha=\{ha: h\in H\}\)), of H. For a finite group G one has the following formula: (Lagrange’s formula) \([G:H]=\frac{o(G)}{o(H)}\), where o(G), resp. o(H), is the order of G, resp. H. If aH = Ha, for any \(a\in G\), then H is said to be a normal subgroup. Every subgroup of index 2 is normal, and its cosets are the subgroup and its complement.

  11. 11.

    See also the recent work by Bernstein and Schwarzman on the complex crystallographic groups [7].

  12. 12.

    For general information on bordism groups and related problems in differential topology, see, e.g., Refs. [3139415290949899102105107108].

  13. 13.

    A partition \((i_1,\cdots,i_r)\) of n is nondyadic if none of the \(i_\beta\) are of the form \(2^s-1\).

  14. 14.

    Pontrjagin numbers are determined by means of homonymous characteristic classes belonging to \(H^\bullet(BG,\mathbb{Z})\), where BG is the classifying space for G-bundles, with \(G=S_p(n)\). See, e.g., Refs. [39419499102104107108].

  15. 15.

    Let us recall that weak solutions, are solutions V, where the set \(\Sigma(V)\) of singular points of V, contains also discontinuity points, \(q,q'\in V\), with \(\pi_{k,0}(q)=\pi_{k,0}(q')=a\in W\), or \(\pi_{k}(q)=\pi_{k}(q')=p\in M\). We denote such a set by \(\Sigma(V)_S\subset\Sigma(V)\), and, in such cases we shall talk more precisely of singular boundary of V, like \((\partial V)_S=\partial V\setminus\Sigma(V)_S\). However, for abuse of notation we shall denote \((\partial V)_S\), (resp. \(\Sigma(V)_S\)), simply by \((\partial V)\), (resp. \(\Sigma(V)\)), also if no confusion can arise. Solutions with such singular points are of great importance and must be included in a geometric theory of PDEs, too [62]. Let us also emphasize that singular solutions can be identified with integral n-chains in E k , and in this category can be considered also fractal solutions, i.e., solutions with sectional fractal or multifractal geometry. (For fractal geometry see, e.g., [20, 35, 40].)

  16. 16.

    The bording solutions considered for the bordism groups are singular solutions if the symbols g k and \(g_{k+1}\) are different from zero, and for singular weak solutions in the general case. Here we have denoted \(\underline{\Omega}_p(X)\) the p-bordism group of a manifold X. For information on such structure of the algebraic topology see, e.g., [3152909499101104107108].

  17. 17.

    Let us remark that sequences (29) and (31) do not necessitate to be exact but are always partially exact. In fact, even if it does not necessitate that \(d_\circ e_*=0\) and \(f_*\circ g_*=0\), (hence neither \({\hbox{\rm im}}\,(e_*)={\rm ker}(d_*)\) and \({\hbox{\rm im}}\,(g_*)={\rm ker}(f_*)\)), one has that \(e_*\) and \(g_*\) are monomorphisms and \(d_*\) and \(f_*\) are epimorphisms. This is enough for our proof. Let us recall also that \({\bf H}_{n-1}(E_k)\equiv Map(\Omega_{n-1}^{E_k};\mathbb{R})\) is an Hopf algebra in extended sense, i.e. it contains the Hopf algebra \(\mathbb{R}^{\Omega_{n-1}}\) as a subalgebra. (See also [56].)

  18. 18.

    Singular solutions, like those described in this example, are very important in many physical applications too, since they represent complex phenomena related to perturbations of some fixed dynamic background. For example, for suitable values of the parameters a and b in (35), manifolds \(Y[\mu,a,b]\) intersect Y S along common characteristic lines, and the singular solutions V are piecewise \(\mathbb{Z}_2\)-manifolds. (For complementary information on such singular manifolds and singular solutions of PDEs, see also [13, 42, 56, 72].)

  19. 19.

    This function \(\widetilde{u}(t,x)\), is well defined and limited in all \((t,x)\in\mathbb{R}^+\times[0,1]\), since the function h(x) is smooth in [0,1] and with \(|\frac{d^{2n}h}{dx^{2n}}(x)|\le C\in\mathbb{R}\), \(\forall x\in[0,1]\). In fact one has \(\sum_{n\ge 0}t^n\widetilde{a}_n\le C\sum_{n\ge 0}\frac{t^n}{n!}\equiv C\sum_{n\ge 0}b_n\). The last series converges, with convergence radius \(r=\infty\) since \(\lim_{n\to\infty}\left|\frac{b_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{t}{n+1}=0=\frac{1}{r}\). Therefore the series \(\sum_{n\ge 0}t^n \widetilde{a}_n(x)\) is convergent as it is absolutely convergent.

  20. 20.

    An extended 0-crystal PDE \(E_k\subset J^k_n(W)\) does not necessitate to be a 0-crystal PDE. In fact E k is an extended 0-crystal PDE if \(\Omega_{n-1,w}^{E_k}=0\). This does not necessarily imply that \(\Omega_{n-1}^{E_k}=0\).

  21. 21.

    In general a steady state solution of \((RF)\) is not admitted since this should imply that \((M,\gamma)\) is Ricci flat. Furthermore, regular solutions \(g_{ij}(t,x^k)=h(t)\bar g_{ij}(x^k)\), with separated time variable from space ones, imply that \((M,\gamma)\) is an Einstein manifold. In fact \(R_{ij}(g)=R_{ij}(h\bar g)=R_{ij}(\bar g)\). The Ricci flow equation becomes \(h_t(t)\bar g_{ij}(x^k)=\kappa R_{ij}(\bar g)\). Therefore, must be \(h_t(t)=\omega=\kappa R_{ij}(\bar g)/\bar g_{ij}(x^k)\), with \(\omega \in\mathbb{R}\). By imposing the initial condition \(g_{ij}(0,x^k)=\gamma_{ij}(x^k)\), we get that must be \(h(t)=\omega t+1\) and \(\bar g_{ij}(x^k)=\gamma_{ij}(x^k)\), hence \(R_{ij}(\gamma)=\gamma_{ij}\omega/\kappa\). Vice versa, if the Ricci flow equation is considered only for Einstein manifolds, then solutions with separated variables like above, are admitted. This means that in general, i.e., starting with any \((M,\gamma)\), we cannot assume solutions \(g_{ij}(t,x^k)\) with the above separated variables structure, even if these solutions “arrive” to S 3, that is just an Einstein manifold. The same results can be obtained by considering metrics \(g(t,x^k)\), obtained deforming \(\gamma(x^k)\), under a space–time flow \(\phi_\lambda\) of \(M\times\mathbb{R}\), i.e., \(\{t\circ\phi_\lambda=t+\lambda, x^k\circ\phi_\lambda=\phi_\lambda^k(t,x^i)\}_{1\le i,k\le 3}\), and with initial condition \(\{\phi_0^k=x^k\}_{k=1,2,3}\). In fact if we assume that \(\phi_\lambda^r=h(\lambda)\bar\phi^r(x^k)\), then the Ricci flow equation becomes as given in (45).

    $$\frac{\dot h^2(\lambda)}{h^2(\lambda)}=\kappa\frac{\bar\phi^r_i\bar\phi^r_i(R_{rs}(\gamma)\circ\phi_\lambda)} {\bar\phi^r_i\bar\phi^r_i(\gamma_{rs}(\gamma)\circ\phi_\lambda)}=\omega\in\mathbb{R}^{+} \Rightarrow\left\{\begin{array}{@{}ll@{}} {\rm(a)}& \!\!\dot h(\lambda)-\pm\sqrt{\omega}h(\lambda)=0\\\rm(b)& \!\!\bar\phi^r_i\bar\phi^r_i[R_{rs}(\gamma)-\frac{\omega}{\kappa}\gamma_{rs}]\circ\phi_\lambda=0\end{array} \right\}$$
    (45)

    The integration of the Eq. (45(a)) gives \(h(\lambda)=Ce^{\pm\lambda\sqrt{\omega}}\). Furthermore, if \((M,\gamma)\) is an Einstein manifold, i.e., there exists \(\mu\in\mathbb{R}\), such that \(R_{rs}(\gamma)=\mu\gamma_{rs}\), then taking \(\omega=\mu\kappa\), one has the following solution, uniquely identified by the initial condition, (up to rigid flows): \(\phi_\lambda=e^{\pm\lambda\sqrt{\mu\kappa}}x^r\). If \((M,\gamma)\) is not Einstein, or equivalently, assuming \(\omega\not=\kappa\mu\), we see that the solutions of Eq. (45(b)) are \(\bar\phi^r=a^r\in\mathbb{R}\), since the metric \(\bar\gamma_{rs}\equiv R_{rs}(\gamma)-\frac{\omega}{\kappa}\gamma_{rs}\) is not degenerate, hence must necessarily be \(\bar\phi^r_i=0\). But such a flow does not satisfy initial condition \(\{\phi_0^r=x^r\}_{r=1,2,3}\). In conclusion a metric \(g_{ij}(t,x^k)\), obtained deforming γ with a space-time flow \(\phi_\lambda\), where \(\phi_\lambda^r=h(\lambda)\bar\phi^r(x^k)\), is a solution of the Ricci flow equation iff \((M,\gamma)\) is Einstein, or Ricci flat. This last case corresponds to take \(\omega=0\) in Eq. (45) and has as solution the unique flow, up to rigid ones, \(\phi_\lambda^r=x^r\).

  22. 22.

    Generalized solutions of PDEs, called viscosity solutions were introduced by Pierre-Louis Lions and Michael Crandall in the paper [36]. Such mathematical objects do not necessitate to be solutions, but are envelope manifolds of solutions.

  23. 23.

    Let us emphasize also that an integral 4-plane, where the components \(g_{ij,\beta}\), \(0\le|\beta|\le 3\), satisfy conditions in (42), but not all conditions in (48), has the corresponding integral manifold, say \(\widetilde{V}\), that passes for N 0, but it is not contained in \((RF)\). (This is represented by V outside in Fig. 1.) Let us denote the corresponding metric with \(\widetilde{g}\). Therefore, the retraction method imposes also to \(g_{ij,\beta}\), with \(0\le|\beta|\le 3\), to satisfy conditions reported in (48). The relation between \(\widetilde{V}\equiv V_{outside}\subset \textit{JD}^2(E)\), and \(V\subset (RF)\), can be realized with a deformation, \(g_{\lambda}\), connecting the corresponding metrics \(\widetilde{g}\) and g. More precisely, \(g_{\lambda}=\widetilde{g}+\lambda[g-\widetilde{g}]\), \(\lambda\in[0,1]\). The integral manifolds \(V_{\lambda}\subset \textit{JD}^2(E)\), generated by \(g_{\lambda}\), are not contained in \((RF)\) for any \(\lambda\in[0,1]\), but all pass for N 0. In fact, since \((g_{\lambda})_{ij,\beta}=\widetilde{g}_{ij,\beta}+\lambda[g_{ij,\beta}-\widetilde{g}_{ij,\beta}]\), \(|\beta|\ge 0\), we get that \((g_{\lambda})_{ij,\beta}|_{N_0}=\widetilde{g}_{ij,\beta}|_{N_0}=g_{ij,\beta}|_{N_0}\), for \(0\le|\beta|\le 2\), but \((g_{\lambda})_{ij,\beta}|_{N_0}\) do not satisfy conditions in (48) for \(|\beta|=3\). This is just the meaning of the retraction method considered in the proof of Lemma 14.

  24. 24.

    This generalizes a previous result by Hamilton [27], and after separately by De Turk [19] and Chow and Knopp [16], that proved existence and uniqueness of nonsingular solution for Cauchy problem in some Ricci flow equation. Let us also emphasize that our approach to find solutions for Cauchy problems, works also when \(N_0\subset (RF)\) is diffeomorphic to a 3-dimensional spacelike submanifold of W, that is not necessarily representable by a section of \(E_{t=0}\cong\widetilde{S^0_2M}\to M\).

  25. 25.

    The proof of the Poincaré conjecture given here refers to the Ricci flow equation, according to some ideas pioneered by Hamilton [2630], and followed also by Perelman [43, 44]. However the arguments used here are completely different from ones used by Hamilton and Perelman. (For general information on the relations between Poincaré conjecture and Ricci flow equation, see, e.g., Refs.[5, 17, 18] and papers quoted there.) Here we used our general PDE’s algebraic topological theory, previously developed in some works. Compare also with our previous proof given in [2, 3], where, instead was not yet introduced the relation between PDEs and crystallographic groups. Let us note also that whether M is homeomorphic to S 3, then M is necessarily diffeomorphic to S 3. (See [78, 80] for details. For related subjects see also [77, 8186].)

  26. 26.

    \(\mathbb{R}[[x^1,\dots,x^n]]\) denotes the algebra of formal series \(\sum_{i_1,\dots,i_n}a_{i_1\cdots i_n}(x^1)^{i_1}\cdots(x^n)^{i_n}\), with \(a_{i_1\cdots i_n}\in\mathbb{R}\). Real analytic functions in the indeterminates \((x^1,\dots,x^n)\), are identified with above formal series having nonzero converging radius. Thus real analytic functions belong to a subalgebra of \(\mathbb{R}[[x^1,\dots,x^n]]\). This last can be also called the algebra of real formal analytic functions in the indeterminates \((x^1,\dots,x^n)\).

  27. 27.

    For general information on the geometric theory of PDEs see, e.g., [912142225333438103105]. In particular, for singular PDE geometry, see the book [60] and the recent papers [3, 79] where many boundary value problems are explicitly considered. For basic information on differential topology and algebraic topology, see, e.g., [92431394147949998102105107108].

  28. 28.

    If \(\mathfrak{a}\) is any ideal of A, the radical of \(\mathfrak{a}\) is the following ideal \(r(\mathfrak{a})\equiv \sqrt{\mathfrak{a}}\equiv\{x\in A | x^n\in\mathfrak{a}for some\) n>0\(\}\equiv rad(\mathfrak{a})\). If \(\sqrt{\mathfrak{a}}=\mathfrak{a}\), then \(\mathfrak{a}\) is called radical ideal or perfect. One has also that \(r(\mathfrak{a})\) is the intersection of all prime ideals \(\mathfrak{p}\subset A\), containing \(\mathfrak{a}\). In particular, the radical of the zero ideal \(<0>\) is the nilradical, nil(A), of A, i.e., the set of all nilpotent elements of A. Therefore nil(A) is the intersection of all prime ideals, (since all ideals must contain 0). One has also \(nil(A)\subset rad(A)\), where rad(A) is the ideal of A defined by intersection of all maximal ideals \(\mathfrak{m}\subset A\). If \(\mathfrak{a}\) is a radical ideal, then \(A/\mathfrak{a}\) is reduced, i.e., the set of its nilpotent elements is reduced to \(\{0\}\). In particular \(A/nil(A)\) is reduced. If \(\pi:A\to A/\mathfrak{a}\) is the canonical projection, then \(\pi^{-1}(nil(A/\mathfrak{a}))=r(\mathfrak{a})\).

  29. 29.

    Let us emphasize that by using Lemma 14 we can identify admissible smooth 1-dimensional integral manifolds in A j , \(j=1,2\). In fact, A j are formally integrable and completely integrable PDEs. So we can use Lemma 14(1), but also Lemma 14(3), since \(\pi_{1,0}(A_j)=F\), and \(A_j\to F\) are affine subbundles of \(\textit{JD}(F)\to F\), with associated vector bundle the symbol g 1.

  30. 30.

    Note that the bifurcation does not necessarily imply that the tangent planes in the points of \(V_{ij}\subset V\) to the components V i and V j , should be different.

  31. 31.

    But, in general, it is \(\Omega_{n-1}^{{}^{(ij)}E_k}\not=0\).

  32. 32.

    Let us emphasize that admissible Cauchy integral manifolds can be found in each component of \(\widehat{\underline{(\textit{MHD})}}\), thanks to Lemma 14. More precisely, the proceeding followed for the Navier–Stokes equation in Example 13, to solve Cauchy problems there, can be applied also to \(\widehat{\underline{(\textit{MHD})}}\). In fact, envelopment solutions can be built also for all the components of this last equation, since they are formally integrable and completely integrable PDEs.

References

  1. Abels, H.: Discrete groups of affine isometries. J. Lie Theory 9, 321–349 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Prástaro, A.: Geometry of PDE’s.III(I): Webs on PDE’s and integral bordism groups. The general theory. Adv. Math. Sci. Appl. 17(1), 239–266 (2007); Geometry of PDE’s.III(II): Webs on PDE’s and integral bordism groups. Applications to Riemannian geometry PDE’s. Adv. Math. Sci. Appl. 17(1), 267–281 (2007)

    Google Scholar 

  3. Agarwal, R.P., Prástaro, A.: Singular PDE’s geometry and boundary value problems. J. Nonlinear Conv. Anal. 9(3), 417–460 (2008); On singular PDE’s geometry and boundary value problems. Appl. Anal. 88(8), 1115–1131 (2009). URL

    Google Scholar 

  4. Alperin, J.L., Bell, R.B.: Groups and Representations. Graduate Text in Mathematics, vol 162. Springer, New York (1995)

    Google Scholar 

  5. Anderson, M.T.: Geometrization of 3-manifolds via the Ricci flow. Not. Amer. Math. Soc. 51, 184–193 (2004)

    MATH  Google Scholar 

  6. Arfken, G.: Crystallographic Point and Space Groups. Mathematical Methods for Physicists, 3rd edn. Academic Press, Orlando (1985)

    Google Scholar 

  7. Bernstein, J., Schwarzman, O.: Complex crystallographic Coxeter groups and affine root systems. J. Nonlinear Math. Phys. 13(2), 163–182 (2006); Chevally’s theorem for the complex crystallographic groups. J. Nonlinear Math. Phys. 13(3), 323–351 (2006)

    Google Scholar 

  8. Bieberbach, L.: Über die bewegungsgruppen der Euklidschen räume.I. Math. Ann. 70, 297–336 (1911). Über die bewegungsgruppen der Euklidschen räume.II. Math. Ann. 72, 400–412 (1912)

    Google Scholar 

  9. Boardman, J.M.: Singularities of differentiable maps. Publ. Math. Inst. Hautes Études Sci. 33, 21–57 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourbaki, N.: Lie Groups and Lie Algebras (Chapters 4–6). Springer-Verlag, Berlin (2002); Lie Groups and Lie Algebras (Chapters 7–9). Springer-Verlag, Berlin (2005)

    Google Scholar 

  11. Brown, K.S.: Cohomology of Groups. Springer-Verlag, Paris (1969)

    Google Scholar 

  12. Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A.: Exterior Differential Systems. Springer-Verlag, New York (1991)

    Book  MATH  Google Scholar 

  13. Buoncristiano, S., Rourke, C.P., Sanderson, B.J.: A Geometric Approach to Homology Theory (London Math. Soc. Lecture Note Ser. 18), Cambridge University Press, Cambridge; Springer-Verlag, New York (1976)

    Google Scholar 

  14. Cappel, S., Ranicki, A., Rosenberg, J. (eds.): Surveys on Surgery Theory: Volume 1, Papers Dedicated to C. T. C. Wall. Princeton University Press, Princeton (1999)

    Google Scholar 

  15. Charlap, L.S.: Bieberbach Groups and Flat Manifolds. Springer-Verlag, New York (1986)

    Book  MATH  Google Scholar 

  16. Chow, B., Knopp, D.: The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, vol. 110. American Mathematical Society (2004)

    Google Scholar 

  17. Chow, B., Chu, S.-C., Gliekenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: Techniques and Applications: Part I: Geometric Aspects, Mathematical Surveys Monographs, vol. 135. American Mathematical Society (2008)

    Google Scholar 

  18. Chow, B., Chu, S.-C., Gliekenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications: Part II: Analytic Aspects, Mathematical Surveys Monographs, vol. 144. American Mathematical Society (2008)

    Google Scholar 

  19. De Turk, D.M.: Deforming metrics in the direction of their Ricci tensors. J. Differ. Geom. 18(1), 157–162 (1983)

    Google Scholar 

  20. Falconer, K.J.: Fractal Geometry. Mathematical Foundations and Applications, 2nd revised edn. Wiley (2003)

    Google Scholar 

  21. Fedorov, E.S.: The Symmetry and Structure of Crystals. Fundamenta Works, Moscow (1949), 111–255. (In Russian).

    Google Scholar 

  22. Goldshmidt, H.: Integrability criteria for systems of non-linear partial differential equations. J. Differ. Geom. 1, 269–307 (1967)

    Google Scholar 

  23. Goldshmidt, H., Spencer, D.: Submanifolds and Over-determined Differential Operators. Complex Analysis & Algebraic Geometry, pp. 319–356. Cambridge University Press, Cambridge (1977)

    Google Scholar 

  24. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer-Verlag, New York (1973)

    Book  MATH  Google Scholar 

  25. Gromov, M.: Almost flat manifolds. J. Differ. Geom. 13, 231–241 (1978); Almost Flat Manifolds, Astérisque 81, Soc. Math. France, Paris, 1981 (1986).

    Google Scholar 

  26. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MATH  Google Scholar 

  27. Hamilton, R.S.: Four-manifolds with positive Ricci curvature operator. J. Differ. Geom. 24, 153–179 (1986)

    MATH  Google Scholar 

  28. Hamilton, R.S.: Eternal solutions to the Ricci flow. J. Differ. Geom. 38, 1–11 (1993)

    MATH  Google Scholar 

  29. Hamilton, R.S.: The Formation of Singularities in the Ricci Flow, Surveys in Differential Geometry vol. 2, pp. 7–136. International Press(1995)

    Google Scholar 

  30. Hamilton, R.S.: A compactness property for solutions of the Ricci flow on three-manifolds. Comm. Anal. Geom. 7, 695–729 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Hirsh, M.W.: Differential Topology. Springer-Verlag, Berlin (1976)

    Book  Google Scholar 

  32. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I, II, (Interscience Publishers). Wiley, New York (1996) (Reprint (1966))

    Google Scholar 

  33. Krasilśhchik, I.S., Lychagin, V., Vinogradov, A.M.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach Science Publishers S.A., Amsterdam (1986)

    Google Scholar 

  34. Kuranishi, M.: On the Cartan prolongation theorem of exsterior differential systems. Amer. J. Math. 79(1), 1–47 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lapidus, M.L., van Frankenhuijsen M.: Fractal Geoemetry and Applications. A Jubilee of Benoit Mandelbrot. Proceedings of Simposia in Pure Mathematics 72, Amer. Math. Soc. (2005)

    Google Scholar 

  36. Lions, P.L., Crandall, M.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ljapunov, A.M.: Stability of Motion with an contribution by V. A. Pliss and an introduction by V. P. Basov. Mathematics in Science and Engineering, vol. 30. Academic Press, New York-London (1966)

    Google Scholar 

  38. Lychagin, V., Prástaro, A.: Singularities of Cauchy data, characteristics, cocharacteristics and integral cobordism. Differ. Geom. Appl. 4, 287–300. URL (1994)

    Google Scholar 

  39. Madsen, I.B., Milgram, R.J.: The Classifying Spaces for Surgery and Bordism of Manifolds (Ann. Math. Stud.), vol. 92. Princeton University Press, New Jersey 1979

    Google Scholar 

  40. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman Co., New York (1982)

    MATH  Google Scholar 

  41. Milnor, J., Stasheff, J.: Characteristic Classes (Ann. Math. Studies), vol. 76. Princeton University Press (1974)

    Google Scholar 

  42. Morgan, J., Sullivan, D.: The transversality characteristic class and linking sycles in surgery theory. Ann. Math. 99, 463–544 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  43. Perelman, G.: The entropy formula for the Ricci flow and its geometry applications. http://arxiv.org/abs/0211159arXiv:math/0211159 (2002)

    Google Scholar 

  44. Perelman, G.: Ricci flow with surgery on three-manifolds. http://arxiv.org/abs/0303109arXiv:math/0303109 (2003)

    Google Scholar 

  45. Plesken, W., Pest, M.: On maximal finite irreducible subgroup of \(GL(n,\mathbb{Z})\), I, II. Math. Comput. 31, 536–551; 552–573 (1977)

    Google Scholar 

  46. Prástaro, A.: Dynamic conservation laws. In: Prástaro, A. (ed.) Geometrodynamics Proceedings. World Scientific Publishing Co., Singapore (1985)

    Google Scholar 

  47. Prástaro, A.: Cobordism of PDE’s. Boll. Unione Mat. Ital. 30(5-B), 977–1001 (1991)

    Google Scholar 

  48. Prástaro, A.: Quantum geometry of PDE’s. Rep. Math. Phys. 30(3), 273–354. URL (1991)

    Google Scholar 

  49. Prástaro, A.: Geometry of super PDE’s. In: Prástaro, A., Rassias, T.M. (eds.) Geometry in Partial Differential Equations, pp. 259–315. World Scientific Publishing Co., Singapore (1994)

    Chapter  Google Scholar 

  50. Prástaro, A.: Geometry of quantized super PDE’s. Amer. Math. Soc. Transl. 167(2), 165–192 (1995)

    Google Scholar 

  51. Prástaro, A.: Quantum geometry of super PDE’s. Rep. Math. Phys. 37(1), 23–140. URL (1996)

    Google Scholar 

  52. Prástaro, A.: Geometry of PDEs and Mechanics. World Scientific Publishing Co., Singapore. pp. 760 (1996)

    Book  MATH  Google Scholar 

  53. Prástaro, A.: (Co)bordisms in PDE’s and quantum PDE’s. Rep. Math. Phys. 38(3), 443–455. URL (1996)

    Google Scholar 

  54. Prástaro, A.: Quantum and integral (co)bordism groups in partial differential equations. Acta Appl. Math. 51(3), 243–302. URL (1998)

    Google Scholar 

  55. Prśtaro A.: Quantum and integral bordism groups in the Navier-Stokes equation. In: Szenthe, J. (ed.) New Developments in Differential Geometry, Budapest 1996, pp. 343–360. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  56. Prástaro, A.: (Co)bordism groups in PDE’s. Acta Appl. Math. 59(2),111–202. URL (1999)

    Google Scholar 

  57. Prástaro, A.: (Co)bordism groups in quantum PDE’s. Acta Appl. Math. 64(2/3), 111–217. URL (2000)

    Google Scholar 

  58. Prástaro, A.: Local and global solutions of the Navier-Stokes equation, Steps in Differential Geometry, Proceedings of the Colloquium on Differential Geometry, 25–30 July, 2000. Debrecen, Hungary, L. Kozma, P. T. Nagy & L. Tomassy (eds.), Univ. Debrecen 263–271 (2001)

    Google Scholar 

  59. Prástaro, A.: Quantum manifolds and integral (co)bordism groups in quantum partial differential equations. Nonlinear Anal. 47(4) 2609–2620. URL (2001)

    Google Scholar 

  60. Prástaro, A.: Quantized Partial Differential Equations, p. 50–0. World Scientific Publishing Co. (2004)

    Google Scholar 

  61. Prástaro, A.: Quantum super Yang-Mills equations: Global existence and mass-gap (eds. G. S. Ladde, N. G. Madhin & M. Sambandham). Proc.Dynamic Syst Appl. 4, 227–234 (2004)

    Google Scholar 

  62. Prástaro, A.: Geometry of PDE’s. I: Integral bordism groups in PDE’s. J. Math. Anal. Appl. 319, 547–566. URL (2006)

    Google Scholar 

  63. Prástaro, A.: Geometry of PDE’s. II: Variational PDE’s and integral bordism groups. J. Math. Anal. Appl. 321, 930–948. URL (2006)

    Google Scholar 

  64. Prástaro, A.: Conservation laws in quantum super PDE’s, Proceedings of the Conference on Differential & Difference Equations and Applications, (eds. R. P. Agarwal & K. Perera), 943–952. Hindawi Publishing Corporation, New York (2006)

    Google Scholar 

  65. Prástaro, A.: (Co)bordism groups in quantum super PDE’s. I: Quantum supermanifolds.k Nonlinear Anal. Real World Appl. 8(2), 505–533. URL (2007)

    Google Scholar 

  66. Prástaro, A.: (Co)bordism groups in quantum super PDE’s. II: Quantum super PDE’s. Nonlinear Anal. Real World Appl. 8(2), 480–504. URL (2007)

    Google Scholar 

  67. Prástaro, A.: (Co)bordism groups in quantum super PDE’s. III: Quantum super Yang-Mills equations. Nonlinear Anal. Real World Appl. 8(2), 447–479. URL (2007)

    Google Scholar 

  68. Prástaro, A.: (Un)stability and bordism groups in PDE’s. Banach J. Math. Anal. 1(1), 139–147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Prástaro, A.: On the extended crystal PDE’s stability.I: The n-d’Alembert extended crystal PDE’s, Appl. Math. Comput. 204(1), 63–69. URL (2008)

    Google Scholar 

  70. Prástaro, A.: On the extended crystal PDE’s stability.II: Entropy-regular-solutions in MHD-PDE’s. Appl. Math. Comput. 204(1), 82–89. URL (2008)

    Google Scholar 

  71. Prástaro, A.: On quantum black-hole solutions of quantum super Yang-Mills equations. Proc. Dynamic Syst. Appl. 5, 407–414 (2008)

    Google Scholar 

  72. Prástaro, A.: Geometry of PDE’s. IV: Navier-Stokes equation and integral bordism groups. J. Math. Anal. Appl. 338(2), 1140–1151. URL (2008)

    Google Scholar 

  73. Prástaro, A.: Extended crystal PDE’s stability. I: The general theory. Math. Comput. Modelling, 49(9–10), 1759–1780. URL (2009)

    Google Scholar 

  74. Prástaro, A.: Extended crystal PDE’s stability.II: The extended crystal MHD-PDE’s. Math. Comput. Modelling, 49(9–10), 1781–1801. URL (2009)

    Google Scholar 

  75. Prástaro, A.: Surgery and bordism groups in quantum partial differential equations. I: The quantum Poincaré conjecture. Nonlinear Anal. Theory Methods Appl. 71(12), 502–525. URL (2009)

    Google Scholar 

  76. Prástaro, A.: Surgery and bordism groups in quantum partial differential equations. II: Variational quantum PDE’s. Nonlinear Anal. Theory Methods Appl. 71(12), 526–549. URL (2009)

    Google Scholar 

  77. Prástaro, A.: Quantum extended crystal PDE’s. Nonlinear Stud. 18(3), 1–39. http://arxiv.org/abs/1105.0166arXiv:1105.0166 [math.AT] (2011)

    Google Scholar 

  78. Prástaro, A.: Exotic heat PDE’s. Commun. Math. Anal. 10(1), 64–81. URL (2011)

    Google Scholar 

  79. Prástaro, A.: Quantum extended crystal super PDE’s, http://arxiv.org/abs/0906.1363arXiv: 0906.1363[math.AT] (2012)

    Google Scholar 

  80. Prástaro, A.: Exotic heat PDE’s.II. Essays in Mathematics and its Applications. (Dedicated to Stephen Smale.) (Eds. P. M. Pardalos and Th. M. Rassias.) Springer, New York, 369–419 http://arxiv.org/abs/1009.1176arXiv: 1009.1176[math.AT] (2012)

    Google Scholar 

  81. Prástaro, A.: Exotic n-d’Alembert PDE’s and stability. Approximation and Inequalities. (Dedicated to Themistocles M. Rassias for his 60th birthday.) (Eds. G. Georgiev (USA), P. Pardalos (USA) and H. M. Srivastava (Canada)), Springer, New York, 571–586. URL (2012)

    Google Scholar 

  82. Prástaro, A.: Exotic PDE’s. Mathematics Without Boundaries. Surveys in Interdisciplinary Research, (P. Pardalos (USA) & Th. M. Rassias (Greece) eds.), Springer, New York, (to appear).http://arxiv.org/abs/1101.0283arXiv:1101.0283[math.AT] .

    Google Scholar 

  83. Prástaro, A.: Quantum exotic PDE’s. Nonlinear Analysis. Real World Appl. 14(2), 893–928 URL. http://arxiv.org/abs/1106.0862arXiv: 1106.0862[math.AT] (2013)

    Google Scholar 

  84. Prástaro, A.: Strong reactions in quantum super PDE’s. I: Quantum hypercomplex exotic super PDE’s. http://arxiv.org/abs/1205.2894arXiv: 1205.2894[math.AT]. (Part I and Part II are unified in arXiv.) (2013)

    Google Scholar 

  85. Prástaro, A.: Strong reactions in quantum super PDE’s. II: Nonlinear quantum propagators. http://arxiv.org/abs/1205.2894arXiv: 1205.2894[math.AT]. (Part I and Part II are unified in arXiv.) (2013)

    Google Scholar 

  86. Prástaro, A.: Strong reactions in quantum super PDE’s. III: Exotic quantum supergravity. http://arxiv.org/abs/1206.4856arXiv: 1206.4856[math.AT] (2014)

    Google Scholar 

  87. Prástaro, A., Rassias, T.M.: A geometric approach of the generalized d’Alembert equation. J. Comput. Appl. Math. 113(1–2), 93–122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  88. Prástaro, A., Rassias, T.M.: A geometric approach to a noncommutative generalized d’Alembert equation. C. R. Acad. Sc. Paris 330(I–7), 545–550 (2000)

    Article  MATH  Google Scholar 

  89. Prástaro, A., Rassias, T.M.: Ulam stability in geometry of PDE’s. Nonlinear Funct. Anal. Appl. 8(2), 259–278 (2003)

    MathSciNet  MATH  Google Scholar 

  90. Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod operators. Adv. Math. 7, 29–56 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  91. Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Springer-Verlag, New York (1972)

    Book  MATH  Google Scholar 

  92. Ranicki, A.: Noncommutative Localization in Topolgy. Proceedings of the Workshop, Edinburgh, April 29–30 (2002). Cambridge, Cambridge University Press. London Math. Soc. Lecture Note Series 330, 81–102 (2006)

    Google Scholar 

  93. Rotman, J.J.: An Introduction to Homological Algebra. Academic Press, San Diego (1979)

    MATH  Google Scholar 

  94. Rudyak, Y.B.: On Thom Spectra, Orientability and Cobordism. Springer-Verlag, Berlin (1998)

    MATH  Google Scholar 

  95. Ruh, E.A.: Almost flat manifolds. J. Differ. Geom. 17, 1–14 (1982)

    MathSciNet  MATH  Google Scholar 

  96. Schönflies, A.: Krystallsysteme und Kristallstruktur. Teubner, Leipzig (1891)

    Google Scholar 

  97. Schwartzenberger, R.L.E.: N-dimensional Crystallography. Pitman (1980)

    Google Scholar 

  98. Scott, P., Wall, T.: Topological Methods in Group Theory, Homological Group Theory, Proceedings from Durham (1977), Lecture Notes, London Matt. Soc. 36, 137–203 (1979)

    Google Scholar 

  99. Stong, R.E.: Notes on Bordism Theories. Princeton University Press (Ann. Math. Stud.) (1968)

    Google Scholar 

  100. Sunada, T.: Crystals that nature might miss creating. Notices Amer. Math. Soc. 55(2), 209–215 (2008)

    MathSciNet  Google Scholar 

  101. Sweedler, M.E.: Hopf Algebras. Benjamin, New York (1969)

    Google Scholar 

  102. Switzer, R.: Algebraic Topology-homotopy and Homology. Springer-Verlag, Berlin (1975)

    Book  MATH  Google Scholar 

  103. Thom, R.: Quelques propriété globales des variétés différentieles. Comm. Math. Helv. 28, 17–86 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  104. Thom, R.: Remarques sur les problemes comportant des inéqualities différentielles globales. Bull. Soc. Math. France. 87, 455–468 (1954)

    MathSciNet  Google Scholar 

  105. Thom, R.: Les singularités des applications differentiables. Ann. Inst. Fourier(Grenoble) 6, 43–87 (1955–1956)

    Article  MathSciNet  Google Scholar 

  106. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publication, New York (1960)

    MATH  Google Scholar 

  107. Wall, C.T.C.: Determination of the cobordism ring. Ann. of Math. 72, 292–311 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  108. Wall, C.T.C.: Surgery on compact manifolds. London Math. Soc. Monographs 1. Academic Press, New York (1970); 2nd edn. (ed. A. A. Ranicki), Amer. Math. Soc. Surveys and monographs 69, Amer. Math. Soc. (1999)

    Google Scholar 

Download references

Acknowledgements

I would like to thank the editors for inviting me to write my contribution to this Springer book. A similar version of this work was earlier put on arXiv:0811.3693v18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Prástaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prástaro, A. (2014). Extended Crystal PDEs. In: Rassias, T., Pardalos, P. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1106-6_18

Download citation

Publish with us

Policies and ethics