Skip to main content

IV.A. Vitreous Physiology

  • Chapter
  • First Online:
Vitreous

Abstract

ell into the twentieth century, most ophthalmologists considered the vitreous humor to be sacred and that any interference with the vitreous humor would have serious consequences for the eye. The vitreous was untouchable. Pioneering researchers changed this axiom, and towards the end of the century, vitreoretinal surgeons came to think of the vitreous gel almost as an inert substance, which could be freely operated, removed, and replaced for optical and structural reasons, with no consideration for any other functions of this tissue. It became disposable. At the same time the vitreous was practically invisible; visualizing vitreous detachment with slit lamp biomicroscopy was unreliable, but dramatically improved with ultrasound and ocular coherence tomography (OCT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dodo T, Okuzawa Y, Baba N. Trans-pupillary resection of vitreous body opacity. Ganka. 1969;11(1):38–44.

    PubMed  CAS  Google Scholar 

  2. Kasner D, Miller GR, Taylor WH, Sever RJ, Norton EW. Surgical treatment of amyloidosis of the vitreous. Trans Am Acad Ophthalmol Otolaryngol. 1968;72(3):410–8.

    PubMed  CAS  Google Scholar 

  3. Klöti R. Vitrectomy. I. A new instrument for posterior vitrectomy. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1973;187(2):161–70.

    PubMed  Google Scholar 

  4. Klöti R. Pars plana vitrectomy with the vitreous stripper. Mod Probl Ophthalmol. 1975;15:246–52.

    PubMed  Google Scholar 

  5. Machemer R, Buettner H, Norton EW, Parel JM. Vitrectomy: a pars plana approach. Trans Am Acad Ophthalmol Otolaryngol. 1971;75(4):813–20.

    PubMed  CAS  Google Scholar 

  6. Machemer R, Parel JM, Norton EW. Vitrectomy: a pars plana approach. Technical improvements and further results. Trans Am Acad Ophthalmol Otolaryngol. 1972;76(2):462–6.

    PubMed  CAS  Google Scholar 

  7. Machemer R. Pars plana vitrectomy. Summary. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1976;81(3 Pt 1):431.

    PubMed  CAS  Google Scholar 

  8. Stefansson E, Loftsson T. The Stokes-Einstein equation and the physiological effects of vitreous surgery. Acta Ophthalmol Scand. 2006;84(6):718–9.

    PubMed  Google Scholar 

  9. Boruchoff SA, Wooddin AM. Viscosity and composition of solutions derived from rabbit vitreous humour. Br J Ophthalmol. 1956;40(2):113–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Madinaveitia J, Quibell TH. Studies on diffusing factors: the action of testicular extracts on the viscosity of vitreous humour preparations. Biochem J. 1940;34(4):625–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Madinaveitia J, Quibell TH. Studies on diffusing factors: the reduction of the viscosity of vitreous humour preparations by ascorbic acid and some diazo compounds. Biochem J. 1941;35(4): 453–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Biorheology. 1992;29(5–6):521–33.

    PubMed  CAS  Google Scholar 

  13. Gisladottir S, Loftsson T, Stefansson E. Diffusion characteristics of vitreous humour and saline solution follow the Stokes Einstein equation. Graefes Arch Clin Exp Ophthalmol. 2009;247(12):1677–84.

    PubMed  Google Scholar 

  14. Sebag J, Ansari RR, Suh KI. Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol. 2007;245(4):576–80.

    PubMed  CAS  Google Scholar 

  15. Soman N, Banerjee R. Artificial vitreous replacements. Biomed Mater Eng. 2003;13(1):59–74.

    PubMed  CAS  Google Scholar 

  16. Alm A, Bill A. The oxygen supply to the retina. I. Effects of changes in intraocular and arterial blood pressures, and in arterial P O2 and P CO2 on the oxygen tension in the vitreous body of the cat. Acta Physiol Scand. 1972;84(2):261–74.

    PubMed  CAS  Google Scholar 

  17. Stefansson E, Landers MB, Wolbarsht ML. Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy. Trans Am Ophthalmol Soc. 1981;79:307–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Stefansson E, Landers MB, Wolbarsht ML. Vitrectomy, lensectomy, and ocular oxygenation. Retina. 1982;2(3):159–66.

    PubMed  CAS  Google Scholar 

  19. de Juan E, Hardy M, Hatchell DL, Hatchell MC. The effect of intraocular silicone oil on anterior chamber oxygen pressure in cats. Arch Ophthalmol. 1986;104(7):1063–4.

    PubMed  Google Scholar 

  20. Stefansson E, Novack RL, Hatchell DL. Vitrectomy prevents retinal hypoxia in branch retinal vein occlusion. Invest Ophthalmol Vis Sci. 1990;31(2):284–9.

    PubMed  CAS  Google Scholar 

  21. Blair NP, Baker DS, Rhode JP, Solomon M. Vitreoperfusion. A new approach to ocular ischemia. Arch Ophthalmol. 1989;107(3):417–23.

    PubMed  CAS  Google Scholar 

  22. Blair NP. Ocular oxygen consumption during vitreoperfusion in the cat. Trans Am Ophthalmol Soc. 2000;98:305–29.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Maeda N, Tano Y. Intraocular oxygen tension in eyes with proliferative diabetic retinopathy with and without vitreous. Graefes Arch Clin Exp Ophthalmol. 1996;234 Suppl 1:S66–9.

    PubMed  Google Scholar 

  24. Holekamp NM, Shui YB, Beebe DC. Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol. 2005;139(2):302–10.

    PubMed  Google Scholar 

  25. Shui YB, Fu JJ, Garcia C, Dattilo LK, Rajagopal R, McMillan S, et al. Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci. 2006;47(4):1571–80.

    PubMed  Google Scholar 

  26. Jampol LM. Oxygen therapy and intraocular oxygenation. Trans Am Ophthalmol Soc. 1987;85:407–37.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Ben-Nun J, Alder VA, Cringle SJ, Constable IJ. A new method for oxygen supply to acute ischemic retina. Invest Ophthalmol Vis Sci. 1988;29(2):298–304.

    PubMed  CAS  Google Scholar 

  28. Wilson CA, Benner JD, Berkowitz BA, Chapman CB, Peshock RM. Transcorneal oxygenation of the preretinal vitreous. Arch Ophthalmol. 1994;112(6):839–45.

    PubMed  CAS  Google Scholar 

  29. Wilson CA, Berkowitz BA, Srebro R. Perfluorinated organic liquid as an intraocular oxygen reservoir for the ischemic retina. Invest Ophthalmol Vis Sci. 1995;36(1):131–41.

    PubMed  CAS  Google Scholar 

  30. Cringle SJ, Yu DY, Alder VA, Su EN. Intravitreal perfluorocarbon and oxygen delivery in induced retinal ischaemia. Adv Exp Med Biol. 1994;361:303–11.

    PubMed  CAS  Google Scholar 

  31. Sebag J. Molecular biology of pharmacologic vitreolysis. Trans Am Ophthalmol Soc. 2005;103:473–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Gandorfer A. Experimental evaluation of microplasmin - an alternative to vital dyes. Dev Ophthalmol. 2008;42:153–9.

    PubMed  Google Scholar 

  33. Quiram PA, Leverenz VR, Baker RM, Dang L, Giblin FJ, Trese MT. Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels. Retina. 2007;27(8):1090–6.

    PubMed  PubMed Central  Google Scholar 

  34. Petropoulos IK, Pournaras JA, Stangos AN, Pournaras CJ. Preretinal partial pressure of oxygen gradients before and after experimental pars plana vitrectomy. Retina. 2013;33(1):170–8.

    PubMed  Google Scholar 

  35. Simpson AR, Dowell NG, Jackson TL, Tofts PS, Hughes EH. Measuring the effect of pars plana vitrectomy on vitreous oxygenation using magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2013;54(3):2028–34.

    PubMed  Google Scholar 

  36. Sín M, Sínová I, Chrapek O, Prachařová Z, Karhanová M, Langová K, et al. The effect of pars plan vitrectomy on oxygen saturation in retinal vessels - a pilot study. Acta Ophthalmol. 2014;92(4):328–31. doi: 10.1111/aos.12238. Epub 2013 Jul 15

  37. Sebag J. Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol. 1987;225(2):89–93.

    PubMed  CAS  Google Scholar 

  38. Sebag J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol. 2004;242(8):690–8.

    PubMed  CAS  Google Scholar 

  39. Laqua H. Rubeosis iridis following pars plana vitrectomy (author's transl). Klin Monbl Augenheilkd. 1980;177(1):24–30.

    PubMed  CAS  Google Scholar 

  40. Rice TA, Michels RG, Maguire MG, Rice EF. The effect of lensectomy on the incidence of iris neovascularization and neovascular glaucoma after vitrectomy for diabetic retinopathy. Am J Ophthalmol. 1983;95(1):1–11.

    PubMed  CAS  Google Scholar 

  41. Stefansson E, Landers MB, Wolbarsht ML. Oxygenation and vasodilatation in relation to diabetic and other proliferative retinopathies. Ophthalmic Surg. 1983;14(3):209–26.

    PubMed  CAS  Google Scholar 

  42. Diddie KR, Ernest JT. The effect of photocoagulation on the choroidal vasculature and retinal oxygen tension. Am J Ophthalmol. 1977;84(1):62–6.

    PubMed  CAS  Google Scholar 

  43. Landers MB, Stefansson E, Wolbarsht ML. Panretinal photocoagulation and retinal oxygenation. Retina. 1982;2(3):167–75.

    PubMed  Google Scholar 

  44. Molnar I, Poitry S, Tsacopoulos M, Gilodi N, Leuenberger PM. Effect of laser photocoagulation on oxygenation of the retina in miniature pigs. Invest Ophthalmol Vis Sci. 1985;26(10):1410–4.

    PubMed  CAS  Google Scholar 

  45. Pournaras CJ, Ilic J, Gilodi N, Tsacopoulos M, Leuenberger MP. Experimental venous thrombosis: preretinal PO2 before and after photocoagulation. Klin Monbl Augenheilkd. 1985;186(6):500–1.

    PubMed  CAS  Google Scholar 

  46. Alder VA, Cringle SJ, Brown M. The effect of regional retinal photocoagulation on vitreal oxygen tension. Invest Ophthalmol Vis Sci. 1987;28(7):1078–85.

    PubMed  CAS  Google Scholar 

  47. Novack RL, Stefånsson E, Hatchell DL. The effect of photocoagulation on the oxygenation and ultrastructure of avascular retina. Exp Eye Res. 1990;50(3):289–96.

    PubMed  CAS  Google Scholar 

  48. Stefansson E, Machemer R, de Juan E, McCuen BW, Peterson J. Retinal oxygenation and laser treatment in patients with diabetic retinopathy. Am J Ophthalmol. 1992;113(1):36–8.

    PubMed  CAS  Google Scholar 

  49. Funatsu H, Wilson CA, Berkowitz BA, Sonkin PL. A comparative study of the effects of argon and diode laser photocoagulation on retinal oxygenation. Graefes Arch Clin Exp Ophthalmol. 1997;235(3):168–75.

    PubMed  CAS  Google Scholar 

  50. Yu DY, Cringle SJ, Su E, Yu PK, Humayun MS, Dorin G. Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits. Invest Ophthalmol Vis Sci. 2005;46(3):988–99.

    PubMed  Google Scholar 

  51. Budzynski E, Smith JH, Bryar P, Birol G, Linsenmeier RA. Effects of photocoagulation on intraretinal PO2 in cat. Invest Ophthalmol Vis Sci. 2008;49(1):380–9.

    PubMed  Google Scholar 

  52. Wakabayashi Y, Usui Y, Okunuki Y, Ueda S, Kimura K, Muramatsu D, et al. Intraocular VEGF level as a risk factor for postoperative complications after vitrectomy for proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2012;53(10):6403–10.

    PubMed  CAS  Google Scholar 

  53. Blankenship GW, Machemer R. Long-term diabetic vitrectomy results. Report of 10 year follow-up. Ophthalmology. 1985;92(4):503–6.

    PubMed  CAS  Google Scholar 

  54. Li Q, Yan H, Ding TB, Han J, Shui YB, Beebe DC. Oxidative responses induced by pharmacologic vitreolysis and/or long-term hyperoxia treatment in rat lenses. Curr Eye Res. 2013;38(6):639–48.

    PubMed  PubMed Central  Google Scholar 

  55. Lange CA, Stavrakas P, Luhmann UF, de Silva DJ, Ali RR, Gregor ZJ, et al. Intraocular oxygen distribution in advanced proliferative diabetic retinopathy. Am J Ophthalmol. 2011;152(3):406–12.e3.

    PubMed  CAS  Google Scholar 

  56. Bringmann A, Uckermann O, Pannicke T, Iandiev I, Reichenbach A, Wiedemann P. Neuronal versus glial cell swelling in the ischaemic retina. Acta Ophthalmol Scand. 2005;83(5):528–38.

    PubMed  Google Scholar 

  57. Massin P, Girach A, Erginay A, Gaudric A. Optical coherence tomography: a key to the future management of patients with diabetic macular oedema. Acta Ophthalmol Scand. 2006;84(4):466–74.

    PubMed  Google Scholar 

  58. Stefansson E. Physiology of vitreous surgery. Graefes Arch Clin Exp Ophthalmol. 2009;247(2):147–63.

    PubMed  Google Scholar 

  59. Pocock G, Richards CD. Human physiology: the basis of medicine. 2nd ed. Oxford: Oxford University Press; 2004.

    Google Scholar 

  60. Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279–96.

    PubMed  CAS  Google Scholar 

  61. Cunha-Vaz JG, Travassos A. Breakdown of the blood-retinal barriers and cystoid macular edema. Surv Ophthalmol. 1984;28(Suppl):485–92.

    PubMed  Google Scholar 

  62. Klein R, Klein BE, Moss SE, Cruickshanks KJ. The Wisconsin epidemiologic study of diabetic retinopathy. XV. The long-term incidence of macular edema. Ophthalmology. 1995;102(1):7–16.

    PubMed  CAS  Google Scholar 

  63. Lopes de Faria JM, Jalkh AE, Trempe CL, McMeel JW. Diabetic macular edema: risk factors and concomitants. Acta Ophthalmol Scand. 1999;77(2):170–5.

    PubMed  CAS  Google Scholar 

  64. Matthews DR, Stratton IM, Aldington SJ, Holman RR, Kohner EM, Group UPDS. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Arch Ophthalmol. 2004;122(11):1631–40.

    PubMed  Google Scholar 

  65. Stefansson E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand. 2001;79(5):435–40.

    PubMed  CAS  Google Scholar 

  66. Kristinsson JK, Gottfredsdóttir MS, Stefansson E. Retinal vessel dilatation and elongation precedes diabetic macular oedema. Br J Ophthalmol. 1997;81(4):274–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Kokame GT, de Leon MD, Tanji T. Serous retinal detachment and cystoid macular edema in hypotony maculopathy. Am J Ophthalmol. 2001;131(3):384–6.

    PubMed  CAS  Google Scholar 

  68. Schubert HD. Postsurgical hypotony: relationship to fistulization, inflammation, chorioretinal lesions, and the vitreous. Surv Ophthalmol. 1996;41(2):97–125.

    PubMed  CAS  Google Scholar 

  69. Stefansson E. Ocular hypotony: what is the mechanism of effusion and oedema? Acta Ophthalmol Scand. 2007;85(6):584–5.

    PubMed  Google Scholar 

  70. Funatsu H, Yamashita H, Nakamura S, Mimura T, Eguchi S, Noma H, et al. Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology. 2006;113(2):294–301.

    PubMed  Google Scholar 

  71. Patel JI, Tombran-Tink J, Hykin PG, Gregor ZJ, Cree IA. Vitreous and aqueous concentrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopathy patients with macular edema: Implications for structural differences in macular profiles. Exp Eye Res. 2006;82(5):798–806.

    PubMed  CAS  Google Scholar 

  72. Stefansson E. Ocular oxygenation and the treatment of diabetic retinopathy. Surv Ophthalmol. 2006;51(4):364–80.

    PubMed  Google Scholar 

  73. Knudsen ST, Bek T, Poulsen PL, Hove MN, Rehling M, Mogensen CE. Macular edema reflects generalized vascular hyperpermeability in type 2 diabetic patients with retinopathy. Diabetes Care. 2002;25(12):2328–34.

    PubMed  Google Scholar 

  74. Cunha-Vaz JG. Vitreous fluorophotometry recordings in posterior segment disease. Graefes Arch Clin Exp Ophthalmol. 1985;222(4–5):241–7.

    PubMed  CAS  Google Scholar 

  75. Krogsaa B, Lund-Andersen H, Mehlsen J, Sestoft L. Blood-retinal barrier permeability versus diabetes duration and retinal morphology in insulin dependent diabetic patients. Acta Ophthalmol (Copenh). 1987;65(6):686–92.

    CAS  Google Scholar 

  76. Phillips RP, Ross PG, Sharp PF, Forrester JV. Use of temporal information to quantify vascular leakage in fluorescein angiography of the retina. Clin Phys Physiol Meas. 1990;11(Suppl A):81–5.

    PubMed  Google Scholar 

  77. Ring K, Larsen M, Dalgaard P, Andersen HL. Fluorophotometric evaluation of ocular barriers and of the vitreous body in the aphakic eye. Acta Ophthalmol Suppl. 1987;182:160–2.

    PubMed  CAS  Google Scholar 

  78. Sander B, Larsen M, Moldow B, Lund-Andersen H. Diabetic macular edema: passive and active transport of fluorescein through the blood-retina barrier. Invest Ophthalmol Vis Sci. 2001;42(2):433–8.

    PubMed  CAS  Google Scholar 

  79. Smith RT, Lee CM, Charles HC, Farber M, Cunha-Vaz JG. Quantification of diabetic macular edema. Arch Ophthalmol. 1987;105(2):218–22.

    PubMed  CAS  Google Scholar 

  80. Nasrallah FP, Jalkh AE, Van Coppenolle F, Kado M, Trempe CL, McMeel JW, et al. The role of the vitreous in diabetic macular edema. Ophthalmology. 1988;95(10):1335–9.

    PubMed  CAS  Google Scholar 

  81. Sivaprasad S, Ockrim Z, Massaoutis P, Ikeji F, Hykin PG, Gregor ZJ. Posterior hyaloid changes following intravitreal triamcinolone and macular laser for diffuse diabetic macular edema. Retina. 2008;28(10):1435–42.

    PubMed  Google Scholar 

  82. Lewis H, Abrams GW, Blumenkranz MS, Campo RV. Vitrectomy for diabetic macular traction and edema associated with posterior hyaloidal traction. Ophthalmology. 1992;99(5):753–9.

    PubMed  CAS  Google Scholar 

  83. Lewis H. The role of vitrectomy in the treatment of diabetic macular edema. Am J Ophthalmol. 2001;131(1):123–5.

    PubMed  CAS  Google Scholar 

  84. Kaiser PK, Riemann CD, Sears JE, Lewis H. Macular traction detachment and diabetic macular edema associated with posterior hyaloidal traction. Am J Ophthalmol. 2001;131(1):44–9.

    PubMed  CAS  Google Scholar 

  85. Figueroa MS, Contreras I, Noval S. Surgical and anatomical outcomes of pars plana vitrectomy for diffuse nontractional diabetic macular edema. Retina. 2008;28(3):420–6.

    PubMed  Google Scholar 

  86. Hartley KL, Smiddy WE, Flynn HW, Murray TG. Pars plana vitrectomy with internal limiting membrane peeling for diabetic macular edema. Retina. 2008;28(3):410–9.

    PubMed  Google Scholar 

  87. Shimonagano Y, Makiuchi R, Miyazaki M, Doi N, Uemura A, Sakamoto T. Results of visual acuity and foveal thickness in diabetic macular edema after vitrectomy. Jpn J Ophthalmol. 2007;51(3):204–9.

    PubMed  Google Scholar 

  88. Yamamoto T, Takeuchi S, Sato Y, Yamashita H. Long-term follow-up results of pars plana vitrectomy for diabetic macular edema. Jpn J Ophthalmol. 2007;51(4):285–91.

    PubMed  Google Scholar 

  89. Yanyali A, Horozoglu F, Celik E, Nohutcu AF. Long-term outcomes of pars plana vitrectomy with internal limiting membrane removal in diabetic macular edema. Retina. 2007;27(5):557–66.

    PubMed  Google Scholar 

  90. Hoerle S, Poestgens H, Schmidt J, Kroll P. Effect of pars plana vitrectomy for proliferative diabetic vitreoretinopathy on preexisting diabetic maculopathy. Graefes Arch Clin Exp Ophthalmol. 2002;240(3):197–201.

    PubMed  Google Scholar 

  91. Terasaki H, Kojima T, Niwa H, Piao CH, Ueno S, Kondo M, et al. Changes in focal macular electroretinograms and foveal thickness after vitrectomy for diabetic macular edema. Invest Ophthalmol Vis Sci. 2003;44(10):4465–72.

    PubMed  Google Scholar 

  92. Yamamoto S, Yamamoto T, Ogata K, Hoshino A, Sato E, Mizunoya S. Morphological and functional changes of the macula after vitrectomy and creation of posterior vitreous detachment in eyes with diabetic macular edema. Doc Ophthalmol. 2004;109(3):249–53.

    PubMed  Google Scholar 

  93. Shah SP, Patel M, Thomas D, Aldington S, Laidlaw DA. Factors predicting outcome of vitrectomy for diabetic macular oedema: results of a prospective study. Br J Ophthalmol. 2006;90(1):33–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Meyer CH. Current treatment approaches in diabetic macular edema. Ophthalmologica. 2007;221(2):118–31.

    PubMed  Google Scholar 

  95. Soliman W, Sander B, Soliman KA, Yehya S, Rahamn MS, Larsen M. The predictive value of optical coherence tomography after grid laser photocoagulation for diffuse diabetic macular oedema. Acta Ophthalmol. 2008;86(3):284–91.

    PubMed  Google Scholar 

  96. Arnarsson A, Stefansson E. Laser treatment and the mechanism of edema reduction in branch retinal vein occlusion. Invest Ophthalmol Vis Sci. 2000;41(3):877–9.

    PubMed  CAS  Google Scholar 

  97. Feke GT, Green GJ, Goger DG, McMeel JW. Laser Doppler measurements of the effect of panretinal photocoagulation on retinal blood flow. Ophthalmology. 1982;89(7):757–62.

    PubMed  CAS  Google Scholar 

  98. Gottfredsdóttir MS, Stefansson E, Jónasson F, Gíslason I. Retinal vasoconstriction after laser treatment for diabetic macular edema. Am J Ophthalmol. 1993;115(1):64–7.

    PubMed  Google Scholar 

  99. Wilson CA, Stefansson E, Klombers L, Hubbard LD, Kaufman SC, Ferris FL. Optic disk neovascularization and retinal vessel diameter in diabetic retinopathy. Am J Ophthalmol. 1988;106(2):131–4.

    PubMed  CAS  Google Scholar 

  100. Hikichi T, Yoshida A, Konno S, Trempe CL. Role of the vitreous in central retinal vein occlusion. Nihon Ganka Gakkai Zasshi. 1996;100(1):63–8.

    PubMed  CAS  Google Scholar 

  101. Takahashi MK, Hikichi T, Akiba J, Yoshida A, Trempe CL. Role of the vitreous and macular edema in branch retinal vein occlusion. Ophthalmic Surg Lasers. 1997;28(4):294–9.

    PubMed  CAS  Google Scholar 

  102. Charbonnel J, Glacet-Bernard A, Korobelnik JF, Nyouma-Moune E, Pournaras CJ, Colin J, et al. Management of branch retinal vein occlusion with vitrectomy and arteriovenous adventitial sheathotomy, the possible role of surgical posterior vitreous detachment. Graefes Arch Clin Exp Ophthalmol. 2004;242(3):223–8.

    PubMed  Google Scholar 

  103. Kumagai K, Furukawa M, Ogino N, Uemura A, Larson E. Long-term outcomes of vitrectomy with or without arteriovenous sheathotomy in branch retinal vein occlusion. Retina. 2007;27(1):49–54.

    PubMed  Google Scholar 

  104. Hvarfner C, Larsson J. Vitrectomy for non-ischaemic macular oedema in retinal vein occlusion. Acta Ophthalmol Scand. 2006;84(6):812–4.

    PubMed  Google Scholar 

  105. Newton IS, Cohen IB, Cohen IBGtNsP, Whitman AM. The Principia: mathematical principles of natural philosophy. Berkeley/London: University of California Press; 1999.

    Google Scholar 

  106. Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44(2):156–63.

    PubMed  CAS  Google Scholar 

  107. Averous K, Erginay A, Timsit J, Haouchine B, Gaudric A, Massin P. Resolution of diabetic macular oedema following high altitude exercise. Acta Ophthalmol Scand. 2006;84(6):830–1.

    PubMed  Google Scholar 

  108. Nguyen QD, Shah SM, Van Anden E, Sung JU, Vitale S, Campochiaro PA. Supplemental oxygen improves diabetic macular edema: a pilot study. Invest Ophthalmol Vis Sci. 2004;45(2):617–24.

    PubMed  Google Scholar 

  109. Kiryu J, Ogura Y. Hyperbaric oxygen treatment for macular edema in retinal vein occlusion: relation to severity of retinal leakage. Ophthalmologica. 1996;210(3):168–70.

    PubMed  CAS  Google Scholar 

  110. Roy M, Bartow W, Ambrus J, Fauci A, Collier B, Titus J. Retinal leakage in retinal vein occlusion: reduction after hyperbaric oxygen. Ophthalmologica. 1989;198(2):78–83.

    PubMed  CAS  Google Scholar 

  111. Stefansson E, Hatchell DL, Fisher BL, Sutherland FS, Machemer R. Panretinal photocoagulation and retinal oxygenation in normal and diabetic cats. Am J Ophthalmol. 1986;101(6):657–64.

    PubMed  CAS  Google Scholar 

  112. Pournaras CJ, Tsacopoulos M, Strommer K, Gilodi N, Leuenberger PM. Scatter photocoagulation restores tissue hypoxia in experimental vasoproliferative microangiopathy in miniature pigs. Ophthalmology. 1990;97(10):1329–33.

    PubMed  CAS  Google Scholar 

  113. Jacobi KW, Kluge K. Measuring of oxygen partial pressure before the retina following photocoagulation. Ber Zusammenkunft Dtsch Ophthalmol Ges. 1972;71:397–401.

    PubMed  CAS  Google Scholar 

  114. Soliman W, Vinten M, Sander B, Soliman KA, Yehya S, Rahman MS, et al. Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema. Acta Ophthalmol. 2008;86(4):365–71.

    PubMed  Google Scholar 

  115. Vinten M, Larsen M, Lund-Andersen H, Sander B, La Cour M. Short-term effects of intravitreal triamcinolone on retinal vascular leakage and trunk vessel diameters in diabetic macular oedema. Acta Ophthalmol Scand. 2007;85(1):21–6.

    PubMed  CAS  Google Scholar 

  116. Christoffersen N, Larsen M. Unilateral diabetic macular oedema secondary to central retinal vein congestion. Acta Ophthalmol Scand. 2004;82(5):591–5.

    PubMed  Google Scholar 

  117. Kylstra JA, Wierzbicki T, Wolbarsht ML, Landers MB, Stefansson E. The relationship between retinal vessel tortuosity, diameter, and transmural pressure. Graefes Arch Clin Exp Ophthalmol. 1986;224(5):477–80.

    PubMed  CAS  Google Scholar 

  118. Larsen M. Unilateral macular oedema secondary to retinal venous congestion without occlusion in patients with diabetes mellitus. Acta Ophthalmol Scand. 2005;83(4):428–35.

    PubMed  Google Scholar 

  119. Sohn JH, Song SJ. Arteriovenous sheathotomy for persistent macular edema in branch retinal vein occlusion. Korean J Ophthalmol. 2006;20(4):210–4.

    PubMed  PubMed Central  Google Scholar 

  120. Wrigstad A, Algvere P. Arteriovenous adventitial sheathotomy for branch retinal vein occlusion: report of a case with long term follow-up. Acta Ophthalmol Scand. 2006;84(5):699–702.

    PubMed  Google Scholar 

  121. Crafoord S, Karlsson N, la Cour M. Sheathotomy in complicated cases of branch retinal vein occlusion. Acta Ophthalmol. 2008;86(2):146–50.

    PubMed  Google Scholar 

  122. Mandelcorn MS, Mandelcorn E, Guan K, Adatia FA. Surgical macular decompression for macular edema in retinal vein occlusion. Can J Ophthalmol. 2007;42(1):116–22.

    PubMed  Google Scholar 

  123. Shimura M, Nakazawa T, Yasuda K, Kunikata H, Shiono T, Nishida K. Visual prognosis and vitreous cytokine levels after arteriovenous sheathotomy in branch retinal vein occlusion associated with macular oedema. Acta Ophthalmol. 2008;86(4):377–84.

    PubMed  CAS  Google Scholar 

  124. Karasheva G, Goebel W, Klink T, Haigis W, Grehn F. Changes in macular thickness and depth of anterior chamber in patients after filtration surgery. Graefes Arch Clin Exp Ophthalmol. 2003;241(3):170–5.

    PubMed  Google Scholar 

  125. Iturralde D, Spaide RF, Meyerle CB, Klancnik JM, Yannuzzi LA, Fisher YL, et al. Intravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion: a short-term study. Retina. 2006;26(3):279–84.

    PubMed  Google Scholar 

  126. Mason JO, Albert MA, Vail R. Intravitreal bevacizumab (Avastin) for refractory pseudophakic cystoid macular edema. Retina. 2006;26(3):356–7.

    PubMed  Google Scholar 

  127. Audren F, Erginay A, Haouchine B, Benosman R, Conrath J, Bergmann JF, et al. Intravitreal triamcinolone acetonide for diffuse diabetic macular oedema: 6-month results of a prospective controlled trial. Acta Ophthalmol Scand. 2006;84(5):624–30.

    PubMed  CAS  Google Scholar 

  128. Edelman JL, Lutz D, Castro MR. Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res. 2005;80(2):249–58.

    PubMed  CAS  Google Scholar 

  129. Jonas JB. Intravitreal triamcinolone acetonide for treatment of intraocular oedematous and neovascular diseases. Acta Ophthalmol Scand. 2005;83(6):645–63.

    PubMed  Google Scholar 

  130. Sørensen TL, Haamann P, Villumsen J, Larsen M. Intravitreal triamcinolone for macular oedema: efficacy in relation to aetiology. Acta Ophthalmol Scand. 2005;83(1):67–70.

    PubMed  Google Scholar 

  131. Margolis R, Singh RP, Bhatnagar P, Kaiser PK. Intravitreal triamcinolone as adjunctive treatment to laser panretinal photocoagulation for concomitant proliferative diabetic retinopathy and clinically significant macular oedema. Acta Ophthalmol. 2008;86(1):105–10.

    PubMed  Google Scholar 

  132. Sivaprasad S, McCluskey P, Lightman S. Intravitreal steroids in the management of macular oedema. Acta Ophthalmol Scand. 2006;84(6):722–33.

    PubMed  CAS  Google Scholar 

  133. Wang L, Song H. Effects of repeated injection of intravitreal triamcinolone on macular oedema in central retinal vein occlusion. Acta Ophthalmol. 2009;87(3):285–9.

    PubMed  Google Scholar 

  134. Vinores SA, Xiao WH, Aslam S, Shen J, Oshima Y, Nambu H, et al. Implication of the hypoxia response element of the Vegf promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. J Cell Physiol. 2006;206(3):749–58.

    PubMed  CAS  Google Scholar 

  135. Krebs I, Brannath W, Glittenberg C, Zeiler F, Sebag J, Binder S. Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration? Am J Ophthalmol. 2007;144(5):741–6.

    PubMed  Google Scholar 

  136. Stefansson E, Geirsdóttir A, Sigurdsson H. Metabolic physiology in age related macular degeneration. Prog Retin Eye Res. 2011;30(1):72–80.

    PubMed  CAS  Google Scholar 

  137. Schulze S, Hoerle S, Mennel S, Kroll P. Vitreomacular traction and exudative age-related macular degeneration. Acta Ophthalmol. 2008;86(5):470–81.

    PubMed  Google Scholar 

  138. Weber-Krause B, Eckardt U. Incidence of posterior vitreous detachment in eyes with and without age-related macular degeneration. An ultrasonic study. Ophthalmologe. 1996;93(6):660–5.

    PubMed  CAS  Google Scholar 

  139. Hayreh SS, Jonas JB. Posterior vitreous detachment: clinical correlations. Ophthalmologica. 2004;218(5):333–43.

    PubMed  Google Scholar 

  140. Lambert HM, Lopez PF. Surgical excision of subfoveal choroidal neovascular membranes. Curr Opin Ophthalmol. 1993;4(3):19–24.

    PubMed  CAS  Google Scholar 

  141. Schmidt JC, Mennel S, Hörle S, Meyer CH. High incidence of vitreomacular traction in recurrent choroidal neovascularisation after repeated photodynamic therapy. Br J Ophthalmol. 2006;90(11):1361–2.

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Meyer CH, Toth CA. Retinal pigment epithelial tear with vitreomacular attachment: a novel pathogenic feature. Graefes Arch Clin Exp Ophthalmol. 2001;239(5):325–33.

    PubMed  CAS  Google Scholar 

  143. Gross-Jendroska M, Flaxel CJ, Schwartz SD, Holz FG, Fitzke FW, Gabel VP, et al. Treatment of pigment epithelial detachments due to age-related macular degeneration with intra-ocular C3F8 injection. Aust N Z J Ophthalmol. 1998;26(4):311–7.

    PubMed  CAS  Google Scholar 

  144. Liang J, Zheng L, Yi C, Barbazetto I, Dillon J. Affection on oxygen tension of the lens after vitrectomy. Yan Ke Xue Bao. 2002;18(2):67–70.

    PubMed  Google Scholar 

  145. Holekamp NM, Shui YB, Beebe D. Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract. Am J Ophthalmol. 2006;141(6):1027–32.

    PubMed  Google Scholar 

  146. Mathew RG, Murdoch IE. The silent enemy: a review of cataract in relation to glaucoma and trabeculectomy surgery. Br J Ophthalmol. 2011;95(10):1350–4.

    PubMed  Google Scholar 

  147. Chauvaud D, Clay-Fressinet C, Pouliquen Y, Offret G. Opacification of the crystalline lens after trabeculectomy. Study of 95 cases. Arch Ophtalmol (Paris). 1976;36(5):379–86.

    CAS  Google Scholar 

  148. Daugeliene L, Yamamoto T, Kitazawa Y. Cataract development after trabeculectomy with mitomycin C: a 1-year study. Jpn J Ophthalmol. 2000;44(1):52–7.

    PubMed  CAS  Google Scholar 

  149. Popovic V, Sjöstrand J. Long-term outcome following trabeculectomy: I retrospective analysis of intraocular pressure regulation and cataract formation. Acta Ophthalmol (Copenh). 1991;69(3):299–304.

    CAS  Google Scholar 

  150. Quigley HA, Buhrmann RR, West SK, Isseme I, Scudder M, Oliva MS. Long term results of glaucoma surgery among participants in an east African population survey. Br J Ophthalmol. 2000;84(8):860–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Razzak A, al Samarrai A, Sunba MS. Incidence of posttrabeculectomy cataract among Arabs in Kuwait. Ophthalmic Res. 1991;23(1):21–3.

    PubMed  CAS  Google Scholar 

  152. Sihota R, Gupta V, Agarwal HC. Long-term evaluation of trabeculectomy in primary open angle glaucoma and chronic primary angle closure glaucoma in an Asian population. Clin Experiment Ophthalmol. 2004;32(1):23–8.

    PubMed  Google Scholar 

  153. Vesti E. Development of cataract after trabeculectomy. Acta Ophthalmol (Copenh). 1993;71(6):777–81.

    CAS  Google Scholar 

  154. Chang S. LXII Edward Jackson lecture: open angle glaucoma after vitrectomy. Am J Ophthalmol. 2006;141(6):1033–43.

    PubMed  Google Scholar 

  155. Koreen L, Yoshida N, Escariao P, Niziol LM, Koreen IV, Musch DC, et al. Incidence of, risk factors for, and combined mechanism of late-onset open-angle glaucoma after vitrectomy. Retina. 2012;32(1):160–7.

    PubMed  Google Scholar 

  156. Yu AL, Brummeisl W, Schaumberger M, Kampik A, Welge-Lussen U. Vitrectomy does not increase the risk of open-angle glaucoma or ocular hypertension - a 5-year follow-up. Graefes Arch Clin Exp Ophthalmol. 2010;248(10):1407–14.

    PubMed  Google Scholar 

  157. Lalezary M, Kim SJ, Jiramongkolchai K, Recchia FM, Agarwal A, Sternberg P. Long-term trends in intraocular pressure after pars plana vitrectomy. Retina. 2011;31(4):679–85.

    PubMed  Google Scholar 

  158. Siegfried CJ, Shui YB, Holekamp NM, Bai F, Beebe DC. Oxygen distribution in the human eye: relevance to the etiology of open-angle glaucoma after vitrectomy. Invest Ophthalmol Vis Sci. 2010;51(11):5731–8.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar Stefánsson MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stefánsson, E. (2014). IV.A. Vitreous Physiology. In: Sebag, J. (eds) Vitreous. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1086-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1086-1_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1085-4

  • Online ISBN: 978-1-4939-1086-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics