Skip to main content

On Completely Monotonic and Related Functions

  • Chapter
  • First Online:
Mathematics Without Boundaries

Abstract

We deal with several classes of functions, such as, completely monotonic functions, absolutely monotonic functions, logarithmically completely monotonic functions, Stieltjes functions, and Bernstein functions. We give several interesting relations among theses classes of functions as well as various examples and applications. We show that several special functions belong to the aforementioned classes. We give a survey of recent results in this area and provide new proofs as well as additional remarks and comments.

Mathematics Subject Classification: Primary 33B15, 33B10, 33E20, 41A60, 11B83; Secondary: 41A80, 26D05, 26D15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)

    Google Scholar 

  2. Adell, J.A., Jordá, P.: On the complete monotonicity of a Ramanujan sequence connected with e n. Ramanujan J. 16, 1–5 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhiezer, N.I.: The Classical Moment Problem. Oliver and Boyd, Edinburgh (1965)

    MATH  Google Scholar 

  4. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  5. Alm, S.E.: Monotonicity of the difference between median and mean of gamma distributions and of a related Ramanujan sequence. Bernoulli 9, 351–371 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comp. 66, 373–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alzer, H., Berg, C.: Some classes of completely monotonic functions. Ann. Acad. Sci. Fenn. Math. 27, 445–460 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Alzer, H., Berg, C.: Some classes of completely monotonic functions II. Ramanujan J. 11, 225–248 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alzer, H., Berg, C., Koumandos, S.: On a conjecture of Clark and Ismail. J. Approx. Theory 134, 102–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ball, K.: Completely monotonic rational functions and Hall’s marriage theorem. J. Comb. Theory Ser. B 61, 118–124 (1994)

    Article  MATH  Google Scholar 

  11. Barnes, E.W.: The theory of the double gamma function. Philos. Trans. R. Soc. Ser. A 196, 265–388 (1901)

    Article  MATH  Google Scholar 

  12. Barnes, E.W.: On the theory of the multiple gamma function. Trans. Camb. Philos. Soc. 19, 374–425 (1904)

    Google Scholar 

  13. Berg, C.: Integral representation of some functions related to the Gamma function. Mediterr. J. Math. 1, 433–439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berg, C.: Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity. In: Mateu, J., Porcu, E. (eds.) Positive Definite Functions: From Schoenberg to Space-Time challenges. Department of Mathematics, University Jaume I, Castellon, Spain (2008)

    Google Scholar 

  15. Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Springer, New York (1975)

    Book  MATH  Google Scholar 

  16. Berg, C., Pedersen, H.L.: A completely monotone function related to the Gamma function. J. Comput. Appl. Math. 133, 219–230 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Berg, C., Mateu, J., Porcu, E.: The Dagum family of isotropic correlation functions. Bernoulli 14, 1134–1149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Berndt, B.C.: Ramanujan’s Notebooks: Part II. Springer, New York (1989)

    Book  MATH  Google Scholar 

  19. Bernstein, S.N.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1928)

    Article  MATH  Google Scholar 

  20. Bochner, S.: Harmonic Analysis and the Theory of Probability. Dover, Mineola (2005)

    Google Scholar 

  21. Bondesson, L.: Generalized Gamma Convolutions and Related Classes of Distributions and Densities. Lecture Notes in Statistics, vol. 76. Springer, New York (1992)

    Google Scholar 

  22. Bustoz, J., Ismail, M.E.H.: On Gamma Function Inequalities. Math. Comp. 47(176), 659–667 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Clark, W.E., Ismail, M.E.H.: Inequalities involving gamma and psi functions. Anal. Appl. 1, 129–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Day, W.A.: On monotonicity of the relaxation functions of viscoelastic material. Proc. Camb. Phil. Soc. 67, 503–508 (1970)

    Article  MATH  Google Scholar 

  25. Dubourdieu, J.: Sur un théorème de M. S. Bernstein relatif á la transformation de Laplace-Stieltjes. Compositio Math. 7, 96–111 (1939)

    MathSciNet  Google Scholar 

  26. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York (1966)

    Google Scholar 

  27. Flajolet, P., Grabner, P.J., Kirschenhofer, P., Prodinger, H.: On Ramanujan’s Q-function. J. Comput. Appl. Math. 58, 103–116 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Frenzen, C.L.: Error bounds for asymptotic expansions of the ratio of two gamma functions. SIAM J. Math. Anal. 18, 890–896 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Goldie, C.M.: A class of infinitely divisible random variables. Math. Proc. Camb. Phil. Soc. 63, 1141–1143 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grinshpan, A.Z., Ismail, M.E.H.: Completely monotonic functions involving the gamma and q-gamma functions. Proc. Am. Math. Soc. 134, 1153–1160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hausdorff, F.: Summationsmethoden und Momentfolgen I. Math. Z. 9, 74–109 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hirsch, F.: Intégrales de résolventes et calcul symbolique. Ann. Inst. Fourier 22, 239–264 (1972)

    Article  MATH  Google Scholar 

  33. Horn, R.A.: On infinitely divisible matrices, kernels and functions. Z. Wahrscheinlichkeitstheorie und Verw. Geb. 8, 219–230 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ismail, M.E.H., Kelker, D.H.: Special functions, Stieltjes transforms and infinite divisibility. SIAM J. Math. Anal. 10, 884–901 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ismail, M.E.H., Lorch, L., Muldoon, M.E.: Completely monotonic functions associated with the Gamma function and its q-analogues. J. Math. Anal. Appl. 116, 1–9 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kimberling, C.H.: A probabilistic interpretation of complete monotonicity. Aequat. Math. 10, 152–164 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Knopp, K.: Theory and Application of Infinite Series. Dover, New York (1947)

    Google Scholar 

  38. Koumandos, S.: Remarks on some completely monotonic functions. J. Math. Anal. Appl. 324, 1458–1461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Koumandos, S.: Remarks on a paper by Chao-Ping Chen and Feng Qi. Proc. Am. Math. Soc. 134, 1365–1367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Koumandos, S.: On Ruijsenaars` asymptotic expansion of the logarithm of the double gamma function. J. Math. Anal. Appl. 341, 1125–1132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Koumandos, S.: Monotonicity of some functions involving the gamma and psi functions. Math. Comp. 77, 2261–2275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Koumandos, S.: Positive trigonometric sums and starlike functions. In: Gautschi, W., Mastroianni, G., Rassias, Th. (eds.) Approximation and Computation. Springer Optimization and its Applications, vol. 42, pp. 157–183. Springer, Berlin (2010)

    Google Scholar 

  43. Koumandos, S.: A Bernstein function related to Ramanujan’s approximations of \({\rm exp}(n)\). Ramanujan J. 30, 447–459 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Koumandos, S., Lamprecht, M.: On a conjecture for trigonometric sums and starlike functions II. J. Approx. Theory 162, 1068–1084 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Koumandos, S., Lamprecht, M.: Some completely monotonic functions of positive order. Math. Comp. 79, 1697–1707 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Koumandos, S., Lamprecht, M.: The zeros of certain Lommel functions. Proc. Am. Math. Soc. 140, 3091–3100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Koumandos, S., Lamprecht, M.: Complete monotonicity and related properties of some special functions. Math. Comp. 82, 1097–1120 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Koumandos, S., Pedersen, H.L.: Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function. J. Math. Anal. Appl. 355, 33–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Koumandos, S., Pedersen, H.L.: On the asymptotic expansion of the logarithm of Barnes triple gamma function. Math. Scand. 105, 287–306 (2009)

    MathSciNet  MATH  Google Scholar 

  50. Koumandos, S., Pedersen, H.L.: Absolutely monotonic functions related to Euler’s gamma function and Barnes` double and triple gamma function. Monatsh. Math. 163, 51–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Koumandos, S., Pedersen, H.L.: Turán type inequalities for the partial sums of the generating functions of Bernoulli and Euler numbers. Math. Nach. 285, 2129–2156 (2012). doi:10.1002/mana.201100299 (Published online 7 Sept 2012)

    Google Scholar 

  52. Koumandos, S., Pedersen, H.L.: Stieltjes functions, asymptotic expansions and complete monotonicity of positive order (2013)

    Google Scholar 

  53. Koumandos, S., Ruscheweyh, S.: Positive Gegenbauer polynomial sums and applications to starlike functions. Constr. Approx. 23, 197–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Koumandos, S., Ruscheweyh, S.: On a conjecture for trigonometric sums and starlike functions. J. Approx. Theory 149, 42–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kuznetsov, A.: Asymptotic approximations to the Hardy-Littlewood function. J. Comput. Appl. Math. 237, 603–613 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lorch, L., Newman, D.J.: On the composition of completely monotonic functions and completely monotonic sequences and related questions. J. Lond. Math. Soc. s2-28, 31–45 (1983)

    Article  MathSciNet  Google Scholar 

  57. Lorch, L., Moser, L.: A remark on completely monotonic sequences, with an application to summability. Can. Math. Bull. 6, 171–173 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  58. Marsaglia, J.C.W.: The incomplete Gamma function and Ramanujan’s rational approximation to e x. J. Stat. Comput. Simul. 24, 163–169 (1986)

    Article  Google Scholar 

  59. Matsumoto, K.: Asymptotic series for double zeta, double gamma, and Hecke L-functions. Math. Proc. Camb. Phil. Soc. 123, 385–405 (1998). Corrigendum and addendum. ibid. 132, 377–384 (2002)

    Google Scholar 

  60. Nörlund, N.E.: Mémoire sur les polynomes de Bernoulli. Acta Math. 43, 121–196 (1922)

    Article  MathSciNet  Google Scholar 

  61. Pedersen, H.L.: The remainder in Ruijsenaars` asymptotic expansion of Barnes double gamma function. Mediterr. J. Math. 4, 419–433 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Pedersen, H.L.: Pre Stieltjes functions. Mediterr. J. Math. 8, 113–122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Pedersen, H.L.: Completely monotonic functions related to logarithmic derivatives of entire functions. Anal. Appl. Singap. 9, 409–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Qi, F.: Bounds for the ratio of two gamma functions. J. Inequal. Appl. 2010, Article ID 493058, 84 p. (2010)

    Google Scholar 

  65. Ruijsenaars, S.N.M.: On Barnes` multiple zeta and gamma functions. Adv. Math. 156, 107–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ruscheweyh, S., Salinas, L., Sugawa, T.: Completely monotone sequences and universally prestarlike functions. Israel J. Math. 171, 285–304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. Schilling, R.L.: Subordination in the sense of Bochner and related functional calculus. J. Austral. Math. Soc. Ser. A 64, 368–396 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  68. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions. De Gruyter Studies in Mathematics, vol. 37. De Gruyter, Berlin (2010)

    Google Scholar 

  69. Schoenberg, I.J.: Metric spaces and completely monotone functions. Ann. Math. 39, 811–841 (1938)

    Article  MathSciNet  Google Scholar 

  70. Szegő, G.: Über einige von S. Ramanujan gestellte Aufgaben. J. Lond. Math. Soc. 3, 225–232 (1928). Also in: Askey, R. (ed.) Collected Papers of Gabor Szegő, vol. 2, pp. 143–150. Birkhäuser, Basel (1982)

    Google Scholar 

  71. Temme, N.M.: Special Functions: An Introduction to Classical Functions of Mathematical Physics. Wiley, New York (1996)

    Google Scholar 

  72. Trimble, S.Y., Wells, J., Wright, F.T.: Superadditive functions and a statistical application. SIAM J. Math. Anal. 20, 1255–1259 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  73. van Haeringen, H.: Completely monotonic and related functions. J. Math. Anal. Appl. 204, 389–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  74. Volkmer, H.: Factorial series connected with the Lambert function, and a problem posed by Ramanujan. Ramanujan J. 16, 235–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Watson, G.N.: Theorems stated by Ramanujan (V): Approximations connected with e x. Proc. Lond. Math. Soc. (2) 29, 293–308 (1929)

    Article  MATH  Google Scholar 

  76. Widder, D.V.: A classification of generating functions. Trans. Am. Math. Soc. 39, 244–298 (1936)

    Article  MathSciNet  Google Scholar 

  77. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)

    Google Scholar 

  78. Wimp, J.: Sequences Transformations and their Applications. Academic, New York (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatis Koumandos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koumandos, S. (2014). On Completely Monotonic and Related Functions. In: Rassias, T., Pardalos, P. (eds) Mathematics Without Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1106-6_12

Download citation

Publish with us

Policies and ethics